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Abstract The present paper is devoted to the issue of the Green function matrices that belongs to some
three-point boundary- and eigenvalue problems. A detailed definition is given for the Green function matrices
provided that the considered boundary value problems are governed by a class of ordinary differential equation
systems associated with homogeneous boundary and continuity conditions. The definition is a constructive
one, i.e., it provides the means needed for calculating the Green function matrices. The fundamental properties
of the Green function matrices—existence, symmetry properties, etc.—are also clarified. Making use of these
Green functions, a class of three-point eigenvalue problems can be reduced to eigenvalue problems governed
by homogeneous Fredholm integral equation systems. The applicability of the novel findings is demonstrated
through a Timoshenko beam with three supports.

Mathematics Subject Classification 34B27 · 65L10

1 Introduction

Beams are preferred structural members because of the favorable load-carrying abilities. Research on the
behavior of beams dates back to long ago and is still live and widespread [1–3]. The vibratory behavior is one
of the topics of interest still up to date. For example, a geometrically nonlinear model is solved in [4] to find
the fundamental frequencies. The related nonlinear partial differential equation is replaced with an ordinary
differential equation using the Galerkin method. It is then solved in time domain using variational iteration and
parametrized perturbation method. Article [5] is about the unloaded vibrations a double beam system which is
connected with a Winkler elastic layer. Both rotatory inertia and shear are incorporated into the beam model
presented. The governing partial differential equation system is solved with the Bernoulli–Fourier method.
An analytical solution to the mode-shape equation of gravity-loaded Rayleigh–Timoshenko beams is given in
[6]. The vibrations of multi-step Timoshenko beams carrying multiple concentrated elements are addressed in
[7] using the continuous mass transfer matrix method. The effectiveness of the Adomian decomposition and
differential transformation method is investigated through the vibrations of Timoshenko beams on viscoelastic
foundation in [8]. The large amplitude vibrations of beams on variable elastic foundation are studied in [9]. The
beammodel is based on the Euler–Bernoulli hypothesis, and theWinkler model is used for the foundation. The
Hamilton principle is used to derive the equations of motion, while the second-order homotopy perturbation
method is applied to find solution to the nonlinear equation of motion.
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The influence of an axial load on the natural frequencies of a uniform single-span beam is investigated in
[10]. It is found that Galef’s formula is only valid for a few types of end-conditions. The effect of end-supports
on the frequency is only significant for the first few modes. The vibratory behavior of clamped-free beams
with an intermediate axial force is the subject of [11] using the Hamilton principle. The frequencies show an
increase as the force is moved closed to the fixed end. It is studied [12] how a beam systemwith tendon loading
vibrates. The effect of the number and location of attachment points is evaluated.

The dynamic response of beams to a moving load is sought in [13] by a linear model. The dynamic Green
function is constructed in closed form for elastic end-restraints and with this; the results are found in an exact
and direct method. The effect of the load speed parameter is studied on the deflections for various, limiting
boundary conditions.

Apart from vibrations, it is worthy to mention some further notable results within the field of the Green
function [14]. Book [15] that presents the Green theorem, introduces the concept of the Green function and
applies it to electrostatic problems. Since that pioneering work, the Green function has widely been applied to
various problems [16,17]. The concept of the Green function for two-point boundary value problems governed
by ordinary differential equations was first introduced in paper [18]. Furthermore, books [19,20] extend the
knowledge by defining the Green function for ordinary linear differential equations with their most important
properties. Later, theGreen functionmatrixwas introduced as a generalization for a class of ordinary differential
equation systems in [21]. For degenerated ordinary differential equation systems, newfindings are given in [22].
The existence for some three-point boundary value problems associated with third-order nonlinear differential
equations is detailed in [23] usingGreen functions. For a class of second-order ordinary differential equations, a
method is proposed to find the corresponding Green functions for three-point boundary value problems in [24].
Similarly, article [25] is about a special class of third-order three-point boundary value problems. The author
demonstrates how to find the Green function for such issues. An application is also presented. A non-local
three-point boundary value problem is selected and examined in [26]. Existence and uniqueness of solutions
are given, and the Green function is also constructed. A type of nonlinear third-order non-local boundary value
problem is in the spotlight in [27]. The Schauder fixed point theorem is used for the solution. A third-order
linear differential equation is investigated in [28]. The existence of the Green function is proven, and solution
is given. Article [29] determines the Green function for compressed straight Euler–Bernoulli beams with three
supports and solves the linear stability issue by a boundary element technique. The procedure is applicable
when the three-point boundary value problem is governed by a single ordinary differential equation.

Based on the above, to the best knowledge of the authors, the Green function matrix has not been defined
for three-point boundary value problems governed by ordinary differential equation systems. To this end,
the article addresses this issue with some numerical examples as possible and effective applications. First, the
related class of three-point boundary value problems is introduced. Then, a suitable definition and computation
steps for the corresponding Green function matrix are given. Numerical examples related to nonhomogeneous
Timoshenko beams with three supports are given as one possible demonstration of the applicability of the
findings.

2 The class of three-point boundary value problems

2.1 Differential operator with boundary and continuity conditions

Consider the class of eigenvalue problems governed by the homogeneous ordinary differential equation system

K
[
y
] = λM

[
y
]
, (2.1a)

where y(x) = [y1(x)|y2(x)| . . . |yn(x)], n ≥ 2 is the unknown function vector, λ is a parameter (the eigenvalue
sought), 2κ and 2μ (κ > μ) are the order of the differential operators K

[
y
]
and M

[
y
]
. Let

Kν(x)
(n×n)

, (ν = 0, 1, . . . , κ) and Mν(x)
(n×n)

, (ν = 0, 1, . . . , μ)

be square matrices in the interval x ∈ [a, c] (c > a). The differential operators K
[
y
]
and M

[
y
]
are defined

by
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K
[
y
] =

κ∑

ν=0

(−1)ν
(
Kν(x) y(ν)(x)

)(ν)

,
dn(. . .)

dxn
= (. . .)(n);

M
[
y
] =

μ∑

ν=0

(−1)ν
(
Mν(x) y(ν)(x)

)(ν)

.

(2.1b)

It is assumed that (Kν(x)) [Mν(x)] is differentiable continuously(κ)[μ] times and

K2κ (x) and M2μ(x)

have inverse if x ∈ [a, c]. It is also assumed that they are differentiable as many times as required.
Note that 2κ , which is the order of the differential operator on the left side of (2.1a), is greater than 2μ,

which is the order of the differential operator on the right side. Let x ∈ [a, c], c > a, c− a = � be the interval
in which the solution of differential equation (2.1a) is sought. Further let b be an inner point in the interval
[a, c]: b ∈ [a, b], b − a = �1, c − b = �2, �1 + �2 = �.

Some quantities in the intervals [a, b] and [b, c] are denoted by the Latin I and I I subscripts. Accordingly,
yI and yI I are the solutions to the differential equation (2.1) in the intervals I and I I .

Differential equation system (2.1) is associated with the following boundary and continuity conditions:

Uar [y] =
2κ∑

ν=1

ανr I y
(ν−1)
I (a) = 0, r = 1, 2, . . . , κ (2.2a)

Ubr [y] = Ubr I [yI ] − Ubr I I [yI I ]

=
2κ∑

ν=1

(
βνr I y

(ν−1)
I (b) − βνr I I y

(ν−1)
I I (b)

)
= 0, r = 1, 2, . . . , 2κ (2.2b)

Ucr [y] =
2κ∑

ν=1

γ νr I I y
(ν−1)
I I (c) = 0, r = 1, 2, . . . , κ (2.2c)

where ανr I , βνr I , βνr I I and γ νr I I are nonzero square matrices of size n × n.
Differential equation (2.1) with the boundary and continuity conditions (2.2) constitute an eigenvalue

problem with λ being the eigenvalue to be found. If μ = 0, the right side of (2.1) changes as

M
[
y
] = M0(x)y(x) (2.3)

and the eigenvalue problem is called simple. Fromnowon, it is assumed thatM0(x) has an inverse if x ∈ [a, c].
The eigenvalue problems that provide the eigenfrequencies for the longitudinal and torsional vibrations of

rods as well as for the transverse vibrations of strings and beams are all simple ones. If μ > 0, the eigenvalue
problem is called generalized [19].

The scalar equations that constitute the boundary- and continuity conditions should be linearly independent
of each other. It is obvious that a linear combination of the boundary conditions is also a boundary condition.
By selecting suitable linear combinations, derivatives with an order higher than κ − 1 could be removed. If it
is done in all possible ways, the total number of boundary conditions which do not involve derivatives higher
than κ −1 is, say, e. These boundary conditions are called essential boundary conditions. The remaining 2k−e
boundary conditions are the natural boundary conditions.

The column matrices u(x) and v(x) (|u(x)|, |v(x)| are not identically equal to zero if x ∈ [a, c]) are called
comparison functions if they satisfy the boundary and continuity conditions and are called eigenfunctions if
they, in addition to this, satisfy differential equation (2.1).

2.2 Self-adjointness

The integrals

(u, v)K =
∫ c

a
uT (x)K[v(x)] dx, (u, v)M =

∫ c

a
uT (x)M[v(x)] dx (2.4)
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taken on the set of the comparison functions u(x), v(x) are products defined on the operators K and M. Let
us now detail the product (u, v)K . Making use of (2.1b), one may write

(u, v)K =
∫ b

a
uT (x)

κ∑

ν=0

(−1)ν
[
Kν(x) v(ν)(x)

](ν)

dx

+
∫ c

b
uT (x)

κ∑

ν=0

(−1)ν
[
Kν(x) v(ν)(x)

](ν)

dx (2.5)

in which the integral

Iab = (−1)ν
∫ b

a
uT (x)

[
Kν(x) v(ν)(x)

](ν)

dx (2.6)

can be manipulated into a more suitable form through integrations:

Iab = (−1)ν
[
uT(x)

[
Kν(x) v(ν)(x)

](ν−1)
]b−0

a

+(−1)ν−1
∫ b

a
uT(x)

[
Kν(x)v(ν)(x)

](ν−1)
dx = (−1)ν

[
uT (x)

[
Kν(x) v(ν)(x)

](ν−1)

−(u(1))T(x)
[
Kν(x) v(ν)(x)

](ν−2) + (u(2))T(x)
[
Kν(x) v(ν)(x)

](ν−3) − · · ·
]b−0

a

+
∫ b

a
(u(ν))T (x)Kν(x) v(ν)(x) dx

=
[

ν−1∑

r=0

(−1)(ν+r)(u(r))T(x)
[
Kν(x) v(ν)(x)

](ν−1−r)
]b−0

a

+
∫ b

a

(
u(ν)

)T
(x)Kν(x) v(ν)(x) dx . (2.7)

Hence,

(u, v)K =
[

κ∑

ν=0

ν−1∑

r=0

(−1)(ν+r)(u(r))T(x)
[
Kν(x) v(ν)(x)

](ν−1−r)
]b−0

a

+
[

κ∑

ν=0

ν−1∑

r=0

(−1)(ν+r)(u(r))T(x)
[
Kν(x) v(ν)(x)

](ν−1−r)
]c

b+0

+
κ∑

ν=0

∫ c

a
(u(ν))T (x)Kν(x) v(ν)(x) dx

= K0(u, v) +
κ∑

n=0

∫ c

a
(u(ν))T (x)Kν(x) v(ν)(x) dx . (2.8a)

It follows from Eq. (2.8a) that

(u, v)M =
[

μ∑

ν=0

ν−1∑

r=0

(−1)(ν+r)(u(r))T(x)
[
Mν(x) v(ν)(x)

](ν−1−r)
]b−0

a

+
[

μ∑

ν=0

ν−1∑

r=0

(−1)(ν+r)(u(r))T(x)
[
Mν(x) v(ν)(x)

](ν−1−r)
]c

b+0
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+
μ∑

n=0

∫ c

a
(u(ν))T (x)Mν(x) v(ν)(x) dx

= M0(u, v) +
μ∑

ν=0

∫ c

a
(u(ν))T (x)Mν(x) v(ν)(x) dx . (2.8b)

These results are naturally valid for the products (v,u)K and (v,u)M .
The expressions K0(u, v) and M0(u, v) defined by the right sides of Eq. (2.8) are called boundary- and

continuity expressions. Eigenvalue problem (2.1), (2.2) is said to be self-adjoint if the products (2.4) are
commutative, i.e., it holds that

(u, v)K = (v,u)K and (u, v)M = (v,u)M . (2.9)

Conditions (2.9) are called conditions of self-adjointness.

2.3 Consequences

It follows from Eqs. (2.8a) and (2.8b) that

(u, v)K − (v,u)K = K0(u, v) − K0(v, u) = 0 (2.10a)

and

(u, v)M − (v,u)M = M0(u, v) − M0(v, u) = 0 (2.10b)

if the eigenvalue problem (2.1), (2.2) is self-adjoint.
Let λ� be the �th eigenvalue (� = 1, 2, 3, . . .). The corresponding eigenfunctions or solutions to the

eigenvalue problem (2.1), (2.2) are denoted by y�.
Assume that the three-point boundary value problem (2.1), (2.2) is self-adjoint. Then, the eigenfunctions

are orthogonal to each other in general sense:

(yk, y�)K =
{

λ� (yk, y�)M if k = �,
0 if k �= �.

k, � = 1, 2, 3 . . . (2.11)

In addition to this, the eigenvalues are all real numbers. These statements can be proven easily by recalling the
similar proofs given for two-point boundary value problems in [30].

2.4 Sign of eigenvalues

The three-point eigenvalue problem (2.1), (2.2) is said to be positive definite if the eigenvalues are positive,
positive semi-definite if one eigenvalue is zero and the other eigenvalues are all positive, negative semi-definite
if one eigenvalue is zero and the other eigenvalues are all negative and finally, negative definite if the eigenvalues
are negative. If � = k in (2.11), we have

(y�, y�)K = λ
� (y�, y�)M . (2.12)

Hence,

λ
�
= (y�, y�)K

(y�, y�)M
=

∫ b

a
(y�(x))

T K[y�(x)] dx
∫ b

a
(y�(x))

T M[y�(x)] dx
. (2.13)

This equation shows that the sign of λ� is a function of the products (y�, y�)K and (y�, y�)M . Assume that

(u,u)K > 0, and (u,u)M > 0 (2.14)
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for any comparison function u(x). Then, the three-point eigenvalue problem (2.1), (2.2) is positive definite.
The Rayleigh quotient is defined by the equation

R[u(x)] = (u,u)K

(u,u)M
=

∫ b

a
uT(x)K[u(x)] dx

∫ b

a
uT(x)M[u(x)] dx

(2.15)

in which u(x) is a comparison function. Substituting (2.8a) and (2.8b) for the numerator and denominator in
(2.13) yields

R[u(x)] = (u, u)K

(u,u)M
=

κ∑

ν=0

∫ b

a
(u(ν))T (x)Kν(x)(x)u(ν)(x) dx + K0[u(x)]

μ∑

ν=0

∫ b

a
(u(ν))T (x)Mν(x)(x)u(ν)(x) dx + M0[u(x)]

. (2.16)

If the three-point eigenvalue problem (2.1), (2.2) is self-adjoint, then

K0[u(x)] = M0[u(x)] = 0. (2.17)

Assume that the three-point eigenvalue problem (2.1), (2.2) is self adjoint and

M[y] = M0(x)y(x). (2.18)

Then, the considered self-adjoint three point eigenvalue problem is called simple.

2.5 Determination of the eigenvalues

Let us denote the linearly independent particular solutions of the differential equation K
[
y
] = λM

[
y
]
by

z�(x, λ) (� = 1, 2, . . . , 2κ × n). With z�(x, λ), the general solution is of the form

yI (x) =
2κ×n∑

�=1

z�I (x, λ)A�I if x ∈ [a, b]

yI I (x) =
2κ×n∑

�=1

z�I I (x, λ)A�I I if x ∈ [b, c]
(2.19)

where z�(x, λ) = z�I (x, λ) = z�I I (x, λ). The undetermined integration constants A�I and A�I I can be
obtained from the boundary and continuity conditions:

2κ×n∑

�=1

A�IUar [z�I ] = 0 r = 1, 2, . . . , κ (2.20a)

2κ×n∑

�=1

(A�IUbr I [z�I ] − A�I IUbr I I [z�I I ]) = 0 r = 1, 2, . . . , 2κ (2.20b)

2κ×n∑

�=1

A�I IUcr [z�I I ] = 0 r = 1, 2, . . . , κ. (2.20c)

Since these equations constitute a homogeneous linear equation system for the unknowns A�I and A�I I ,
non-trivial solutions exist if and only if the determinant of the system is zero:

Δ(λ) = 0. (2.21)
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This equation needs to be solved to find the eigenvalues. The determinant Δ(λ) is referred to as characteristic
determinant.

If Δ(λ) is identically equal to zero, then each λ is an eigenvalue. Otherwise, function Δ(λ) has an infinite
sequence of isolated zero points which can be ordered according to their magnitude:

0 ≤ |λ1| ≤ |λ2| ≤ |λ3| ≤ · · · .

3 The Green function matrix

Consider the inhomogeneous ordinary differential equation system

L[y(x)] = r(x) (3.1a)

where the differential operator of order 2κ is defined by the following equation:

L[y(x)] =
2κ∑

ν=0

pν(x) y(ν)(x). (3.1b)

Here, κ ≥ 1 is a natural number,

pν(x)
(n×n)

, (ν = 0, 1, . . . , 2κ), y(x)
(n×1)

and r(x)
(n×1)

are square and column matrices (vectors), pν(x) and r(x) are continuous if x ∈ [a, c] (c > a, c − a = �) and
p2κ(x) has an inverse. Further, let b an inner point in the interval [a, c]: b ∈ [a, b], b − a = �1, c − b = �2,
�1 + �2 = �.

It is assumed that the inhomogeneous differential equation (3.1) is associated with the homogeneous
boundary and continuity conditions given by Eq. (2.20).

Solution of the three-point boundary value problem (3.1), (2.20) is sought in the form

y(x) =
∫ c

a
G(x, ξ)r(ξ) dξ (3.2)

where G(x, ξ) is the Green function matrix [30] defined by the following properties:

1. The Green function has the following structure:

G(x, ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G1I (x, ξ) if x, ξ ∈ [a, b]
G2I (x, ξ) if x ∈ [b, c] but ξ ∈ [a, b]
G1I I (x, ξ) if x ∈ [a, b] but ξ ∈ [b, c]
G2I I (x, ξ) if x, ξ ∈ [b, c].

(3.3)

2. The function G1I (x, ξ) is a continuous function of x and ξ in the triangular domains a ≤ x ≤ ξ ≤ b and
a ≤ ξ ≤ x ≤ b. In addition, it is 2κ times differentiable with respect to x and the derivatives

∂νG1I (x, ξ)

∂xν
= G1I (x, ξ)(ν)(x, ξ), (ν = 1, 2, . . . , 2κ)

are also continuous functions of x and ξ in the triangles a ≤ x ≤ ξ ≤ b and a ≤ ξ ≤ x ≤ b.
3. Let ξ be fixed in [a, b]. The function G1I (x, ξ) and its derivatives

G(ν)
1I (x, ξ) = ∂νG1I (x, ξ)

∂xν
, (ν = 1, 2, . . . , 2κ − 2) (3.4)

should be continuous for x = ξ :

lim
ε→0

[
G(ν)

1I (ξ + ε, ξ) − G(ν)
1I (ξ − ε, ξ)

]

=
[
G(ν)

1I (ξ + 0, ξ) − G(ν)
1I (ξ − 0, ξ)

]
= 0 ν = 0, 1, 2, . . . 2κ − 2. (3.5a)
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The derivative G(2κ−1)
1I (x, ξ) should, however, have a jump

lim
ε→0

[
G(2κ−1)

1I (ξ + ε, ξ) − G(2κ−1)
1I (ξ − ε, ξ)

]

=
[
G(2κ−1)

1I (ξ + 0, ξ) − G(2κ−1)
1I (ξ − 0, ξ)

]
= p−1

2κ (ξ) if x = ξ. (3.5b)

In contrast to this, G2I (x, ξ) and its derivatives

G(ν)
2I (x, ξ) = ∂νG2I (x, ξ)

∂xν
, (ν = 1, 2, . . . , 2κ) (3.6)

are all continuous functions for any x in [b, c].
4. Let ξ be fixed in [b, c]. The function G1I I (x, ξ) and its derivatives

G(ν)
1I I (x, ξ) = ∂νG1I I (x, ξ)

∂xν
, (ν = 1, 2, . . . , 2κ) (3.7)

are all continuous functions for any x in [a, c].
Though the function G2I I (x, ξ) and its derivatives

G(ν)
2I I (x, ξ) = ∂νG2I I (x, ξ)

∂xn
, (ν = 1, 2, . . . , 2κ − 2) (3.8)

are also continuous for x = ξ :

lim
ε→0

[
G(ν)

2I I (ξ + ε, ξ) − G(ν)
2I I (ξ − ε, ξ)

]

=
[
G(ν)

2I I (ξ + 0, ξ) − G(ν)
2I I (ξ − 0, ξ)

]
= 0 ν = 0, 1, 2, . . . 2κ − 2 (3.9a)

the derivative G(2κ−1)
2I I (x, ξ) should, however, have a jump

lim
ε→0

[
G(2κ−1)

2I I (ξ + ε, ξ) − G(2κ−1)
21I (ξ − ε, ξ)

]

=
[
G(2κ−1)

2I I (ξ + 0, ξ) − G(2κ−1)
2I I (ξ − 0, ξ)

]
= p−1

2κ (ξ) if x = ξ. (3.9b)

5. Let αT = [α1|α2| . . . |αn], αν �= 0 (ν = 1, 2, . . . , n) be an arbitrary constant matrix where the elements
are finite. For a fixed ξ ∈ [a, c], the product ŷ(x) = G(x, ξ)α as a function of x (x �= ξ ) should satisfy
the homogeneous differential equation

L [G(x, ξ)α] = L
[
ŷ(x)

] = 0.

6. The product ŷ = G(x, ξ)α as a function of x should satisfy both the boundary conditions and the continuity
conditions:

Uar [y] =
2κ∑

ν=1

ανr I ŷ(ν−1)(a) = 0, r = 1, 2, . . . , κ (3.10a)

Ubr [y] = Ubr I [ŷ(b − 0)] − Ubr I I [ŷ(b + 0)]

=
2κ∑

ν=1

(
βνr I ŷ

(ν−1)(b − 0) − βνr I I ŷ
(ν−1)(b + 0)

)
= 0, r = 1, 2, . . . , 2κ (3.10b)

Ucr [y] =
2κ∑

ν=1

γ νr I I ŷ
(ν−1)(c) = 0, r = 1, 2, . . . , κ. (3.10c)

These criteria should be applied to the function pairs G1I (x, ξ), G2I (x, ξ) and G1I I (x, ξ), G2I I (x, ξ) as
well.

Remark 1 This definition is a generalization of the definition given for three-point boundary value problems
governed by ordinary differential equation in [29,31].

Remark 2 It can be proved by repeating the line of thought presented in Remark 10.4 in book [30] that vector
(3.2) given in terms of the previous Green function matrix satisfies the inhomogeneous differential equation
system (3.1a) and the boundary and continuity conditions (2.20).
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4 Calculation of the Green function matrix

4.1 Structure of the general solution

The definition of the Green function matrix given in the previous Section is a constructive one which means
that it provides the means that are needed to calculate it. The general solution of the homogeneous differential
equation system

L [ y(x)] = 0 (4.1)

has the following form

y =
[

2κ∑

�=1

Y �
(n×n)

(x) C �
(n×n)

]

e
(n×1)

, (4.2)

where each column of the matrices Y � satisfies the homogeneous differential equation system (4.1), C� is a
constant square matrix while e is a constant column matrix (a constant vector).

Recalling the fifth property of the definition and the structure of the general solution (4.1), it follows that
the elements of the Green function matrix can be given in the same form the expression in the square brackets
has in (4.2) – see [30].

4.2 Calculation of the Green matrix function if ξ ∈ [a, b]
The matrix of the integration constants C � should be different in the two triangular domains a ≤ x ≤ ξ ≤ b
and a ≤ ξ ≤ x ≤ b. For this reason, it is assumed that

G1I (x, ξ)
(n×n)

=
2κ∑

�=1

Y �(x) [A �I (ξ) + B �I (ξ)] , x ≤ ξ ;

G1I (x, ξ)
(n×n)

=
2κ∑

�=1

Y �(x) [A �I (ξ) − B �I (ξ)] , x ≥ ξ

x ∈ [a, b] (4.3)

and

G2I (x, ξ)
(n×n)

=
2κ∑

�=1

Y �(x)C �I (ξ), x ∈ [b, c] (4.4)

where the coefficient matrices A �I (ξ), B �I (ξ) and C �I (ξ) are unknown function matrices.
Representation ofG1I (x, ξ) andG2I (x, ξ) in the forms (4.3) and (4.4) automatically ensures the fulfillment

of the first and fifth properties of the definition.
Utilizing the second and third properties of the definition, the following equations can be established for

calculating the elements of the matrices B �I (ξ):

2κ∑

�=1

Y �(ξ)B �I (ξ) = 0,
2κ∑

�=1

Y(1)
� (ξ)B �I (ξ) = 0,

· · · (4.5)
2κ∑

�=1

Y(2κ−2)
� (ξ)B �I (ξ) = 0,

2κ∑

�=1

Y(2κ−1)
� (ξ)B �I (ξ) = −1

2
p−1
2κ (ξ),

where 0 is an n × n zero matrix. Let us denote the νth column (ν = 1, 2, . . . , n) of the matrix B �I by B �I ν
(n×1)

:

B �I
(n×n)

= [B �I 1
(n×1)

|B �I 2
(n×1)

| · · · |B �I n
(n×1)

]. (4.6)
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The matrix

BT
ν

(1×(2κ×n))

= [
BT

1I ν
(1×n)

| . . . |BT
i I ν

(1×n)

| . . . |BT
2κ I ν

(1×n)

]
, i = 2, 3, . . . , 2κ − 1 (4.7)

is that of the unknowns for a given ν.
Let the i th column (i = 1, 2, . . . , n) in the matrix Y � be denoted by η �i :

Y �
(n×n)

= [ η �1
(n×1)

| η �2
(n×1)

| · · · | η �n
(n×1)

]. (4.8)

Then, the matrix B ν is the solution of the linear equation system:

WB ν = P ν, (4.9a)

where

W =

⎡

⎢⎢
⎢⎢
⎣

η 11 · · · η 1n · · · η �1 · · · η �n · · · η 2κ1 · · · η 2κn

η
(1)
11 · · · η

(1)
1n · · · η

(1)
�1 · · · η

(1)
�n · · · η

(1)
2κ1 · · · η

(1)
2κn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η
(κ−1)
11 · · · η(κ−1)

1n · · · η(κ−1)
�1 · · · η(κ−1)

�n · · · η(κ−1)
2κ1 · · · η(κ−1)

2κn

⎤

⎥⎥
⎥⎥
⎦

(4.9b)

while P ν is the transpose of the νth row in the matrix:
[
0 0 · · · 0 − 1

2P
−1
2κ

]

1 2 2κ − 1 2κ

.
(4.9c)

Note that the coefficient matrix W is the same for each B ν .

Remark 3 The determinant of W is the corresponding Wronskian which is different from zero [32]. This
ensures that equation system (4.9a) is solvable.

After having determined the matrices B �I , the next step is the calculation of the matrices A �I and C �I by
utilizing the fourth property of the definition. Let α be the νth unit vector in the n × n space:

αT = [
0 0 · · · 1 · · · 0 ]

1 2 ν n
.

(4.10)

With αT , the sixth property of the definition yields

Uar

[
2κ∑

�=1

Y �(x)A �I (ξ)α

]

= −Uar

[
2κ∑

�=1

Y �(x)B �I (ξ)α

]

, r = 1, 2, . . . , κ; (4.11a)

Ubr

[
2κ∑

�=1

Y �(x)A �I (ξ)α

]

− Ubr

[
2κ∑

�=1

Y �(x)B �I (ξ)α

]

= Ubr

[
2κ∑

�=1

Y �(x)C �I (ξ)α

]

, r = 1, 2, . . . , 2κ; (4.11b)

Ucr

[
2κ∑

�=1

Y �(x)C �I (ξ)α

]

= 0 r = 1, 2, . . . , κ. (4.11c)

The matrices

AT
ν

(1×(2κ×n))

=
[

AT
1I ν

(1×n)

| . . . |AT
i I ν

(1×n)

| . . . |AT
2κ I ν

(1×n)

]

, i = 2, 3, . . . , 2κ − 1 (4.12a)
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CT
ν

(1×(2κ×n))

=
[

CT
1I ν

(1×n)

| . . . |CT
i I ν

(1×n)

| . . . |CT
2κ I ν

(1×n)

]

, i = 2, 3, . . . , 2κ − 1 (4.12b)

contain the unknowns for a fixed ν in α—note that here the same notational convention is used as in Eqs. (4.6)
and (4.7). Making use of Eq. (4.12) we can rewrite equation system (4.11) into the following form:

Uar [Y1 ,Y2 , . . . ,Y2κ ]A ν = −Uar [Y1 ,Y2 , . . . ,Y2κ ]B ν, r = 1, 2, . . . , κ; (4.13a)

Ubr [Y1 ,Y2 , . . . ,Y2κ ] A ν − Ubr [Y1 ,Y2 , . . . ,Y2κ ] C ν = Ubr [Y1 ,Y2 , . . . ,Y2κ ] B ν,

r = 1, 2, . . . , 2κ; (4.13b)

Ucr [Y1 ,Y2 , . . . ,Y2κ ] C ν = 0 r = 1, 2, . . . , κ, (4.13c)

where Uar , Ubr and Ucr are matrices with size n × (2κ × n). The linear equation system (4.13) is solvable
for A ν and C ν if its determinant is different from zero. If the boundary and continuity conditions (2.2) are
linearly independent equation system (4.13) is, in general, solvable.

Remark 4 Note that the coefficient matrix in (4.13) is the same for each A ν and C ν .

4.3 Calculation of the Green function if ξ ∈ [b, c]
The procedure is similar to the one described in the previous Subsection. Thus, it is assumed that

G2I I (x, ξ)
(n×n)

=
2κ∑

�=1

Y �(x) [A �I I (ξ) + B �I I (ξ)] , x ≤ ξ ;

G2I I (x, ξ)
(n×n)

=
2κ∑

�=1

Y �(x) [A �I I (ξ) − B �I I (ξ)] , x ≥ ξ

x ∈ [b, c] (4.14)

and

G1I I (x, ξ)
(n×n)

=
2κ∑

�=1

Y �(x)C �I I (ξ), x ∈ [b, c] (4.15)

where the coefficients matrices A �I I (ξ), B �I I (ξ) and C �I I (ξ) are again unknown function matrices. The
fourth property yields the following equations for calculating the elements of the matrices B �(ξ):

2κ∑

�=1

Y �(ξ)B �I I (ξ) = 0,
2κ∑

�=1

Y(1)
� (ξ)B �I I (ξ) = 0,

· · ·
2κ∑

�=1

Y(2κ−2)
� (ξ)B �I I (ξ) = 0,

2κ∑

�=1

Y(2κ−1)
� (ξ)B �I I (ξ) = −1

2
p−1
2κ (ξ). (4.16)

Remark 5 This equation system coincides with equation system (4.5). Hence, B�I = B�I I . This coincidence
follows from the facts that (a) properties three and four are independent of the boundary and continuity
conditions (2.2) and (b) the structure of matrices G1I and G2I I is the same.

Utilizing now the boundary and continuity conditions (2.2) yields the following linear equation system for
the unknown coefficients A�I I (ξ) and C�I I (ξ):

Uar

[
2κ∑

�=1

Y �(x)C �I I (ξ)α

]

= 0, r = 1, 2, . . . , κ; (4.17a)

Ubr

[
2κ∑

�=1

Y �(x)C �I I (ξ)α

]

− Ubr

[
2κ∑

�=1

Y �(x)A �I I (ξ)α

]
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= Ubr

[
2κ∑

�=1

Y �(x)B �I I (ξ)α

]

, r = 1, 2, . . . , 2κ; (4.17b)

Ucr

[
2κ∑

�=1

Y �(x)A �I I (ξ)α

]

= 0 r = 1, 2, . . . , κ. (4.17c)

By introducing the notation conventions

AT
ν

(1×(2κ×n))

=
[

AT
1I I ν

(1×n)

| . . . |AT
i I I ν

(1×n)

| . . . |AT
2κ I I ν

(1×n)

]

, i = 2, 3, . . . , 2κ − 1 (4.18a)

CT
ν

(1×(2κ×n))

=
[

CT
1I ν

(1×n)

| . . . |CT
i I ν

(1×n)

| . . . |CT
2κ I ν

(1×n)

]

, i = 2, 3, . . . , 2κ − 1 (4.18b)

in the same way as for Eq. (4.12), we can manipulate equation system (4.17) into the following form:

Uar [Y1 ,Y2 , . . . ,Y2κ ] C ν = 0, r = 1, 2, . . . , κ; (4.19a)

Ubr [Y1 ,Y2 , . . . ,Y2κ ] C ν − Ubr [Y1 ,Y2 , . . . ,Y2κ ] A ν

= Ubr [Y1 ,Y2 , . . . ,Y2κ ] B ν, r = 1, 2, . . . , 2κ; (4.19b)

Ucr [Y1 ,Y2 , . . . ,Y2κ ] A ν = 0 r = 1, 2, . . . , κ. (4.19c)

If the boundary and continuity conditions (2.2) are linearly independent, the above linear equation system is
also solvable for A ν and C ν .

Remark 6 If equation systems (4.13) and (4.19) are solvable, then there exits theGreen functionmatrixG(x, ξ)
given by Eq. (3.3).

Remark 7 If differential equation (4.1) is self-adjoint under the boundary and continuity conditions (2.2), then
the Green function matrix is cross-symmetric, i.e., it holds that

GT (x, ξ) = G(x, ξ). (4.20)

The proof of this statement is the same as for two-point boundary value problems. The latter is presented in
Subsection 9.2.8 of [30].

5 Numerical examples

5.1 Governing equations of Timoshenko beams with cross-sectional heterogeneity

A pinned–pinned heterogeneous Timoshenko beam of length L is considered with an intermediate roller
support at b̂ as shown in Fig. 1. It has a uniform cross section throughout its length. The centerline of the beam
coincides with the axis x̂ of the coordinate system (x̂ ŷ ẑ). Its origin is at the left end of the centerline. The
coordinate plane x̂ ẑ is a symmetry plane. The modulus of elasticity E , the shear modulus of elasticity G and
the Poisson number satisfy the relations E(ŷ, ẑ) = E(−ŷ, ẑ), G(ŷ, ẑ) = G(−ŷ, ẑ) and ν(ŷ, ẑ) = ν(−ŷ, ẑ)
over the cross section A, which means that they are even functions of ŷ and are independent of the coordinate
x̂ . In this case, we speak about cross-sectional heterogeneity. Note that the E-weighted first moment is zero in
this coordinate system:

Qey =
∫

A
zE(ŷ, ẑ) dz = 0. (5.1)

Let Ag , Iey be the G–weighted area and E-weighted moment of inertia:

Ag =
∫

A
G(ŷ, ẑ) dA, Iey =

∫

A
E(ŷ, ẑ)z2 dA. (5.2)
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Fig. 1 A compressed beam with three supports

The shear correction factor for Timoshenko beams with cross-sectional heterogeneity is denoted by κy , and
its detailed definition is presented in “Appendix A”.

Equilibrium problems of Timoshenko beams with cross-sectional heterogeneity, subjected to an axial force
are governed by the ordinary differential equation system [30,33]:

Agκy

Iey

(
d2ŵ

dx̂2
+ dψ̂y

dx̂

)

+ fz
Iey

= 0, (5.3a)

d2ψ̂y

dx̂2
± N

Iey

dŵ

dx̂
− Agκy

Iey

(
dŵ

dx̂
+ ψ̂y

)
+ μy

Iey
= 0, (5.3b)

where ŵ is the deflection, ψ̂ is the rotation of the cross section, fz and μz are distributed force and moment
loads, while the (plus)[minus] sign of N belongs to a (tensile) [compressive] axial force – from now on, N
is regarded as if it was a positive quantity and the applied sign reflects if it is tensile or compressive. The
coordinate ξ̂ is measured on the axis x̂ with the same origin. Let

x = x̂/L , ξ = ξ̂ /L , y1 = w = ŵ/L , y2 = ψ = ψ̂y, b = b̂/�̂, � = x

L

∣∣
∣
x=L

= 1 (5.4)

be dimensionless quantities. Applying them to Eq. (5.3) yields

Agκy L2

Iey︸ ︷︷ ︸
χ

(
d2y1
dx2

+ dy2
dx

)
= − fz L3

Iey︸ ︷︷ ︸
r1

, (5.5a)

d2y2
dx2

± NL2

Iey︸ ︷︷ ︸
N

dy1
dx

− AgL2κy

Iey︸ ︷︷ ︸
χ

(
dy1
dx

+ y2

)
= −μy L2

Iey︸ ︷︷ ︸
r2

, (5.5b)

or in matrix form
[

χ 0
0 1

]

︸ ︷︷ ︸
K2

[
y1
y2

]

︸ ︷︷ ︸
y(2)

(2)

+
[

0 χ
−χ ± N 0

]

︸ ︷︷ ︸
K1

[
y1
y2

]

︸ ︷︷ ︸
y(1)

(1)

+
[
0 0
0 −χ

]

︸ ︷︷ ︸
K0

[
y1
y2

]

︸ ︷︷ ︸
y

=
[−1 0

0 −1

]

︸ ︷︷ ︸
M0

[
r1
r2

]

︸ ︷︷ ︸
r

. (5.6)

These equations are associated with the boundary and continuity conditions presented in Table 1.
If the beam vibrates freely, the amplitudes will be denoted in the same way as in Eq. (5.5). It can be checked

with ease that the amplitude functions should satisfy the differential equations

Agκy L2

Iey

(
d2y1
dx2

+ dy2
dx

)
= −ρa Aω2L4

Iey︸ ︷︷ ︸
λ

y1, (5.7a)

d2y2
dx2

± NL2

Iey

dy1
dx

− AgκL2

Iey

(
dy1
dx

+ y2

)
= −ρa Aω2L4

Iey︸ ︷︷ ︸
λ

y2
Iρy

ρa AL2
︸ ︷︷ ︸

r2

, (5.7b)
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Table 1 Boundary- and continuity conditions for the selected beam

Boundary conditions

y1(0) = 0, y(1)
2 (0) = 0 y1(�) = 0, y(1)

2 (�) = 0

Continuity conditions

y1(b − 0) = 0, y1(b + 0) = 0

y2(b − 0) = y2(b + 0)
y(1)
2 (b − 0) = y(1)

2 (b + 0)

where ρa is the average density over the cross section and

Iρy =
∫

A
z2ρ dA (5.8)

is the ρ weighted moment of inertia. Equation (5.7) in matrix form are

[
χ 0
0 1

]

︸ ︷︷ ︸
K2

[
y1
y2

]

︸ ︷︷ ︸
y(2)

(2)

+
[
0 χ
−χ ± N 0

]

︸ ︷︷ ︸
K1

[
y1
y2

]

︸ ︷︷ ︸
y(1)

(1)

+
[
0 0
0 −χ

]

︸ ︷︷ ︸
K0

[
y1
y2

]

︸ ︷︷ ︸
y

= λ

[−1 0
0 −r2

]

︸ ︷︷ ︸
M0

[
y1
y2

]

︸ ︷︷ ︸
r

. (5.9)

Note that the matrices M0 in (5.6) and (5.9) are different from each other.
Consider the differential equation system

L[y] = K2y(2) + K1y(1) + K0y

=
[

χ 0
0 1

] [
y1
y2

](2)

+
[
0 χ
−χ 0

] [
y1
y2

](1)

+
[
0 χ
−χ 0

] [
y1
y2

]
=

[−r1
−r2

]
= r (5.10)

associated with the boundary and continuity conditions given in Table 1.

Remark 8 The operator L[y] coincides with the left side of Eqs. (5.6) and (5.9) if the dimensionless axial
forceN is set to zero. Consequently, the three-point boundary value problem defined by Eq. (5.10) associated
with the boundary and continuity conditions in Table 1 describes the mechanical behavior of a pinned–pinned
Timoshenko beam with intermediate roller support if the beam is subjected to the dimensionless distributed
load r.

Calculation of the Green function for the three point boundary value problem defined by Eq. (5.10) asso-
ciated with the boundary and continuity conditions presented in Table 1 is detailed in “Appendix B”.

Remark 9 With the Green function matrix, the integral

[
y1(x)
y2(x)

]
=

∫ �=1

0

[
G11(x, ξ) G12(x, ξ)
G21(x, ξ) G22(x, ξ)

] [−r1(ξ)
−r2(ξ)

]
dξ (5.11)

is the dimensionless solution of the boundary value problem defined by differential equation system (5.10) and
the boundary and continuity conditions of Table 1. Here, −G11(x, ξ) and −G21(x, ξ) are the dimensionless
deflection and rotation at the point x due to a dimensionless unit force r1(ξ) = 1 exerted on the beam at the
point ξ , while −G12(x, ξ) and −G22(x, ξ) are the dimensionless deflection and rotation at the point x due to
a dimensionless unit couple r2(ξ) = 1 exerted on the beam at the point ξ .

Figures 2, 3, 4 and 5 represent the dimensionless displacement and angle of rotation for the cross section
shown in Fig. 13 provided that the corresponding data are those we used to calculate χ by Eq. (A.6). Note
that the derivative −dG22(x, ξ = 0.75)/dx has a finite jump since the bending moment is discontinuous at
this point.
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Fig. 2 Element G11 of the Green function matrix along the beam axis

Fig. 3 Element G21 of the Green function matrix along the beam axis
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Fig. 4 Element G12 of the Green function matrix along the beam axis

Fig. 5 Element G22 of the Green function matrix along the beam axis



Green functions for three-point boundary value problems 2429

5.2 Free vibration of the pinned–pinned beam with intermediate roller support

If the axial force is zero, the amplitudes of the free vibrations should satisfy the differential equitation system
[

χ 0
0 1

]

︸ ︷︷ ︸
K2

[
y1
y2

]

︸ ︷︷ ︸
y(2)

(2)

+
[
0 χ
−χ 0

]

︸ ︷︷ ︸
K1

[
y1
y2

]

︸ ︷︷ ︸
y(1)

(1)

+
[
0 0
0 −χ

]

︸ ︷︷ ︸
K0

[
y1
y2

]

︸ ︷︷ ︸
y

= λ

[−1 0
0 −r2

]

︸ ︷︷ ︸
M0

[
y1
y2

]

︸ ︷︷ ︸
y

(5.12)

associated with the boundary and continuity conditions given in Table 1. The expression

λM0y = λ

[−1 0
0 −r2

] [
y1
y2

]

on the right side of (5.9) corresponds to r in solution (5.11). Hence,
[
y1 (x)
y2 (x)

]
= λ

∫ 1

0

[
G11 (x, ξ) G12 (x, ξ)
G21 (x, ξ) G22 (x, ξ)

] [−1 0
0 −r2

] [
y1
y2

]
dξ.

Introduction of the new variables Y and K as shown by the equation
[
1 0
0 r

] [
y1 (x)
y2 (x)

]

︸ ︷︷ ︸
Y(x)

= λ

∫ 1

0

[
1 0
0 r

] [−G11 (x, ξ) −G12 (x, ξ)
−G21 (x, ξ) −G22 (x, ξ)

] [
1 0
0 r

]

︸ ︷︷ ︸
K(x,ξ)

[
1 0
0 r

] [
y1
y2

]

︸ ︷︷ ︸
Y(ξ)

dξ

results in an eigenvalue problem governed by the Fredholm integral equation system

Y(x) = λ

∫ 1

0
K(x, ξ)Y(ξ) dξ. (5.13)

Remark 10 Integral equation system (5.13) coincides formally with integral equation system (9.151) in book
[30]—the kernels are, however, different. The later was used to find the eigenvalues for four two-point eigen-
value problems established for pinned–pinned, fixed-pinned fixed-fixed and fixed-free Timoshenko beams.
With the eigenvalues, the first two natural circular frequencies were also computed for these beams. The
results are shown in Figures 9.3 to 9.6 in [30].

Eigenvalue problem (5.13) can be reduced to an algebraic eigenvalue problem using the boundary element
technique. The details are presented in Subsection 9.2.13 of [30]. A FORTRAN90 code has been developed for
solving the algebraic eigenvalue problem. The eigenvalues λ are computed using IMSL Subroutine DGVLRG.
With λk , the following equation can be utilized for calculating the corresponding circular frequency:

ωk = 1

L2

√
λk Iey
ρa A

. (5.14)

For the beam with cross section shown in Fig. 13 and data given by Eqs. (A.3)–(A.6)

E = 3.180, r � 0.001 443 376, χ = 1

Er2
� 150 939.0. (5.15)

Smaller r means more slender beam. In this case, there cannot be significant difference between the Euler–
Bernoulli and the Timoshenko beam theories. Table 2 contains the computational results for

√
λk/π

2 as a
function of b – for symmetry reasons b ∈ [0, 0.5]. The results presented in Table 2 coincide with four to five
digit accuracy with the results published in [31] for pinned–pinned beams with intermediate roller support
within the framework of the Euler–Bernoulli beam theory.

The effect of r on the first four eigenvalues is presented in Table 3 for r = 0.03 and r = 0.05. The results
obtained for the first two eigenvalues regarding r = 0.001 443 3 (Euler–Bernoulli beam theory), r = 0.03,
r = 0.05 r = 0.075, and r = 0.1 as parameters are depicted in Figs. 6 and 7.

The data in Table 4 reflect the effect of the parameter E = 2.0 on
√

λi/π
2, (i = 1, . . . , 4) if

r = 0.030, 0.050. Figures8 and 9 provide graphical representations for
√

λi/π
2, (i = 1, 2) if r =

0.03, 0.050, 0.075, 0.10.
Table 5 contains the data that reflect the effect of the parameter E = 1.0 on

√
λi/π

2, (i = 1, . . . , 4) if
r = 0.030, 0.050. Figures10 and 11 depict functions

√
λi/π

2, (i = 1, 2) if r = 0.030, 0.050, 0.075, 0.10.
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Fig. 6 The first eigenvalue for various r parameters when E = 3.180

Fig. 7 The second eigenvalue for various r parameters when E = 3.180
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Fig. 8 The first eigenvalue for various r parameters when E = 2.00

Fig. 9 The second eigenvalue for various r parameters when E = 2.00
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Fig. 10 The first eigenvalue for various r parameters when E = 1.00

Fig. 11 The first eigenvalue for various r parameters when E = 1.00
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Table 2 Computational results for the first four eigenvalues

b
√

λ1/π
2 √

λ2/π
2 √

λ3/π
2 √

λ4/π
2

0.000 1.5621 5.0624 10.5625 18.0625
0.025 1.6155 5.2367 10.9278 18.6884
0.050 1.6749 5.4359 11.3560 19.4398
0.075 1.7393 5.6557 11.8339 20.2840
0.100 1.8094 5.8983 12.3645 21.2200
0.125 1.8859 6.1657 12.9490 22.2396
0.150 1.9694 6.4595 13.5860 23.3168
0.175 2.0607 6.7814 14.2689 24.3626
0.200 2.1607 7.1322 14.9759 24.9737
0.225 2.2704 7.5113 15.6359 23.7298
0.250 2.3907 7.9145 15.9991 21.3157
0.275 2.5229 8.3287 15.4032 20.2353
0.300 2.6679 8.7164 14.0506 20.6523
0.325 2.8267 8.9743 12.8510 21.6829
0.350 3.0001 8.8963 12.2687 22.9544
0.375 3.1878 8.4188 12.3919 24.2493
0.400 3.3874 7.7859 12.9584 24.9736
0.425 3.5925 7.1860 13.7556 24.0686
0.450 3.7874 6.6965 14.6714 22.3577
0.475 3.9393 6.3659 15.5541 20.8734
0.500 3.9993 6.2462 15.9991 20.2276

Table 3 Eigenvalues in terms of the roller position when E = 3.180

b E = 3.180

r = 0.03 r = 0.05√
λi/π

2, (i = 1, . . . , 4)
√

λi/π
2, (i = 1, . . . , 4)

0.000 1.0595 3.8245 7.9307 12.9426 0.9840 3.4273 6.6691 10.274
0.025 1.3548 4.3119 8.5654 13.7075 1.1746 3.6959 7.0037 10.676
0.050 1.4863 4.6301 9.0789 14.4111 1.3038 3.9393 7.3477 11.115
0.075 1.5803 4.8902 9.5378 15.0777 1.4030 4.1586 7.6834 11.562
0.100 1.6648 5.1376 9.9903 15.7487 1.4907 4.3702 8.0213 12.021
0.125 1.7481 5.3890 10.4568 16.4456 1.5746 4.5831 8.3702 12.502
0.150 1.8340 5.6519 10.9456 17.1697 1.6586 4.8025 8.7336 13.004
0.175 1.9247 5.9311 11.4604 17.9037 1.7450 5.0322 9.1159 13.530
0.200 2.0216 6.2291 11.9953 18.4193 1.8357 5.2746 9.5161 13.979
0.225 2.1261 6.5473 12.5198 17.0047 1.9319 5.5316 9.9271 12.514
0.250 2.2393 6.8846 12.8418 15.1275 2.0349 5.8036 10.2282 11.113
0.275 2.3624 7.2343 12.2022 14.6668 2.1456 6.0890 9.5178 11.065
0.300 2.4966 7.5725 11.0197 15.1996 2.2653 6.3759 8.5537 11.552
0.325 2.6427 7.8149 10.0766 15.9733 2.3949 6.6050 7.8170 12.120
0.350 2.8016 7.7323 9.6797 16.8505 2.5352 6.5101 7.5654 12.739
0.375 2.9734 7.2676 9.8775 17.7789 2.6867 6.0616 7.8147 13.408
0.400 3.1567 6.7071 10.3662 18.4193 2.8490 5.5855 8.2233 13.979
0.425 3.3467 6.1954 10.9910 17.5490 3.0193 5.1649 8.7050 13.164
0.450 3.5305 5.7777 11.6979 16.2697 3.1884 4.8177 9.2406 12.230
0.475 3.6781 5.4898 12.4221 15.1810 3.3311 4.5695 9.8156 11.422
0.500 3.7382 5.3831 12.8418 14.6365 3.3925 4.4731 10.2282 10.928

6 Conclusions

The paper is devoted to the issue of how the concept of Green function matrices can be generalized for three-
point boundary value problems governed by ordinary differential equation systems. The investigations are
based on the definition of the Green function matrix given for two-point boundary value problems in [30].
The definition is a constructive one since it provides the means necessary for calculating the Green function
matrix. Utilizing the definition the Green function matrix is determined for pinned–pinned Timoshenko beams
with an intermediate roller support (PrsP beams). After that the self-adjoint three-point eigenvalue problem
that governs the free vibration of PrsP Timoshenko beams is reduced to an eigenvalue problem governed by a
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Table 4 Eigenvalues in terms of the roller position when E = 2.00

b E = 2.00

r = 0.03 r = 0.05√
λi/π

2, (i = 1, . . . , 4)
√

λi/π
2, (i = 1, . . . , 4)

0.000 1.1003 3.9356 8.2553 13.6827 1.01268 3.5861 7.1615 11.2913
0.025 1.4225 4.5172 9.0457 14.6536 1.25312 3.9427 7.6057 11.8182
0.050 1.5420 4.8352 9.5946 15.4410 1.38851 4.2251 8.0226 12.3608
0.075 1.6291 5.0924 10.0735 16.1662 1.48736 4.4661 8.4121 12.8959
0.100 1.7097 5.3407 10.5480 16.8957 1.57434 4.6947 8.7977 13.4383
0.125 1.7910 5.5964 11.0408 17.6545 1.65819 4.9242 9.1934 14.0023
0.150 1.8761 5.8666 11.5602 18.4419 1.74302 5.1613 9.6049 14.5881
0.175 1.9668 6.1555 12.1080 19.2263 1.83124 5.4104 10.0367 15.1916
0.200 2.0645 6.4652 12.6748 19.7399 1.92451 5.6740 10.4859 15.6526
0.225 2.1703 6.7967 13.2197 18.4612 2.02416 5.9540 10.9345 14.2750
0.250 2.2853 7.1479 13.5362 16.5001 2.13138 6.2498 11.2288 12.7153
0.275 2.4108 7.5101 12.9486 15.8781 2.24728 6.5573 10.6001 12.4637
0.300 2.5478 7.8556 11.7534 16.3661 2.37289 6.8588 9.5679 12.9596
0.325 2.6972 8.0956 10.7653 17.1809 2.50919 7.0831 8.7652 13.6014
0.350 2.8597 8.0177 10.3249 18.1259 2.65691 7.0014 8.4502 14.3137
0.375 3.0353 7.5631 10.4916 19.1120 2.81629 6.5666 8.6593 15.0762
0.400 3.2224 6.9924 10.9879 19.7399 2.98630 6.0655 9.0896 15.6526
0.425 3.4154 6.4634 11.6431 18.9095 3.16304 5.6137 9.6202 14.8497
0.450 3.6006 6.0313 12.3874 17.5642 3.33542 5.2430 10.2156 13.7924
0.475 3.7474 5.7357 13.1324 16.4155 3.47609 4.9839 10.8381 12.8887
0.500 3.8064 5.6271 13.5362 15.8728 3.53435 4.8862 11.2288 12.4014

Table 5 Eigenvalues in terms of the roller position when E = 1.00

b E = 1.00

r = 0.03 r = 0.05√
λi/π

2, (i = 1, . . . , 4)
√

λi/π
2, (i = 1, . . . , 4)

0.000 1.1792 4.0958 8.6240 14.4666 1.0626 3.7628 7.6813 12.3840
0.025 1.4999 4.7620 9.6049 15.7288 1.3648 4.2644 8.3275 13.1495
0.050 1.5984 5.0520 10.1478 16.5578 1.4917 4.5727 8.8234 13.8258
0.075 1.6761 5.2956 10.6261 17.3146 1.5822 4.8213 9.2574 14.4519
0.100 1.7520 5.5395 11.1119 18.0879 1.6641 5.0573 9.6825 15.0770
0.125 1.8308 5.7964 11.6243 18.8980 1.7453 5.2969 10.1183 15.7197
0.150 1.9148 6.0718 12.1694 19.7392 1.8293 5.5474 10.5732 16.3823
0.175 2.0053 6.3686 12.7459 20.5598 1.9181 5.8129 11.0490 17.0387
0.200 2.1034 6.6886 13.3398 21.0607 2.0130 6.0955 11.5386 17.4702
0.225 2.2103 7.0319 13.8987 19.9450 2.1154 6.3961 12.0073 16.3884
0.250 2.3269 7.3952 14.2072 17.9641 2.2263 6.7129 12.2797 14.7490
0.275 2.4544 7.7681 13.6708 17.1863 2.3468 7.0383 11.7719 14.2354
0.300 2.5938 8.1190 12.4862 17.6009 2.4779 7.3477 10.7415 14.6531
0.325 2.7461 8.3560 11.4622 18.4380 2.6204 7.5624 9.8855 15.3367
0.350 2.9118 8.2823 10.9807 19.4367 2.7750 7.4926 9.5043 16.1260
0.375 3.0909 7.8388 11.1145 20.4593 2.9415 7.0851 9.6525 16.9460
0.400 3.2812 7.2618 11.6129 21.0607 3.1183 6.5727 10.0855 17.4702
0.425 3.4768 6.7183 12.2926 20.2897 3.3003 6.0957 10.6527 16.7754
0.450 3.6631 6.2734 13.0667 18.9147 3.4746 5.7041 11.2938 15.6547
0.475 3.8091 5.9707 13.8218 17.7249 3.6126 5.4348 11.9330 14.6918
0.500 3.8672 5.8604 14.2072 17.1890 3.6680 5.3356 12.2797 14.2351

homogeneous Fredholm integral equation system with the Green function matrix as its kernel. This eigenvalue
problem is reduced to an algebraic eigenvalue problem which is solved numerically. The solutions for the
eigenvalues are presented in tabular and graphical formats.
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A Shear correction factor for heterogeneous beams

Figure 12 depicts the cross section of a Timoshenko beam with cross-sectional heterogeneity.
The E-weighted first moment Q

′
ey of the shaded area denoted by A

′
in Fig. 12 is defined by the integral

Q
′
ey(z) =

∫

A′
Eζ dA. (A.1)

The shear correction factor is given by the equation [33]:

κy = I 2ey
Ag

1
∫

A

(Q′
ey(z))

2

G(y, z)t2(z)
dA

. (A.2)

For the cross section shown in Fig. 13, it follows from Eqs. (5.2), (5.7b), (5.8) and (A.2) that

Ag =
∫

A
G dA = 2Glrah + Gmbh, (A.3a)

Iey =
∫

A
Ez2 dA = h3

12
[2aElr + bEm] , (A.3b)

Iρy =
∫

A
z2ρ dA = h3

12
(2ρlr a + ρmb) , (A.3c)

ρa = 1

A

∫

A
ρ dA = 2ρlr a + ρmb

2ah + bh
, (A.3d)

r2 = Iρy
ρa A�2

= h2

12L2 , (A.3e)

Fig. 12 A heterogeneous cross section

http://creativecommons.org/licenses/by/4.0/
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Fig. 13 A three-layered rectangular cross section

κy = I 2ey
Ag

1
∫

A

(Q′
ey(z))

2

G(y, z)t2(z)
dA

= 5

6

(2aElr + bEm)2 GlrGm

(2aGlr + bGm)
(
2aE2

lrGm + bE2
mGlr

) . (A.3f)

Here, (A.3f) is the shear correction factor. It also holds that

χ = Agκy L2

Iey
= Iρy

Iey

Ag

ρa A
κy

1

r2
= 1

Er2
, E =ρa AIey

Ag Iρy

1

κy
.

For Elr = 210,000MPa, Glr = 80,000MPa and Em = 70,000MPa, Gm = 25,000MPa:

κy = 100

3

(6a + b)2

(32a + 5b) (45a + 8b)
. (A.4)

Note that

κy
∣
∣
a=b = 0.832 908, and κy

∣
∣
a=0 = 5

6
= 0.833 333. (A.5)

If, in addition to this, it is assumed that L = 2400 mm, a = b = 4/3 mm, h = 12 mm, then

E = ρa AIey
Ag Iρy

1

κy
= 3.180, r =

√
2. 083 4 × 10−6 � 0.001443 376, χ = 1

Er2
� 150939.0. (A.6a)

B Calculation of the Green function matrix for Timoshenko beams

B.1 Calculation steps if ξ ∈ [0, b]
The differential operatorL[y] = 0 is given by Eq. (5.10). The general solution of the homogeneous differential
equation L[y] = 0 is

[
y1
y2

]
=

[
1 x
0 −1

]

︸ ︷︷ ︸
Y 1(x)

[
c1
c2

]
+

[
− 1

2 x
2 − 1

3 x
3

x 2
χ

+ x2

]

︸ ︷︷ ︸
Y 2(x)

[
c3
c4

]
. (B.1)
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On the basis of (4.3) and (4.4), we may write

G1I (x, ξ)
(2×2)

=
2∑

�=1

Y �(x) [A �I (ξ) + B �I (ξ)] , x ≤ ξ ;

G1I (x, ξ)
(2×2)

=
2∑

�=1

Y �(x) [A �I (ξ) − B �I (ξ)] , x ≥ ξ

x ∈ [0, b] (B.2)

and

G2I (x, ξ)
(2×2)

=
2∑

�=1

Y �(x)C �I (ξ), x ∈ [b, c] (B.3)

where the coefficients matrices A �I (ξ), B �I (ξ) and C �I (ξ) are the unknowns. For the sake of further calcu-
lations, it is worth partitioning the matrices Y �, A �I , B �I and C �I :

Y � =
⎡

⎣
�

Y 11
�

Y 12
�

Y 21
�

Y 22

⎤

⎦ = 1 {
1 {

[
Y �1
Y �2

]

︸ ︷︷ ︸
(2×2)

, (B.4a)

A �I =
⎡

⎣
�

A11
�

A12
�

A21
�

A22

⎤

⎦ =
[
A �1
(2×1)

A �2
(2×1)

]
, B�I =

⎡

⎣
�

B11
�

B12
�

B21
�

B22

⎤

⎦ =
[
B �1
(2×1)

B �2
(2×1)

]
(B.4b)

C�I =
⎡

⎣
�

C11
�

C12
�

C21
�

C22

⎤

⎦ =
[
C �1
(2×1)

C �2
(2×1)

]
. (B.4c)

It follows from Eq. (4.5) that the matrices B �I should satisfy the following equations:

2∑

�=1

Y �(ξ)B �I (ξ) =
[
1 ξ
0 −1

]
⎡

⎣
1
B11

1
B12

1
B21

1
B22

⎤

⎦ +
[

− 1
2ξ

2 − 1
3ξ

3

ξ 2
χ

+ ξ2

]⎡

⎣
2
B11

2
B12

2
B21

2
B22

⎤

⎦ =
[
0 0
0 0

]
,

(B.5a)
2∑

�=1

Y(1)
� (ξ)B �I (ξ) =

[
0 1
0 0

]⎡

⎣
1
B11

1
B12

1
B21

1
B22

⎤

⎦ +
[−ξ −ξ2

1 2ξ

]⎡

⎣
2
B11

2
B12

2
B21

2
B22

⎤

⎦ = −1

2

[ 1
χ

0
0 1

]
. (B.5b)

By introducing the new variables

a = 1
B1i , b = 1

B2i c = 2
B1i d = 2

B2i (B.6)

for i = 1, equation system (B.5) assumes the form

⎡

⎢
⎢
⎣

1 ξ − 1
2ξ

2 − 1
3ξ

3

0 −1 ξ 2
χ

+ ξ2

0 1 −ξ −ξ2

0 0 1 2ξ

⎤

⎥
⎥
⎦

⎡

⎢
⎣

a
b
c
d

⎤

⎥
⎦ =

⎡

⎢
⎢
⎣

0
0

− 1
2χ
0

⎤

⎥
⎥
⎦

from where

a = 1
B11 = ξ

2χ − ξ3

12 , b = 1
B21 = 1

4ξ
2 − 1

2χ , c = 2
B11 = 1

2ξ, d = 2
B21 = − 1

4 . (B.7a)
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If i = 2, it is found in the same way that
⎡

⎢
⎢
⎣

1 ξ − 1
2ξ

2 − 1
3ξ

3

0 −1 ξ 2
χ

+ ξ2

0 1 −ξ −ξ2

0 0 1 2ξ

⎤

⎥
⎥
⎦

⎡

⎢
⎣

a
b
c
d

⎤

⎥
⎦ =

⎡

⎢
⎣

0
0
0

− 1
2

⎤

⎥
⎦

from where

a = 1
B12 = 1

4
ξ2, b = 1

B22 = −1

2
ξ, c = 2

B12 = −1

2
, d = 2

B22 = 0. (B.7b)

According to Eq. (4.17a), the product G(x, ξ)α should satisfy boundary conditions at the left end of the beam.
If αT = [1|0] (i = 1) or αT = [0|1] (i = 2), the boundary conditions at the left end results in the equation
system

2∑

�=1

Y �1(x)|x=0 A �i (ξ) = −
2∑

�=1

Y �1(x)|x=0 B �i (ξ), (B.8a)

2∑

�=1

Y(1)
�2 (x)

∣
∣∣
x=0

A �i (ξ) = −
2∑

�=1

Y(1)
�2 (x)

∣
∣∣
x=0

B �i (ξ). (B.8b)

According to Eq. (4.17b), the product G(x, ξ)α should satisfy the continuity conditions at the intermediate
roller (x = b). If αT = [1|0] (i = 1) or αT = [0|1] (i = 2) these continuity conditions lead to the equations

2∑

�=1

Y �1(x)|x=b A �i (ξ) =
2∑

�=1

Y �1(x)|x=b B �i (ξ), (B.9a)

2∑

�=1

Y �1(x)|x=b C �i (ξ) = 0, (B.9b)

2∑

�=1

Y �2(x)|x=b A �i (ξ) −
2∑

�=1

Y �2(x)|x=b C �i (ξ) =
2∑

�=1

Y �1(x)|x=b B �i (ξ), (B.9c)

2∑

�=1

Y(1)
�2 (x)

∣
∣∣
x=b

A �i (ξ) −
2∑

�=1

Y(1)
�2 (x)

∣
∣∣
x=b

C �i (ξ) =
2∑

�=1

Y(1)
�1 (x)

∣
∣∣
x=b

B �i (ξ). (B.9d)

As per Eq. (4.17a), the product G(x, ξ)α should satisfy boundary conditions at the right end of the beam. If
αT = [1|0] (i = 1) or αT = [0|1] (i = 2), we get:

2∑

�=1

Y �1(x)|x=� C �i (ξ) = 0,
2∑

�=1

Y(1)
�2 (x)

∣
∣∣
x=�

C �i (ξ) = 0. (B.10)

After substituting Y �1, Y �2, Y
(1)
�2 , A �i , B �i and C �i into (B.8), (B.9) and (B.10), one arrives at the following

equation system:

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 b − 1

2b
2 − 1

3b
3 0 0 0 0

0 0 0 0 1 b − 1
2b

2 − 1
3b

3

0 −1 b 2
χ

+ b2 0 1 −b − 2
χ

− b2

0 0 1 2b 0 0 −1 −2b
0 0 0 0 1 � − 1

2�
2 − 1

3�
3

0 0 0 0 0 0 1 2�

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

1
A1i
1
A2i
2
A1i
2
A2i
1
C1i
1
C2i
2
C1i
2
C2i

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

− 1
B1i

− 2
B1i

1
B1i + b

1
B2i − 1

2b
2
2
B1i − 1

3b
3
2
B2i

0

− 1
B2i + b

2
B1i + ( 2

χ
+ b2)

2
B2i

2
B1i + 2b

2
B2i

0
0

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(B.11)
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for which

1
A1i = − 1

B1i (B.12a)
1
A2i = 1

6b�
(
b�χ − b2χ + 3

)
(
6
1
B1i

(
2�2bχ + 6� − b2�χ − b3χ

)

− 2
B1i b

2 (4�2bχ + 18� − 6b − 5b2�χ + b3χ
) + 6

1
B2i b� (bχ (� − b) + 3)

)
(B.12b)

2
A1i = − 2

B1i (B.12c)
2
A2i = 1

2b�
(
b�χ − b2χ + 3

)
(
6
1
B1i (� − b) χ + 2

B1i b
(
�χ (2� − b) + 6 − b2χ

)

+2
2
B2i b (�bχ (� − b) + 3)

)
(B.12d)

1
C1i = − 1

6
(
b�χ − b2χ + 3

)b (2� − b)

(
6
1
B1iχ + 2

B1i
(
b2χ − 6

)
)

(B.12e)

1
C2i = 1

6�
(
b�χ − b2χ + 3

)
(
2�2 + 2�b − b2

) (
6
1
B1iχ + 2

B1i
(
b2χ − 6

))
(B.12f)

2
C1i = 1

b�χ − b2χ + 3

(
6
1
B1iχ + 2

B1i
(
b2χ − 6

))
(B.12g)

2
C2i = − 1

2�
(
b�χ − b2χ + 3

)
(
6
1
B1iχ + 2

B1i
(
b2χ − 6

)
)

(B.12h)

are the solutions. The elements of matrices A1I , A2I , C1I and C2I can be given in terms of ξ as well.
Matrix A1I :

1
A11 = − 1

2χ
ξ + 1

12
ξ3,

1
A12 = 1

4
ξ2, (B.13a)

1
A21 = − 1

DaIχ

[
6�b (bχ (� − b) + 3) + ξ

(−12� (bχ (� − 2b) + 3) + χ2b3 (4� − b) (� − b)
)

−3�bξ2χ
(
�bχ − b2χ + 3

) + χξ3 (bχ (2� + b) (� − b) + 6�)
]
, (B.13b)

1
A22 = 1

DaI

[
b2

(
4b�2χ + 18� − 6b − 5b2�χ + b3χ

)−
−6b�ξ (bχ (� − b) + 3) + 3ξ2 (χb (2� + b) (� − b) + 6�)

]
, (B.13c)

where

DaI = 12b� (bχ (� − b) + 3) .

Matrix A2I :

2
A11 = −1

2
ξ,

2
A12 = 1

2
, (B.14a)

2
A21 = 3

DaI

(−b (�bχ (� − b) + 3) + ξ
(
6� + 2�2bχ − χb2 (b + �)

) − χξ3 (� − b)
)
, (B.14b)

2
A22 = 3

DaI

(
−b

(
�χ (2� − b) + 6 − b2χ

) + 3χ
1

4
ξ2 (� − b)

)
. (B.14c)

Matrix C1I :

1
C11 = − 1

DcI
χbξ (2� − b)

(
b2 − ξ2

)
,

1
C12 = − 1

DcI
b (2� − b)

(
3ξ2χ − b2χ + 6

)
, (B.15a)
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1
C21 = χξ

�DcI

(
2�2 + 2�b − b2

) (
b2 − ξ2

)
, (B.15b)

1
C22 = 1

�DcI

(
2�2 + 2�b − b2

) (
3ξ2χ − b2χ + 6

)
, DcI = 12 (bχ (� − b) + 3) . (B.15c)

Matrix C2I :

2
C11 = 6χξ

DcI

(
b2 − ξ2

)
,

2
C12 = 6

DcI

(
3ξ2χ − b2χ + 6

)
, (B.16a)

2
C21 = − 3χξ

�DcI

(
b2 − ξ2

)
,

2
C22 = − 3

�DcI

(
3ξ2χ − b2χ + 6

)
. (B.16b)

B.2 Calculation steps if ξ ∈ [b, �]
On the basis of (4.14) and (4.15), it can be written that

G2I I (x, ξ)
(2×2)

=
2∑

�=1

Y �(x) [A �I I (ξ) + B �I I (ξ)] , x ≤ ξ ;

G2I I (x, ξ)
(2×2)

=
2∑

�=1

Y �(x) [A �I I (ξ) − B �I I (ξ)] , x ≥ ξ

x ∈ [b, �] (B.17)

and

G1I I (x, ξ)
(2×2)

=
2∑

�=1

Y �(x)C �I I (ξ), x ∈ [b, �] (B.18)

where the coefficients matrices A �I I (ξ), B �I I (ξ) and C �I I (ξ) are the unknowns. Since B �I I (ξ) = B �I (ξ),
we turn our attention to the matrices A �I I (ξ) and C �I I (ξ). It is assumed that A �I I (ξ), B �I I (ξ) and C �I I (ξ)
are partitioned in the same manner as the matrices A �I (ξ), B �I (ξ) and C �I (ξ). The notation for these matrix
blocks and their elements will be the same as before since this will not cause any misunderstanding.
According to Eq. (4.17a), the product G(x, ξ)α should satisfy boundary conditions at the left end of the beam.
If αT = [1|0] (i = 1) or αT = [0|1] (i = 2), the boundary conditions at the left end of the beam result in the
following equation system:

2∑

�=1

Y �1(x)|x=0 C �i (ξ) = 0 (B.19a)

2∑

�=1

Y(1)
�2 (x)

∣∣
∣
x=0

C �i (ξ) = 0. (B.19b)

As per Eq. (4.17b), the product G(x, ξ)α should satisfy the continuity conditions at the intermediate roller
(x = b). If αT = [1|0] (i = 1) or αT = [0|1] (i = 2), these continuity conditions lead to

2∑

�=1

Y �1(x)|x=b C �i (ξ) = 0, (B.20a)

2∑

�=1

Y �1(x)|x=b A �i (ξ) = −
2∑

�=1

Y �1(x)|x=b B �i (ξ), (B.20b)

2∑

�=1

Y �2(x)|x=b A �i (ξ) −
2∑

�=1

Y �2(x)|x=b C �i (ξ) = −
2∑

�=1

Y �1(x)|x=b B �i (ξ), (B.20c)
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2∑

�=1

Y(1)
�2 (x)

∣
∣∣
x=b

A �i (ξ) −
2∑

�=1

Y(1)
�2 (x)

∣
∣∣
x=b

C �i (ξ) = −
2∑

�=1

Y(1)
�1 (x)

∣
∣∣
x=b

B �i (ξ). (B.20d)

According to Eq. (4.17a), the product G(x, ξ)α should also satisfy boundary conditions at the right end of the
beam. If αT = [1|0] (i = 1) or αT = [0|1] (i = 2), we get:

2∑

�=1

Y �1(x)|x=� A �i (ξ) =
2∑

�=1

Y �1(x)|x=� B �i (ξ), (B.21a)

2∑

�=1

Y(1)
�2 (x)

∣∣
∣
x=�

A �i (ξ) =
2∑

�=1

Y(1)
�2 (x)

∣∣
∣
x=�

B �i (ξ). (B.21b)

Substituting Y �1, Y �2, Y
(1)
�2 , A �i , B �i and C �i into (B.19), (B.20) and (B.10) yields

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

0 0 0 0 b − 1
3b

3

1 b − 1
2b

2 − 1
3b

3 0 0
0 −1 b 2

χ
+ b2 1 − 2

χ
− b2

0 0 1 2b 0 −2b
1 � − 1

2�
2 − 1

3�
3 0 −0

0 0 1 2� 0 0

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1
A1i
1
A2i
2
A1i
2
A2i
1
C2i
2
C2i

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0

− 1
B1i − b

1
B2i + 1

2b
2
2
B1i + 1

3b
3
2
B2i

1
B2i − b

2
B1i − ( 2

χ
+ b2)

2
B2i

− 2
B1i − 2b

2
B2i

1
B1i + �

1
B2i − 1

2�
2
2
B1i − 1

3�
3
2
B2i

2
B1i + 2�

2
B2i

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(B.22)

since
1
C1i = 2

C1i = 0. The nonzero solutions are, therefore

1
A1i = − 1

6 (� − b)
(
�bχ − b2χ + 3

)
(
6
1
B1i

(
3b − 2�b2χ + bχ�2 + 3�

)

+ 2
B1i b

(
b2 + 2�2

) (
b2χ − 6

) − 6
1
B2i b�

(
b2χ − 6

) + 2
2
B2i b

3�
(
b2χ − 6

)
)

, (B.23a)

1
A2i = 1

6� (� − b)
(
�bχ − b2χ + 3

)
(

−6
1
B1i

(
4�b2χ − b3χ − 6�

)

+ 2
B1i

(
8�3b2χ − 12�3 − 6b3 + b5χ

)
− 6

1
B2i�

(
b�2χ − 3b + 2�b2χ − 3�

)

+ +2b3�
2
B2i

(
2�2χ − 6 + b2χ

))
, (B.23b)

2
A1i = 1

(� − b)
(
�bχ − b2χ + 3

)
(

−6
1
B1i bχ + 2

B1i
(
3b + 2b2�χ + b�2χ − 3�

) − 6
1
B2i b�χ + 2

2
B2i b

3�χ

)
,

(B.23c)
2
A2i = 1

2� (� − b)
(
�bχ − b2χ + 3

)
(
6
1
B1i bχ − 2

B1i
(
6b − 6� + 4�b2χ − b3χ

)

+6
1
B2i b�χ + 2

2
B2i�

(
b�2χ − 3b + 3� − 2b2�χ

))
, (B.23d)

1
C2i = 1

6�
(
�bχ − b2χ + 3

)b2
(

−6
1
B1iχ + 2

B1i
(
2b�χ + 6 − b2χ + 2�2χ

)

−6�
1
B2iχ + 2�

2
B2i

(
2b�χ + 6 − b2χ

)
)

, (B.23e)

2
C2i = 1

2�
(
�bχ − b2χ + 3

)
(

−6
1
B1iχ + 2

B1i
(
2b�χ + 6 − b2χ + 2�2

)
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−6
1
B2i�χ + 2

2
B2i�

(
2b�χ + 6 − b2χ

)
)

. (B.23f)

The elements of matrices A1I I , A2I I , C1I I and C2I I can be given in terms of ξ .
Matrix A1I I :

1
A11 = 1

DaI I

(
b�

(
b2χ − 6

)2 + 6ξ
(−3b + 2b2�χ + b�2χ − 3�

) − ξb5χ2

−2ξχb3
(
�2χ − 3

) + 3ξ2b�
(
b2χ − 6

)
χ + ξ3

(
3b − 2�b2χ + bχ�2 + 3�

)
χ
)
, (B.24a)

1
A12 = − χ

DaI I

(
3ξ2

(
3b − 2b2�χ + b�2χ + 3�

) − b
(
b2 + 2�2

) (
b2χ − 6

) + 3ξb�
(
b2χ − 6

))
,

(B.24b)
1
A21 = − 1

DaI I �

[
b3�

(
2�2χ − 6 + b2χ

)
χ − 6�

(
2b2�χ + b�2χ − 3b − 3�

)

−ξ
(
4�

(
2b2χ − 3

) (
χ�2 − 3

) + b5χ2
)

+ 3ξ2χ�
(
2b2�χ + b�2χ − 3b − 3�

)

−ξ3
(
4b2�χ − b3χ − 6�

)
χ
]
, (B.24c)

1
A22 = χ

DaI I �

[
−

(
8b2�3χ − 12�3 − 6b3 + b5χ

)

+6ξ�
(
b�2χ − 3b + 2�b2χ − 3�

) −3ξ2
(
4b2�χ − b3χ − 6�

)]
, (B.24d)

DaI I = 12χ (� − b)
(
�bχ − b2χ + 3

)
. (B.24e)

Matrix A1I I :

2
A11 = 6χ

DaI I

(−b�
(
b2χ − 6

) + ξ
(
2b2�χ + b�2χ − 3b − 3�

) − 3ξ2b�χ + ξ3bχ
)
, (B.25a)

2
A12 = 6χ

DaI I

((−2b2�χ − b�2χ + 3� − 3b
) + 6ξb�χ − 3bξ2χ

)
, (B.25b)

2
A21 = 3χ

DaI I �

(
�
(
2b2�χ − b�2χ − 3b − 3�

) − ξ
(
4b2�χ − 6� − b3χ

) + 3ξ2b�χ − ξ3χb
)
, (B.25c)

2
A22 = 3χ

DaI I �

(
6b − 6� + 4b2�χ − b3χ − 3ξb�χ + 3ξ2bχ

)
. (B.25d)

Matrix C1I I :

1
C11 = 1

C12 = 0, (B.26a)
1
C21 = 1

DcI �
b2

[
�bχ (b − 2�) + ξχ

(
2b� − b2 + 2�2

) − 3ξ2�χ + ξ3χ
]
, (B.26b)

1
C22 = 1

DcI �
b2

[− (
χ
(
2b� − b2 + 2�2

) + 6
) − 3ξ2χ + 3ξ�χ

]
. (B.26c)

Matrix C2I I :

2
C11 = 2

C12 = 0, (B.27a)
2
C21 = 3

DcI �

(
2b�2χ + �b2χ − ξ

(
b2χ − 2b�χ − 2�2

) − 3�ξ2χ + ξ3χ
)
, (B.27b)

2
C22 = 3

DcI �

(
b2χ − 2b�χ − 2�2 − 6 + 6ξ�χ − 3ξ2χ

)
. (B.27c)
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Remark 11 Assume that b = 0 and � = 1. Then,

G2I I (x, ξ) =
[
1 x
0 −1

]{[ − 1
2χ ξ + 1

12ξ
3 − 1

4ξ
2

− 1
2χ + ξ

χ
− ξ

3 + 1
4ξ

2 − 1
6ξ

3 1
2ξ

2 − 1
2ξ + 1

3

]

±
[

1
2χ ξ − 1

12ξ
3 1

4ξ
2

1
4ξ

2 − 1
2χ − 1

2ξ

]}

+
[

− 1
2 x

2 − 1
3 x

3

x 2
χ

+ x2

]{[ − 1
2ξ

1
2

1
2ξ − 1

4 − 1
2

]
±

[ 1
2ξ − 1

2− 1
4 0

]}
(B.28)

which is the Green function matrix for pinned–pinned beams—see equation (9.101) in [30].
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