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Abstract We study a binary tree-structured multi-
degree-of-freedom nonlinear oscillator with impulsive
and continuous excitations. The response of this model
is studied for excitations that are applied to the largest
masses. It is shown howchoosing themass of the small-
est blocks influences the response of the system regard-
ing the dissipation and how efficient targeted energy
transfer is realized in the system. The simplified fre-
quency energy plot is introduced as a means of ana-
lyzing the response of multi-degree-of-freedom sys-
tems for impulsive excitations. For continuous excita-
tions, it is shown that the smallest masses (nonlinear
energy sinks) are active only inside specific nonlinear
frequency bands when the excitation amplitude is suf-
ficiently high.
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1 Introduction

Energy transfer is part of many natural systems. Devel-
oping means to deal with undesirable vibrations in
engineering systems is of primary importance. These
vibrations are either completely unwanted or their
energy must be transferred to another part of the sys-
tem. Hence, there is a growing interest toward the
study of energy cascades and targeted energy transfer
(TET). Many studies demonstrate the superior dissi-
pative property of nonlinear energy sinks (NES), that
are essentially nonlinear dissipative attachments, over
linear tuned mass dampers [1–4] (although there are
exceptions, see, for example, [5]). Vakakis et al. [6]
discuss energy transfer through the example of simple
mechanical oscillators. They argue that strong, essen-
tial nonlinearities must be present in the system to
realize efficient irreversible transfer of energy toward
the dissipative elements of the system. Systems having
multiple NESs attached are even capable of exhibiting
chaotic dynamics. In recentworks of Chen et al. [7,8], a
chain of NESs were attached to a primary linear oscil-
lator and the system was subjected to the harmonic
forcing of the linear oscillator. They showed that for
sufficiently high excitation amplitude the response of
the system can be chaotic for specific frequency bands
that depend on the excitation amplitude.

Recently, some special types of NESs were also
investigated. Al-Shudeifat et al. [9] studied a bistable
NES with two nontrivial stable and a trivial unstable
equilibria, attached to a primary linear oscillator. They
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constructed the frequency energy plot of the system
and analyzed the behavior of the system with the help
of wavelet transforms to depict the dynamics and iden-
tify the underlying mechanism of the occurring TET.
The advantage of such a bistable NES is that it can
significantly reduce the excitation amplitude threshold
that is required to activate the NES [10,11]. In another
work, Zhang et al. [12] studied 1-DoF and 2-DoFNESs
that incorporated nonlinear dampings besides the non-
linear springs. They found that the 1-DoF variant had
a failure frequency where the NES vibration reduction
becomes ineffective, while the 2-DoF variant had none
and was found to perform better anyways. An interest-
ing mechanical engineering application is the work of
Yang et al. [13], who proposed a fluid-conveying pipe
with an enhanced NES to achieve adaptive vibration
suppression. A recent review on NES is provided by
Ding et al. [14], while an overview on the state of the
art of nonlinear TET is given by Vakakis et al. [15].

The frequency energyplot (FEP) [16,17] andwavelet
transforms [18,19] of the vibration are often computed
to analyze the drivingmechanism of the energy transfer
in such vibrational systems. The FEP essentially shows
the nonlinear normal modes (NNM) of the system as
the function of their energy content for the conserva-
tive (no damping) case. Although the FEP corresponds
to the undamped case, it qualitatively shows how the
weakly damped systemwill behave. The wavelet trans-
form shows the frequency of the vibration as function
of the energy content of the system. It is extracted from
the displacement and energy time history of the vibra-
tion and can be superimposed onto the FEP to highlight
which NNMs are excited.

Turbulent fluid flow [20] is a natural process that
is strongly nonlinear in nature and dissipates kinetic
energy rapidly through an energy cascade, a primarily
one-way energy transfer from large to small scales. In
turbulent flow, large unstable vortices form that even-
tually break up into smaller vortices. Thus, the kinetic
energy of the flow is transferred to smaller and smaller
scales. This energy is dissipated at the smallest scales
due to viscous friction [21]. The above description of
turbulent flows is called Richardson’s eddy hypothesis
[22,23]. The turbulent energy cascade was extensively
studied in the literature [24–27]. Kolmogorov [28] was
the first who described the energy spectrumof homoge-
neous isotropic turbulence that shows the energy con-
tent of the fluid flow as the function of the eddy scales.

Inspired by the eddy hypothesis of turbulent flows,
we proposed a mechanistic model whose structure
resembles the hierarchical connection among the vor-
tices of turbulent flow [29]. Themodel is a binary tree of
masses connected by springs and dampers (Fig. 1). The
idea to propose and investigate a mechanistic model
based on the vortex breakdown in turbulent flows has
motivated research in this field previously [30].

In previous works [29,31,32], we studied a purely
linear version of this mechanistic model. The discrete
energy spectrum of the model was defined as the frac-
tion of the total energy stored in the different mass
scales. Similarly, the discrete energy flux function of
the system was defined as the set of energy fluxes
between levels scaled by the dissipation rate.

In this study, we add essential nonlinearity to the
mechanistic model by adding cubic stiffnesses to the
bottom level of the tree. We analyze the response of the
system for different types of excitations. Our goal is to
examine the energy cascade developing in the mecha-
nistic model to identify the driving mechanism of the
occurring irreversible energy transfer. Thus, this study
provides some insight to energy transfer processes of
systems involving multiple scales. We believe that this
will stimulate further research and provide a new aspect
to study phenomena involving energy cascade such as
turbulent flows.

This paper is structured as follows. In Sect. 2, we
introduce the nonlinear mechanistic model and recall
how the energy spectrum and the energy flux func-
tion of the model are defined. In Sect. 3, we explain
the choice of parameters, introduce the simplified FEP
of the mechanistic model as a means of analyzing
the response of multi-degree-of-freedom systems for
impulsive excitations, and show the response of the
mechanistic model for different impulsive excitations
and identify the main energy transfer mechanism for
each case. We also investigate the response of the sys-
tem for continuous harmonic excitation and identify the
nonlinear bands in which the NES blocks are active. In
Sect. 4, conclusions are drawn.

2 The nonlinear mechanistic model

2.1 Model description

The subject of this study is an n-level binary tree of
blocks connected by linear and nonlinear springs and
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Fig. 1 Nonlinear mechanistic model with n = 3 levels

dampers shown in Fig. 1. In this model, the blocks are
connected with linear springs across all levels, except
the last two levels where the connection is provided by
dampers and cubic nonlinear springs.

The mechanistic model has n levels; level l ∈
{1, . . . , n} consists of 2l−1 blocks; the total number
of blocks is N = 2n − 1. The leftmost (top) block
(mass m1) is connected to a fixed wall via a spring
having a stiffness of k1. Every block has an index
i ; each has a parent (except the top block m1) and
two children (except the blocks in the rightmost or in
other words bottom level) whose indices are P(i) =
�i/2�, L(i) = 2i, R(i) = 2i + 1, respectively
(i = 1, . . . , N ). Here �.� denotes the floor operation,
e.g., P(1) = �1/2� = 0.

The equation of motion together with the initial con-
ditions can be written in a general form as

mi ẍi = ki (xP(i) − xi )
γi + kL(i)(xL(i) − xi )

γL(i)

+ kR(i)(xR(i) − xi )
γR(i)

+ ci (ẋP(i) − ẋi ) + cL(i)(ẋL(i) − ẋi )

+ cR(i)(ẋR(i) − ẋi ),

xi (0) = xi,0, ẋi (0) = vi,0, i = 1, . . . , N ,

(1)

with x0(t) = 0 (the wall is motionless).
Since the bottom level is the “loose end” of the tree,
ki = 0 for i > N . The dampers are only incorporated
between the last two levels, so ci is only nonzero for
i = 2n−1, . . . , N . Likewise, the exponents γi = 3 for
i = 2n−1, . . . , N , because only the springs that connect
the last two levels are nonlinear (cubic). Otherwise,
γi = 1 for the linear springs connecting the rest of the
blocks. To summarize, the following conditions apply
for the parameters ki , ci , γi :

ki = 0, i > N ,

ci = 0, 1 ≤ i < 2n−1,

γi = 1, 1 ≤ i < 2n−1,

γi = 3, i ≥ 2n−1.

(2)

For a typical block in the lth level of the tree for
l ∈ {2, n − 2}, the terms corresponding to the dampers
vanish and the exponents γi are ones, i.e.,

mi ẍi = ki (xP(i) − xi ) + kL(i)(xL(i) − xi )

+ kR(i)(xR(i) − xi ),

xi (0) = xi,0, ẋi (0) = vi,0, i = 2, . . . , 2n−2 − 1.

(3)

For the blocks in the n − 1th level, we have

mi ẍi = ki (xP(i) − xi ) + kL(i)(xL(i) − xi )
3

+ kR(i)(xR(i)−xi )
3+cL(i)(ẋL(i)−ẋi )

+cR(i)(ẋR(i)−ẋi ),

xi (0)= xi,0, ẋi (0)=vi,0, i =2n−2, . . . , 2n−1 − 1,

(4)

since these blocks are connected to the nth last level
with nonlinear springs and dampers.
The blocks in the last (nth) level do not have any chil-
dren blocks; for these blocks we have

mi ẍi = ki (xP(i) − xi )
3 + ci (ẋP(i) − ẋi ),

xi (0) = xi,0, ẋi (0) = vi,0, i = 2n−1, . . . , N .
(5)

The equations of motion (1) of the binary tree can be
formulated in matrix form as

Mẍ(t) + Cẋ(t) + Kx(t) + N(x(t)) = 0,

x(0) = x0, ẋ(0) = v0, (6)

where x(t) is the vector of displacements; M, C, K
are the mass, damping, and stiffness matrices, respec-
tively. The nonlinear terms are collected in the vector
N(x(t)). Without formally performing the nondimen-
sionalization of Eq. (6), we will treat this equation as
nondimensional and fix the values m1 = k1 = 1.

2.2 Temporal energy spectrum and energy flux
function

We recall the definitions for the temporal energy spec-
trum and energy flux function of themechanisticmodel
that are discussed in detail in [29].

We set every mass, stiffness, and damping coeffi-
cient equal within a level l. Let Ml denote the constant
“mass scale” representing the mass of each block in
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level l ∈ {1, . . . , n}. Similarly, Kl and Cl refer to the
springs and dampers connecting the blocks of the l−1th
and lth levels, e.g., for the second level the mass scale
is M2 = m2 = m3, and K2 = k2 = k3. The total
mechanical energy E(t) of the system is

E(t) = 1

2
ẋT (t)Mẋ(t) + 1

2
xT (t)Kx(t)

+
∫

||N(x(t))||1dx, (7)

where ||.||1 = ∑N
i=1 |.| denotes the 1-norm of N(x(t)).

The total energy is the sum of level energies, i.e.,

E(t) =
n∑

l=1

El(t), (8)

where El(t) is defined so that the potential energy of the
springs connecting two masses is distributed equally
between the two levels and the potential energy of the
top spring is added to E1(t):

El(t) = 1

2
Ml

∑
i∈I (l)

ẋ2i

+ (1 + δl,1)Kl

4 + 4δl,n

∑
i∈I (l)

(xi − xP(i))
2+2δl,n

+ Kl+1

4 + 4δl,n−1

∑
i∈I (l+1)

(xi − xP(i))
2+2δl,n−1 ,

l = 1, . . . , n.

(9)

Here I (l) = {2l−1, . . . , 2l − 1} are the indices on level
l and δ is the Kronecker delta (δi, j = 1 for i = j , 0
otherwise). Due to the “loose end” of the tree, Kn+1 =
0.

We define the mean energy Ē for a time window
[τ, τ + Δτ ] as

Ē = 1

Δτ

∫ τ+Δτ

τ

E(t)dt, (10)

and we similarly define the mean level energy Ēl for
l = 1, . . . , n. The mean energy is the sum of the mean
level energies, i.e., Ē = ∑n

l=1 Ēl .
The energy fraction stored in level l (and hence cor-

responding to the scale Ml ) is defined as

Êl = Ēl/Ē, l = 1, . . . , n. (11)

The Êl values constitute the discrete temporal energy
spectrum Ê of the mechanistic model.

We define the dissipation rate of the system as

ε(t) = −Ė(t). (12)

Similar to the energy spectrum, a set of fluxes can be
calculated. The energy flux Πl(t) of level l is defined
as the rate of energy transfer between levels l and l+1,
i.e.,

Πl(t) = Πl−1(t) − Ėl(t),

Πn(t) = −Ėn (t) , l = 1, . . . , n − 1. (13)

HereΠ0(t) = 0, since no energy is passed from the top
block toward the motionless wall. For l < n, we have
Πl(t) > 0 when energy is transferred from level l to
level l + 1. It can be shown that the recursive formula
(13) leads toΠl(t) = −∑l

l=1 Ėl(t) for l∈{1, ..., n−1}.
Since there is no level below the nth level, the flux of
this level is simply Πn (t) = −Ėn (t). This means that
for Πn > 0 the last level “loses” energy, it is either
dissipated or passed back to the n − 1th level. When
Πn < 0, the energy content of the last level increases.

Similar to the mean energy, the mean dissipation
rate of the system is also defined for a time window
[τ, τ + Δτ ]:
ε̄ = − 1

Δτ

∫ τ+Δτ

τ

Ė(t)dt. (14)

The mean fluxes Π̄l are defined similarly for l =
1, . . . , n − 1.

Analogously to the scaling of the mean level ener-
gies with Ē , we scale the mean level fluxes with ε̄ to
yield the scaled energy flux for level l, i.e.

Π̂l = Π̄l/ε̄, l = 1, .., n. (15)

The Π̂l values constitute the discrete temporal energy
flux function Π̂ of the mechanistic model.

3 Results

3.1 Model parameters

Let Ml denote the constant “mass scale” representing
the mass of each block in level l ∈ {1, . . . , n}. Simi-
larly, Kl and Cl refer to the springs and dampers con-
necting the blocks of the l − 1th and lth levels.

We define two systems having slightly different set
of parameters: abaseline systemand amodified system.
For both systems, themasses of the blocks are gradually
decreased according to a power law as

Ml = (1/2)l−1, l = 1, . . . , n − 1, (16)

For the baseline system, this power law decrease holds
for the last level as well

Mn = (1/2)n−1, (17)
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whereas in themodified system themasses of the blocks
in the bottom level are further reduced as

Mn = 1

4
(1/2)n−1. (18)

Thus, the bottom level will comprise efficient NESs
with lightweight masses compared to the large linear
part of the system. The stiffnesses Kl are scaled by the
same power law distribution for both cases:

Kl = (1/2)l−1, l = 1, . . . , n. (19)

In [29], other power law stiffness distributions were
used as well and the dependence of the behavior of
the system on this type of stiffness distribution was
extensively analyzed.

By design only Cn = c is nonzero and the small
value of c = 0.001 is chosen to enhance the effect of
the NES. This means that each damper has c = 0.001
and that dampers are only incorporated between the
n − 1th and nth level blocks, connected parallel with
the nonlinear springs as Fig. 1 suggests. The systems
discussed in this paper have n = 6 levels.

3.2 The simplified frequency energy plot of the
mechanistic model

The frequency energy plot depicts the vibration fre-
quency ω of the undamped system as the function
of the energy content for different nonlinear normal
modes. The harmonic balance method [33] is suitable
to construct the FEP of the system described by Eq. (1).
However, this task becomes cumbersome as the num-
ber of degrees of freedom of the system increases. In
our case, an extra level added to the system roughly
doubles the number of blocks! Hence, instead of com-
puting the FEP of the binary tree-structured mecha-
nistic model, we compute the FEP of a reduced chain
oscillator variant of the model that is described in [29].
This chain oscillator is obtained by simply replac-
ing a level of blocks/springs/dampers with a single
block/spring/damper whose mass/stiffness/damping
coefficient is the sum of those of the replaced elements.
The FEP of this reduced chain oscillator is shown in
Fig. 2 for the modified version of the system and it is
called the simplified FEP of the mechanistic model.

Such a nonlinear system can have several nonlinear
normalmodes. These can be distinguished based on the
oscillation frequency of the individual blocks and their
phases relative to each other. In Fig. 2, only the back-
bone curves are depicted that correspond to the NNMs

Fig. 2 Simplified frequency energy plot of the mechanistic
model for the modified system

in which all blocks oscillate with the same frequency.
We also note that only those NNMs of the mechanis-
tic model can be computed using the reduced chain
oscillator model in which every block in the same level
oscillates in-phase. The thin pairs of horizontal lines in
Fig. 2 correspond to the “pairs” of eigenfrequencies of
the underlying linear systems. One of these underlying
linear systems is constructed by removing the nonlin-
ear springs; the higher eigenfrequencyof the pair comes
from this one. The other one is constructed by replac-
ing the nonlinear springs with rigid rods that yields the
lower eigenfrequency of the pair.

Even though this simplified FEP corresponds to
the reduced chain oscillator, the computed backbone
branches agree well with those of the binary tree-
structured system. For the two model versions (base-
line and modified) discussed in this paper, we also
computed the full FEP corresponding to the binary
tree-structured mechanistic model. The full FEPs and
the simplified FEPs of the baseline and the modified
systems are compared in Fig. 3. The good agreement
between the full and simplified FEPs shows that even
the latter gives us insight into the complex dynamics of
the binary tree-structured mechanistic model.

3.3 Impulsive excitation

First, both the baseline system and the modified system
were investigated for impulsive excitations applied to
the top levels. We chose to excite the first two levels
as these represent the largest scales, and we can pre-
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Fig. 3 Full and simplified
frequency energy plots of
the mechanistic model for a
the baseline system and b
the modified system

scribe a variety of different excitation combinations.
The nonzero initial conditions were

ẋ1(0) = ẋ2(0) = ẋ3(0) = 1; (20)

thus, the initial energy is expressed using the mass
scales M1 and M2 as

E(0) = 1

2
M1 ẋ

2
1 (0) + 1

2
M2(ẋ

2
2 (0) + ẋ23 (0))

= 1

2
M1 + M2 = 1. (21)

We will see that this amount of initial energy is
enough to trigger the efficient irreversible energy trans-
fer mechanisms provided by the energy sinks.

Figure4 shows the total energy decay over time t for
both cases. For comparison, the purely linear version
of the baseline system is also included with dampers
having the same weak damping c = 0.001 as well as
with dampers having the optimal damping c = 0.125
given by the spectral abscissa criterion [34]. The opti-
mal damping case shows the highest dissipation rate
that can be achieved with the linear model. It is evident
from the figures that the dissipation of the nonlinear
energy sinks is superior compared to that of the linear
springs and dampers in case of weak dampings. The
total energy decay suggests strongly nonlinear behav-
ior, especially in case of the modified system.

In Figs. 5 and 6, we show the energy percentage
stored in the bottom level as function of the time as
well as the wavelet plot of the system superimposed
onto the simplified FEP.We see two fundamentally dif-
ferent behavior in the two cases. In the baseline case,
initially a very efficient irreversible transfer of energy is

Fig. 4 Total energy of different mechanistic models as the func-
tion of time for initial conditions ẋ1(0) = ẋ2(0) = ẋ3(0) = 1

realized through nonlinear beats that is sustained until
t ≈ 180. After that point, the in-phase NNM—that
is characterized by every block oscillating in-phase—
dominates the vibration and a less efficient in-phase tar-
geted energy transfer is realized through 1:1 transient
resonance capture (TRC) of the blocks in the last two
levels. The system escapes from TRC around t ≈ 180.
In the modified system, the initial nonlinear beats are
weaker, but the in-phase targeted energy transfer kicks
in around t ≈ 200 and it is much more efficient for
this system. The rapid dissipation of energy via the in-
phase TET is sustained until t ≈ 1500. The referred
time instances are determined based on the qualitative
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Fig. 5 Energy percentage
stored in the bottom level of
the a baseline and b
modified mechanistic
models for initial conditions
ẋ1(0) = ẋ2(0) = ẋ3(0) = 1.
The long and small dashings
mark the end of nonlinear
beats and the escape from
TRC, respectively

Fig. 6 Wavelet transform
of the vibration
superimposed onto the FEP
of the a baseline and b
modified mechanistic
models for initial conditions
ẋ1(0) = ẋ2(0) = ẋ3(0) = 1.

changes that are visible in the E6(t)/E(t) graphs as
well as in the x(t) displacement time histories. One
can also see the changes in the slope of E(t) in Fig. 4
around these time instances, e.g., the escape of themod-
ified system from TRC around t ≈ 1500 is particularly
spectacular in this figure.

In Fig. 7, the displacements x16 and x32 of two
directly connected blocks located in the 5th and 6th
levels are shown. Based on the numbering shown in
Fig. 1, the 16th and 32nd blocks are located at the “edge
of the tree” similar to the 1st, 2nd, 4th, and 8th blocks.
In the first part of the motion, the highly modulated dis-
placement signals indicate that indeed nonlinear beats
are the mechanism of the irreversible energy transfer
toward the NESs. However, a difference can be noticed
between the baseline and themodified cases when TET
triggers. In the baseline case, the vibration of the larger
block is somewhat modulated, meaning that a subhar-

monic NNM tongue is also excited here, not just the
main branch. This is why the system escapes the 1:1
TRCmuch sooner, whereas in the modified case a clear
1:1 transient resonance capture is realized that induces
strong in-phase TET on the in-phase NNM backbone
branch.

In Figs. 8 and 9, the energy spectra andflux functions
are depicted for three different stages of the vibration.
The time window of the first stage roughly corresponds
to the initial nonlinear beats, while the in-phase TET
occurs in the second stage. In the third stage, the base-
line system already escaped the 1:1 TRC, while in the
modified case we are still experiencing in-phase TET.

One can notice that the spectrum is very stable for
the modified system, indicating that the in-phase NNM
already becomes dominant in the first stage. For the
baseline system,we see fundamentally different energy
spectra in the three stages. Again, the evidence of the
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Fig. 7 Displacement of two
connected blocks in the last
two levels of the a baseline
and b modified mechanistic
models for initial conditions
ẋ1(0) = ẋ2(0) = ẋ3(0) = 1.
The long dashing marks the
end of nonlinear beats

Fig. 8 Energy spectra of
the a baseline and b
modified mechanistic
models for initial conditions
ẋ1(0) = ẋ2(0) = ẋ3(0) = 1

Fig. 9 Flux functions of the
a baseline and b modified
mechanistic models for
initial conditions
ẋ1(0) = ẋ2(0) = ẋ3(0) = 1

escape from the 1:1 TRC can be seen in this figure,
since the energy spectrum of the third time window is
very similar to those observed by linear systems in pre-
vious research [29]. This implies that in the third stage
no more dissipation is induced by the nonlinearity. In
Fig. 9, we can also see that in this third stage the scaled
flux Π̄6/ε̄ is highly negative for the baseline system.

This means that a large portion of the energy is not
dissipated, but rather passed toward the energy storing
elements of the sixth level.

The richness of the dynamics of this binary tree-
structured oscillator can be demonstrated by another
simple example. Let us change the sign of the initial
condition ẋ2(0), i.e., let ẋ2(0) = −1. Figure10 shows
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Fig. 10 Total energy of different mechanistic models as the
function of time for initial conditions ẋ1(0) = ẋ3(0) = 1,
ẋ2(0) = −1

the total energy decay over time t for both the baseline
and the modified cases. For comparison, the purely lin-
ear version of the baseline system is again included
with dampers having the same damping c = 0.001
as well as with dampers having the optimal damping
c = 0.125. The modified case is again much more effi-
cient; hence, we only analyze the modified version of
the system from hereon.

In Fig. 11, we show the energy percentage stored
in the bottom level as function of the time as well as
the wavelet plot of the modified system superimposed
onto the simplified FEP. The wavelet transform shows
the excitation ofmultiple NNMswith a very interesting
“swiss cheese-like” pattern that is caused by the initial
nonlinear beats that last until t ≈ 120.

Even though in Fig. 11a the energy stored in the
NESs over time looks similar to what is observed in
Fig. 5a, we do not have TET on the in-phase NNM
with 1:1 TRC this time. In fact, the nonlinear beats
persist, as Fig. 12a shows modulated displacement sig-
nals for the investigated two connected blocks in the
last two levels. Inspecting the energy spectral density
of x32(t) shown in Fig. 12b reveals that besides the fre-
quency corresponding to the in-phase NNM, there is
another close, but slightly higher frequency peak with
similar magnitude (the dashed vertical lines mark the
eigenfrequencies of the underlying linear systems). The
superposition of the corresponding modes causes the
typical beating pattern on the displacement plot. The

NNM corresponding to the higher frequency vibration
component is not included in the FEP, since this one is
exclusive to the binary tree structure and is not present
in the reduced chain oscillator version of the model.

In Fig. 13, the energy spectrum and the scaled fluxes
of the systemare depicted for themodified initial condi-
tions. The energy spectra are different for the three dif-
ferent stages of the vibration. The first stage is the initial
nonlinear beats, the second is the beating of twoNNMs,
and the third stage is the steadily decaying phase where
the nonlinearity is no longer significant.

3.4 Continuous excitation

In this case, every initial condition is set to zero and a
harmonic forcing of the form Acos(Ωt) is applied to
the top (leftmost) block. The response of the modified
system is investigated for different amplitudes A and
excitation frequenciesΩ . In each case, the investigated
excitation frequency range contains a “forbidden zone”
that is between a pair of eigenfrequencies of the under-
lying linear systems that are marked by the horizontal
lines in Fig. 2. We call them forbidden zones, because
no NNM crosses these in the FEP.

In Fig. 14, we show the mean energies Ē, Ē5, Ē6 for
A = 0.001 and A = 0.01, Ω ∈ [0.2, 0.35]. Figure14a
shows that the forcing having the lower excitation
amplitude A = 0.001 does not trigger the nonlinear
dynamics provided by the NESs; the response is simi-
lar to that of a linear system. However, in the response
depicted in Fig. 14b for the higher excitation ampli-
tude A = 0.01 we see a much more interesting fre-
quency response. This excitation amplitude is already
high enough to sustain efficient energy transfer toward
the NESs for a narrow frequency band that includes
the forbidden zone. This “nonlinear band” is approx-
imately Ω ∈ [0.26, 0.31] while the forbidden zone is
the vibrational frequency range ω ∈ [0.27, 0.285]. A
similar behavior was observed by Chen et al. [7] where
this was attributed to a chaotic synchronization among
the blocks of the system.

In Fig. 15, we depicted the displacements of the top
block and a NES block in the bottom level to show the
difference between the responses inside and outside of
the nonlinear band for the higher excitation amplitude
A = 0.01. For Ω = 0.25, there is no sign of nonlinear
behavior, whereas for Ω = 0.29 we see the evidence
of efficient irreversible energy transfer. The vibration
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Fig. 11 a Energy
percentage stored in the
bottom level. The long and
small dashings mark the end
of nonlinear beats and the
escape from TRC,
respectively. b Wavelet
transform of the vibration
superimposed onto the FEP
of the modified mechanistic
model with initial
conditions
ẋ1(0) = ẋ3(0) = 1,
ẋ2(0) = −1

Fig. 12 a Displacement of
two connected blocks in the
last two levels of the
modified mechanistic
model. The long dashing
marks the end of nonlinear
beats. b The energy spectral
density of x32(t) with initial
conditions. The long
dashing marks the end of
the initial nonlinear beats.
ẋ1(0) = ẋ3(0) = 1,
ẋ2(0) = −1

Fig. 13 a Energy spectrum
and b flux function of the
modified mechanistic model
for initial conditions
ẋ1(0) = ẋ3(0) = 1,
ẋ2(0) = −1
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Fig. 14 Mean energies of
the modified mechanistic
model with harmonic
forcing Acos(Ωt),
Ω ∈ [0.2, 0.35] applied to
the top block, a A = 0.001,
b A = 0.01

Fig. 15 Displacement x1
and x32 of the modified
mechanistic model with
harmonic forcing
Acos(Ωt), A = 0.01
applied to the top block, a
Ω = 0.25, b Ω = 0.29

amplitude of the NES block is far higher than that of
the forced top block.We also note that the displacement
x32(t) of the observedNESblock is stronglymodulated
and the peak magnitudes are irregular relative to each
other.

Investigating the associated energy spectra depicted
in Fig. 16 for the four cases A ∈ {0.001, 0.01} and
Ω ∈ {0.25, 0.29} shows that in three of the four
cases the energy spectra are very similar. We have a
decreasing energy spectrumwhen the excitation ampli-
tude is low or when the excitation frequency is out-
side of the nonlinear band, since there is no efficient
nonlinear energy transfer in these cases. For the high
amplitude case in the nonlinear band (A = 0.01 and
Ω = 0.29), the energy spectrum is fundamentally dif-
ferent. The energy fraction concentrated in the NESs is
much higher compared to the other cases.

For thenext forbidden zonebetweenω ∈ [0.8, 0.83],
a similar behavior is observed; the frequency response
is shown in Fig. 17a. The lower and upper thresholds
of the nonlinear band are much clearer in this case; the
nonlinear band is approximately Ω ∈ [0.78, 0.89] for
the investigated excitation amplitude A = 0.05. The
trends of the energy spectra depicted in Fig. 17b also

Fig. 16 Energy spectra of the modified mechanistic model with
harmonic forcing Acos(Ωt) applied to the top block

show similarities with the previously investigated fre-
quency band. The energy fraction stored in the NESs
is only significant when the excitation frequency Ω is
within the nonlinear band and the excitation amplitude
A is sufficiently high (A = 0.05 and Ω = 0.89). In the
other three cases, significant energy transfer toward the
NESs is not realized; hence, the energy fraction stored
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Fig. 17 a Mean energies
for A = 0.5,Ω ∈ [0.7, 1]
and b energy spectra of the
modified mechanistic model
with harmonic forcing
Acos(Ωt), applied to the
top block

Fig. 18 Displacement x1
and x32 of the modified
mechanistic model with
harmonic forcing
Acos(Ωt), A = 0.05,
Ω = 0.85 applied to the top
block

in the NESs is much lower and the shapes of the energy
spectra share similarities.

The displacement solutions shown in Fig. 18 are
strongly modulated indicating the realization of non-
linear energy transfer by means of nonlinear beats.

4 Conclusions

The motivation of this paper stems from the study of
processes involving different scales and exhibiting an
energy cascade, a primarily one-way energy transfer
from the larger scales to the smaller ones. A notable
example of such a process is turbulent flow where the
kinetic energy of the flow is passed from larger vor-
tices to smaller ones and dissipation only prevails at the
smallest scale. The structure of the mechanistic model
studied here resembles the hierarchical relation among
the vortices of different scales and also features nonlin-

ear energy sinks as dissipative elements by the smallest
scales.

The response of a binary tree-structured multi-DoF
mechanical oscillator with light damping was inves-
tigated for impulsive and continuous excitations. The
analysis covered two model variants: in the baseline
model the mass of the NES blocks obeyed Eq. (16),
while in the modified model the mass of these blocks
were decreased by 75%. A methodology involving the
simplified FEP of the underlying reduced chain oscilla-
tor was presented to analyze the dynamic response for
the impulsive excitations. It was shown that decreasing
the mass of the NES blocks leads to a fundamentally
different energy transfer mechanism that is far more
efficient and outperforms also the linear version of the
system, even if the damping coefficient is significantly
increased for the linear model to reach the optimal
damping value. The response of the system also heavily
depends on the initial conditions. In the first case for
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nonzero initial conditions ẋ1 = ẋ2 = ẋ3, only the in-
phaseNNMwas excited once the initial nonlinear beats
expired.A simple example showed that by changing the
sign of ẋ2 we can excite a NNM that is only present
in the binary tree-structured model and are missing
from the underlying reduced chain oscillator. For con-
tinuous harmonic excitation, we found that there are
well-bounded nonlinear bands that overlap the forbid-
den zones of the FEP. The NESs are activated only in
these nonlinear bands; no significant energy transfer
toward the NES blocks is observed outside of these
bands. The displacement solutions show heavily mod-
ulated signals indicating that the primarymechanismof
the energy transfer is nonlinear beating. Though these
modulated displacement signals show some regularity,
the peak values vary. In future work, we plan to extend
nonlinearities toward the higher levels of the tree to
investigate whether this triggers chaotic dynamics in
the nonlinear bands.

In future research, we plan to connect the findings
of this study with the characteristics of turbulent flows.
We plan to relate the parameters of the mechanistic
model with measured parameters of turbulent flows. A
long term goal of this research is to realize an energy
cascade within the mechanistic model that is similar to
the turbulent energy cascade, e.g., the energy spectrum
follows a similar trend. We believe that this will lead
us to a better understanding of energy cascades in gen-
eral and how these energy cascades efficiently transfer
energy through different scales.
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