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Abstract
Biological tissues receive oxygen and nutrients from blood vessels by developing an indispensable supply and demand 
relationship with the blood vessels. We implemented a synthetic tree generation algorithm by considering the interactions 
between the tissues and blood vessels. We first segment major arteries using medical image data and synthetic trees are 
generated originating from these segmented arteries. They grow into extensive networks of small vessels to fill the supplied 
tissues and satisfy the metabolic demand of them. Further, the algorithm is optimized to be executed in parallel without 
affecting the generated tree volumes. The generated vascular trees are used to simulate blood perfusion in the tissues by 
performing multiscale blood flow simulations. One-dimensional blood flow equations were used to solve for blood flow 
and pressure in the generated vascular trees and Darcy flow equations were solved for blood perfusion in the tissues using a 
porous model assumption. Both equations are coupled at terminal segments explicitly. The proposed methods were applied 
to idealized models with different tree resolutions and metabolic demands for validation. The methods demonstrated that 
realistic synthetic trees were generated with significantly less computational expense compared to that of a constrained 
constructive optimization method. The methods were then applied to cerebrovascular arteries supplying a human brain and 
coronary arteries supplying the left and right ventricles to demonstrate the capabilities of the proposed methods. The pro-
posed methods can be utilized to quantify tissue perfusion and predict areas prone to ischemia in patient-specific geometries.

Keywords Blood flow simulation · Growth-based tree generation · Multiscale modeling · Perfusion simulation

1 Introduction

Technologies associated with image-based blood flow simu-
lations have evolved significantly over the last decades and 
some of the technologies are starting to be adapted in clini-
cal applications (Colombo et al. 2022; Gutiérrez et al. 2021; 

Khan et al. 2021; Marsden 2014; Nørgaard et al. 2014; Plit-
man Mayo et al. 2020; Regazzoni et al. 2022; Schiavazzi 
et al. 2017; Schollenberger et al. 2021; Taylor and Figueroa 
2009). The step towards actual clinical applications, how-
ever, is still challenging as there is much uncertainty in mod-
eling patient-specific blood flow and pressure using medical 
image based geometries. Some of the challenges include 
modeling the physiology and pathophysiology of the vas-
cular system beyond the image data resolution, estimating 
the dynamics of the system due to various autoregulatory 
mechanisms and modeling the interactions between blood 
motion and complex biological tissues. Especially, as realis-
tic blood flow simulations require knowledge in the domains 
unseen in the medical image data, estimating patient-specific 
boundary conditions is a big challenge in adapting these 
technologies to actual clinical applications.

In recent years, several studies investigated relationships 
between major arteries that can be segmented using input 
medical image data and tissues where these vessels bifur-
cate and supply blood to Ide et al. (2017), Kaimovitz et al. 
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(2005), Kang et al. (2019), Kim et al. (2016), Kurata et al. 
(2015), Malkasian et al. (2018), Sinclair et al. (2015), van den 
Wijngaard et al. (2013) and Van Horssen et al. (2016). Many 
of the studies rely on the physiological principle that the 
vessels supply blood to nearby tissues to minimize energy 
expenditure. Several computational methods such as Voronoi 
parcellation, minimum cost path, and scaling law based tes-
sellation strategies have been proposed and compared against 
measurement data (Ide et al. 2017; Kang et al. 2019; Kim 
et al. 2016; Kurata et al. 2015; Malkasian et al. 2018; van den 
Wijngaard et al. 2013; Van Horssen et al. 2016). These stud-
ies provide a mapping between arteries and perfusion terri-
tories of the tissue and enable a patient-specific modeling of 
boundary conditions which are pre-requisite for blood flow 
simulations. Further, by means of comparison to experimen-
tal and empirical results, these studies have demonstrated 
key physiological principles such as blood vessels supplying 
nearby tissues and allometric scaling laws (West et al. 1997).

Additionally, vascular networks beyond the image data 
resolution can be constructed and used for simulated blood 
perfusion studies. Synthetic tree generation relies on the 
principle that the blood vessels supply the tissues by filling 
the tissue volume while minimizing required work. Previous 
tree generation strategies include constrained constructive 
optimization, staged growth-based constrained constructive 
optimization, nonlinear programming based constrained 
constructive optimization, and supply–demand relationship 
based tree generation methods (Blanco et al. 2021; Capasso 
et al. 2013; Coppini et al. 1997; Heck et al. 2015; Jaquet 
et al. 2019; Jessen et al. 2022; Karch et al. 1999, 2000; Lev-
ine et al. 2001; Milde et al. 2013; Mittal et al. 2005; Perfahl 
et al. 2017; Shen et al. 2021; Schreiner et al. 2006; Smith 
et al. 2000; Spill et al. 2015; Tawhai et al. 2000; Talou et al. 
2021; Wang and Bassingthwaighte 1990; Yang and Wang 
2013). The constrained constructive optimization (CCO) 
methods are the most widely used tree generation algorithms 
so far (Blanco et al. 2021; Jaquet et al. 2019; Karch et al. 
1999, 2000; Schreiner et al. 2006; Talou et al. 2021). They 
rely on the principle that the synthetic trees are constructed 
by minimizing the energy required to maintain the blood 
vessel networks. This algorithm, however, has limitations as 
it seeks for a global optimization and the parallelization of 
the algorithm requires additional assumptions. Furthermore, 
when the algorithm is implemented for multiple sources, 
they compete with each other while filling the tissues and 
may require additional constraints to develop more realistic 
vascular networks (Jaquet et al. 2019; Papamanolis et al. 
2021). Recently, there was a study to optimize the algo-
rithm by executing with a domain decomposition strategy 
and this approach improved the execution time (Blanco et al. 
2021). The staged growth-based constrained constructive 
optimization methods were developed to fill the prescribed 
biological tissues based on the observation that some blood 

vessels fill certain areas of the tissues first before supplying 
the remaining areas of the tissue domain (Karch et al. 2000; 
Talou et al. 2021). This approach has been implemented for 
various geometries and represented the anatomy observed in 
the cardiovascular system well. However, the tissue domain 
needs to be predefined before building synthetic trees. The 
nonlinear programming based constrained constructive opti-
mization was recently developed to optimize the tree gen-
eration while searching over a larger space of candidate tree 
configurations and it was shown to further minimize the met-
abolic work of the synthetically generated trees compared 
to that of the constrained constructive optimization (Jessen 
et al. 2022). However, as the algorithms seek for a global 
minimum the execution may take longer than that of the con-
strained constructive optimization algorithms and heuristic 
assumptions can be implemented to reduce computational 
expense. The supply–demand based tree generation methods 
were implemented for idealized and actual patient-specific 
models but the methods were utilized with a simplifica-
tion which omits the optimization that minimizes the work 
required to maintain the vascular system (Di Gregorio et al. 
2021; Tawhai et al. 2000; Wang and Bassingthwaighte 1990; 
Yang and Wang 2013). As the generated vascular trees were 
not compared against the trees generated with the minimum 
work principle, the supply–demand based methods need to 
be further validated to see whether the generated tree struc-
tures support the minimum work principle.

The synthetic tree generation methods can be combined 
with perfusion simulation frameworks to estimate blood 
perfusion through the tissues and to predict the risk of tis-
sue ischemia when there is an occlusion in a major artery. 
Previous perfusion simulations were conducted using tree 
networks generated with either experimental data or afore-
mentioned tree generation algorithms. Smith et al. and Hyde 
et al. proposed a multiscale perfusion simulation framework 
by coupling the left myocardium with one-dimensional vas-
cular trees which were obtained from animal models (Hyde 
et al. 2014; Smith et al. 2000). Lee et al. implemented a per-
fusion framework for idealized and porcine coronary data by 
coupling the perfusion solver with the ventricle mechanics 
(Lee et al. 2015). Michler et al. proposed a multi-compart-
ment porous model in a porcine myocardial tissue using a 
homogenization method whereby multiscale vessel models 
are approximated to compartment models (Michler et al. 
2013). Most of the works have been implemented for ideal 
geometries and have not utilized patient-specific geometries 
and parameters for the tree growth and perfusion simula-
tions. Recently, Papamanolis et al. implemented a perfusion 
simulation framework for patient-specific coronary arteries 
(Papamanolis et al. 2021) and Di Gregorio et al. implemented 
a perfusion framework for patient-specific coronary arteries 
with different length scales of the vessels using a multi-com-
partment porous medium model (Di Gregorio et al. 2021).
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The main purpose of this paper is to develop a synthetic 
tree generation algorithm which constructs anatomically 
realistic vessel networks that observe physiological princi-
ples. Further, short execution time is required for the algo-
rithm to be utilized effectively. To achieve this, we develop 
a tree generation algorithm which functions based on tis-
sue growth and succeeding vascular growth. It ensures that 
blood vessels supply nearby tissues and vascular trees are 
generated to meet the metabolic demand of the supplied tis-
sues while obeying the principle of minimum work. The 
proposed algorithm is parallelized to minimize computa-
tional expense. Finally, the synthetically generated vessels 
are combined with a perfusion simulation framework. Tree 
generation and perfusion simulation are demonstrated for an 
idealized geometry with different tree resolutions and meta-
bolic demands for validation as well as two patient-specific 
geometries as representative examples.

2  Methods

This section is organized in three subsections. The first sec-
tion describes key principles and implementation of the 
algorithm proposed to generate synthetic vascular networks. 
Next, the governing equations for simulating blood flow and 
pressure in the generated vascular network models and a 
Darcy flow model are explained. Last section briefly intro-
duces the steps of constructing patient-specific geometries 
from medical image data.

2.1  Tissue Growth‑based Synthetic Tree Generation

The vascular networks consist of two domains. The first 
domain is constructed from medical image data by segment-
ing major arteries which are visible within the input image 
resolution. The construction process is explained in the third 
subsection. The other domain consists of artificially gener-
ated networks of trees representing the vessels that are below 
the image resolution in vessel size. The construction process 
of these synthetic trees is explained in this subsection.

First, the initial vascular tree Tinit is defined. Tinit con-
sists of major arteries which are segmented from the input 
image data. All outlets of the segmented vessels are poten-
tial source locations to grow synthetic vessels from. If the 
segmented outlets are located inside the tissue or within 
a set distance criteria from the tissue, they are defined as 
eligible source locations. The source locations are assumed 
to be the initial locations that initiate the growth of the tis-
sues and the blood vessels from. Once these source loca-
tions are identified, the radius values are scaled down to a 
user-defined minimum vessel radius rmin as shown in Fig. 1. 
Flow supplied by the initial source locations is estimated 
using Murray’s law or power law where qi ∝ rk

min
 for each 

source location i. Here, qi refers to the flow rate supplied 
by the ith source location. The power law exponent k can 
be selected depending on the characteristics of the vessel 
network. The initial tissue volume supplied with this flow is 
determined using the allometric scaling laws whereby flow 
is proportional to the tissue volume to the pth power. p is 
an exponent determined based on empirical and analytic 
studies (West et al. 1997). The location of the initial tissue 
Ωinit is determined by claiming the volume starting from the 
tissue closest to the vascular outlet until the required blood 
flow of the volume with its specific metabolic demand 
matches the outlet flow of the vascular segment.

Once the initial source locations and initial tissues are 
defined, the initial tissues grow and trigger the creation 
of new vessels and growth of existing vascular trees. The 
tissue starts from the initial tissue Ωinit perfused by the 
initial tree Tinit and grows toward a final tissue Ωt which is 
segmented from the medical image data. The tissue growth 
rate can be either isotropic or anisotropic. The growth rate 
and direction are determined by the user-defined growth 
rate vector ci,p for each source location xi,p at ith iteration. 
Tissues and vascular vessels grow in tandem, so the tissue 
growth occurs first near the vascular networks and the cor-
responding vessels grow subsequently. Each tissue parti-
tion perfused by a terminal segment grows independently 
until the tissue growth is completed by growing into the 
final tissue Ωt.

For a given tissue Ωi perfused by a vascular tree Ti at ith 
iteration, the following Voronoi diagram is computed for 
each partition of the tissue Ωi,p perfused by an individual 
terminal segment with a terminal location xi,p for a given 
growth rate vector ci,p:

where Ri,p(Ti,Ωi,p) is the tissue partition at ith iteration per-
fused by an individual terminal segment located at xi,p , nsd is 
a spatial dimension of the tissues and the vascular networks, 
and ni is the number of terminal segments at the ith iteration.

Tissues  a t  the  (i + 1) th  i tera t ion are  con-
structed by a union of Ri,p(Ti,Ωi,p) for each termi-
nal segment with Ωi , the tissue at ith iteration, where 
Ωi+1 = Ωi ∪R1(Ti,Ωi,1) ∪⋯ ∪Rni

(Ti,Ωi,ni
).

After the tissue grows to Ωi+1 the vessels grow in tandem to 
satisfy the metabolic demand of the newly grown tissue. The 
number of new terminal segments ni+1 is obtained by comput-
ing the metabolic demand of the newly grown tissue Ωi+1:

(1)

Ri,p(Ti,Ωi,p) = {x ∈ Ωt, x ∉ Ωi,k for k = 1,… , ni

‖ ‖ci,p,n ⋅ (xn − xi,p,n)‖ < min‖1, ‖ci,k,n ⋅ (xn − xi,k,n)‖‖,
where k ≠ p, for n = 1,… , nsd},

(2)QΩi+1
=

nt,i+1∑

p=1

mt,pvp,



1098 H. J. Kim et al.

1 3

where nt,i+1 is the number of tissue partitions in Ωi+1 , mt,p , 
the metabolic demand of each tissue partition tp and vp is the 
volume of the tissue partition tp . The metabolic demand of a 
single tissue partition is assumed to have a constant value.

The flow increment, QΩi+1
− QΩi

 determines the number 
of terminal segments to be generated. The minimum flow 
qmin of a single terminal segment is set based on the pre-
defined minimum radius rmin . The number of terminal seg-
ments ni+1 is determined using the following expression:

New terminal segments are generated and connected to the 
existing vascular trees to supply blood to the newly grown 
tissue Ωi+1 . We define the new merged vascular trees as 
Ti+1 . The new vascular trees Ti+1 are generated to mini-
mize work required to supply blood to the grown tissue 

(3)ni+1 = round

(
QΩi+1

− QΩi

qmin

)
.

Ωi+1 and maintain the vascular trees Ti+1 . The loss function 
L(Ti+1,QΩi+1

) is defined as follows:

The first term refers to viscous work due to blood flow and 
the latter approximates the metabolic work of the vascular 
networks. Here, rp , lp , and qp are the radius, length, and flow 
of a synthetically generated segment p respectively. � is the 
viscosity of blood and �p is a metabolic work coefficient for 
the synthetic segment p. Further, ntot,i+1 is the number of all 
synthetically generated segments. All the required param-
eters are defined in the optimization parameter set Popt.

When generating vascular trees, we assume that they have 
a binary bifurcation structure and satisfy pre-defined geo-
metric constraints. The power law rk

0
= rk

1
+ rk

2
 is obeyed for 

(4)L(Ti+1,QΩi+1
) =

ntot,i+1∑

p=1

{
8�lp

�r4
p

q2
p
+ �p�r

2

p
lp

}
.

Fig. 1  Captured pictures while generating vascular trees using the 
growth-based optimization algorithm. The initial vascular tree starts 
with a user-defined minimum radius and the tissue that satisfies the 
metabolic demand with the vessel. As the tissue grows to neigh-
boring tissues the vessels grow accordingly to satisfy the increased 

metabolic demand. The radius at the source location grows up to the 
original radius value of the initial vascular tree. Note that the grown 
tissues and generated vessels are scaled by four folds at the bottom 
left boxes for the captured images at iteration 1, 2, and 3
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each bifurcation where k is a power law exponent, r0 is the 
radius of a parent vessel, and r1 and r2 are the radii of the 
daughter vessels. All the required parameters including the 
power law exponent k are defined in the geometric parameter 
set Pgeo . Additionally, based on a supply and demand rela-
tionship between the vascular trees and perfused tissues, new 
vascular trees Ti+1 adapt in size according to the metabolic 
demand of the perfused tissues. The relationship obeys a 
power law such that the flow rate qp for a segment with the 
radius rp can be described with the following relationship: 
qp ∝ rk

p
 and qp ∝ Ri,p(Ti,Ωi,p).

The initial tree starts from a radius rmin in vessel size at each 
initial source location. As the tissues and trees grow, the diam-
eter at the initial source location increases accordingly. The 
tree generation from the initial source location is completed 
when the radius at the source location is equal to or exceeds 
the actual segmented source radius, which is obtained from the 

segmentation of input medical image data. The same princi-
ple is obeyed when applying the tree generation algorithms to 
multiple sources. Additionally, when multiple sources compete 
to fill the given tissue, the growth rate is monitored for each 
source to ensure that these sources grow with a uniform growth 
rate. As the trees grow and supply tissue volumes, source loca-
tions with larger diameters will eventually require more itera-
tions to grow fully as they supply more flow. The perfusion 
territories will be affected depending on how the growth rates 
are prescribed for multiple sources. For this study, we assumed 
that each source has the same growth rate for simplicity.

Using these principles, synthetic vascular trees are con-
structed to obey the supply and demand relationship between 
blood vessels and supplied tissues. As the perfused tissues 
grow in size, the metabolic demand of the tissues increases 
and the vascular trees that supply blood to them grow 
accordingly to satisfy the increased demand while obeying 
the provided physiological principles.

Algorithm 1 Tissue-growth based tree generation algorithm.
Require: S = {Tinit, Ωt, mt, Pgeo, Popt}, with initial vascular tree Tinit,

final tissue domain Ωt, metabolic demand of each tissue mt, geometric
parameters Pgeo, and optimization parameters Popt.

Ensure: Tv, where the tissue is fully grown to Ωt and QTv = QΩt where QTv

is the flow supplied by the vascular tree Tv and QΩt is the required tissue
flow based on the prescribed local metabolic demand mt.

Set i = 0 and T0 = Tinit.
For the given T0 compute Ω0 = Ωinit such that QΩ0 = QT0 .

while Ωi ⊂ Ωt and Ωi �= Ωt do
i ← i+ 1
Compute Ωi by growing Ωi−1 to neighboring tissues
Update the required tissue flow QΩi

Update the tree search length bound lmin if needed
Compute ni, number of new terminal segments for Ωi

Find new terminal segment locations xp where p = 1, . . . ni

for each new terminal segment location xp do
for segments in the neighborhood where ‖x− xp‖ < lmin do

Find an optimal bifurcation location xp,opt

Construct a candidate tree Tc,i
Update the flow QTc,i

Compute the loss function L(Tc,i, QTc,i
)

if L(Tc,i, QTc,i
) is a minimum then

Ti ← Tc,i
end if

end for
end for

end while

Update Tv ← Ti
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Here, the tree search length lmin constrains the search 
domain when searching for candidate locations to gener-
ate vessels from. The terminal segment locations xp can be 
determined using multiple ways. For this study, the centroid 
locations of the discretized tissue volume mesh are used as 
the terminal segment locations but they can be determined 
independent of the tissue volume mesh.

Further, a constrained constructive optimization algo-
rithm was implemented to compare against the proposed 
tissue-growth based tree generation algorithms. For the 
details on the algorithm, refer to the articles by Jaquet et al. 
(2019), Karch et al. (1999) and Talou et al. (2021).

2.2  Governing blood flow equations

This subsection consists of three parts: one-dimensional 
blood flow equations to solve for blood flow and pressure in 
the vascular networks, a three-dimensional perfusion model 
to solve for blood flow and pressure occurring in the small 
arteriole and capillary beds of the tissues, and the coupling 
of the one-dimensional blood flow equations and the perfu-
sion model.

2.2.1  Blood flow in networks of vessels

For the generated vascular networks, blood flow is modeled 
with a one-dimensional approximation of the Navier–Stokes 
equations. The deformability of the blood vessel walls was 
ignored for this study. The mass conservation and the linear 
momentum balance equations for each vessel segment in the 
flow direction z are solved as follows: 

 where Q is the flow rate, p is the pressure, and S is the 
cross-sectional area of the vessel along the z coordinate. f is 
an external force, � is a profile function related parameter, 
N is the viscosity related parameter and � is the kinematic 
viscosity. Note that for a parabolic velocity profile function, 
� =

1

3
 and N = 8��.

These equations are solved for networks of vessels by 
applying conservation of mass and continuity of pressure at 
each junction. At the inlets of the vascular trees, an inflow is 
assigned as a boundary condition and at each terminal vessel 
of the networks, a resistance or three-element Windkessel 
model is assigned as a boundary condition.

The system of equations is solved in an iterative fash-
ion for a given time step until flow rate difference between 

(5a)
�Q

�z
= 0

(5b)
�Q

�t
+

�

�z

[
(1 + �)

Q2

S

]
+

S

�

�p

�z
= Sf + N

Q

S
,

two consecutive iterations decreases below a pre-defined 
threshold. A generalized-� method is utilized for the time 
integration (Hughes and Lubliner 1973; Jansen et al. 2000; 
Papamanolis et al. 2021).

2.2.2  Blood flow in tissues

Blood flow perfused in the tissue is simulated using Darcy’s 
law. For the tissue domain given by Ω with the boundary Γ , 
Darcy’s law for the flow of a viscous fluid in a permeable 
medium and conservation of mass are given as follows: 

 where v⃗ is the Darcy velocity vector, p is the capillary pres-
sure, g⃗ is the gravity vector, � is the blood viscosity, � is the 
permeability, � is the blood density, gc is the conversion con-
stant, � is the normal component of the velocity assigned on 
the boundary, and n⃗ is the unit outward normal vector at the 
boundary Γ . psource and psink are the source and sink pressure 
terms respectively and �source and �sink are pressure-coupling 
coefficients which represent the conductance of flow enter-
ing and exiting the tissues, respectively.

Sources and sinks represent the flow entering the tis-
sue through the synthetic terminal vessels and the drainage 
through the venous system. Zero flow boundary condition 
with � = 0 is assigned on the boundary Γ of the tissues 
(Papamanolis et al. 2021). A stabilized mixed Galerkin finite 
element method is implemented with linear shape functions 
for both velocities and pressure (Masud and Hughes 2002). 
A generalized-� method is used for the time integration 
scheme (Jansen et al. 2000).

For the following perfusion simulations, the pressure-
coupling coefficients are initialized as follows: 

 where m̄t is the average metabolic demand of the tissue 
domain Ω , p̄source is the average source pressure, p̄sink is 
the average sink pressure, and p̄ is the average capillary 
pressure.

(6a)v⃗ = −
𝜅

𝜇

(
∇p +

𝜌

gc
g⃗

)
in Ω

(6b)∇ ⋅ v⃗ = 𝛽source
(
psource − p

)
− 𝛽sink

(
p − psink

)
on Ω

(6c)v⃗ ⋅ n⃗ = 𝜓 on Γ,

(7a)𝛽source =
m̄t

p̄source − p̄

(7b)𝛽sink =
m̄t

p̄ − p̄sink
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2.2.3  Explicit coupling between vessel networks 
and tissues

The synthetic vascular trees transport blood to the tissues 
and blood perfusion in the tissues occurs through small 
arteriole and capillary vessels. Blood flow and pressure of 
the synthetic vascular trees are solved with one-dimensional 
blood flow equations. Blood flow and pressure in the capil-
laries in the tissues are computed using Darcy’s law. The 
coupling of the two equations is done explicitly by feeding 
the computed pressure of the terminal segments as source 
pressures of Darcy’s flow equations as demonstrated in 
Fig. 2. The computed flow using Darcy’s flow equations is 
fed back to the one-dimensional blood flow equations. The 
explicit coupling is conducted iteratively within the same 
time step until both the pressure and flow of terminal seg-
ments converge within pre-defined criteria. The pressure-
coupling coefficient values are adjusted slightly from the 
initially set values to match the pressure and flow values of 
terminal segments if needed.

2.3  Construction of patient‑specific geometries 
using medical image data

Patient-specific geometries utilized in the results ses-
sion were constructed using ITK-SNAP, Slicer, Autodesk 
MeshMixer (https:// www. meshm ixer. com/), Openflipper, 
and SimVascular (Fedorov et al. 2012; Kauke et al. 2019; 
Möbius and Kobbelt 2012; Updegrove et al. 2016). The 
lumen boundary of the blood vessels was segmented using 

a level set and threshold method of ITK-SNAP and was post-
processed using SimVascular and Openflipper to generate 
both three-dimensional and one-dimensional discretized 
models. The tissue models were generated using the same 
tools. Slicer was used additionally to manually correct the 
tissue models as the rule-based approaches sometimes failed. 
Autodesk MeshMixer was used to smooth the generated sur-
face meshes.

3  Results

In this section, we generate artificial vascular networks 
for ideal geometries as well as two patient-specific geom-
etries to validate the implementation of the proposed 
methods and to demonstrate the capabilities of them. An 
ideal geometry is chosen to show that artificial networks of 
vessels of different density can be generated while obeying 
the supply-and-demand relationship between the vessels 
and the tissues. Additionally, the metabolic demand of the 
tissues were modified to show that this supply-and-demand 
relationship is preserved for more general cases. Lastly, the 
outputs of the proposed methods were compared against 
that of the constrained constructive optimization methods.

For the two patient-specific geometries, cerebrovascular 
arteries with the left and right hemispheres and coronary 
arteries with the left and right ventricles were chosen. 
The left and right brain hemispheres were assigned a uni-
form metabolic demand value, whereas for the left and 

Fig. 2  Explicit coupling 
between vessel networks and 
tissues happens by passing com-
puted terminal pressure values 
from the one-dimensional blood 
flow solver to the perfusion 
solver and passing the tissue 
flow of each tissue element 
from the perfusion solver back 
to the one-dimensional blood 
flow solver

https://www.meshmixer.com/
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right ventricles a different metabolic demand value was 
assigned.

3.1  Synthetic Tree Generation and Perfusion 
Simulation of an ideal geometry

In this subsection, a spherical model with a center located 
at (0, 0, 0) and a radius of 10 cm was used as an input 
tissue to be perfused. The synthetic vascular tree net-
works were generated from two source locations which 
are located at (0, 0, −10 ) and (0, 0, 10). Both root vessels 
have an identical radius value of 0.4 cm. The synthetic 
trees were generated for tissues with prescribed metabolic 
demand values for different numbers of terminal segments. 
Blood flow and pressure of the generated vessels and per-
fusion in the tissues were computed using the proposed 
perfusion simulation framework.

3.1.1  Synthetic Tree Generation and Perfusion Simulation 
with different tree resolutions

The synthetic vessels were generated with different tree 
resolutions. The number of generated synthetic terminal 
segments varies between 567, 1189, 2369, 5003, 11,192, 
and 24,493. The metabolic demand of the tissues is uniform 
at 1.0 ml/min/g and the tissue density is uniform at 1.05 
g/cm3 . The perfusion simulation is conducted assuming a 
uniform permeability coefficient of 0.000107/mmHg/s. The 
sink pressure is set at 0 mmHg and the pressure-coupling 
coefficients �source and �sink are set at 0.000281 and 0.00117/
mmHg/s, respectively.

The perfusion simulations were conducted for steady 
flows for this study. For the one-dimensional blood flow 
equations, the flow at each terminal segment was determined 
by the metabolic demand of the perfused tissue. The per-
fusion volume and flow of each source for different num-
bers of terminal segments are presented in Table 1. Both 
source locations have similar perfusion volumes and flows 
as they have the same source radius values. The synthetic 

tree volume increases as the number of terminal segments 
increases as it continues bifurcation to smaller vessels. Note 
that the tissue geometry was generated using a coarse edge 
length and the total tissue volume is 3581.1 ml.

Figure 3 displays the generated synthetic trees, the pres-
sure distribution in the vessels, and the computed blood 
perfusion on the tissues. The generated synthetic trees and 
the perfused volumes are symmetric as both sources have 
identical source radius values and have the same growth rate 
when constructing synthetic trees. The tissue flow supplied 
by the synthetic trees is uniform with small reductions dis-
tant from the source locations. These reductions are caused 
by pressure losses as the blood travels toward the terminal 
segments.

3.1.2  Synthetic tree generation and perfusion simulation 
with non‑uniform metabolic demand of the tissue

The synthetic vessels were generated for the same tis-
sue volume with variable metabolic demands. In the 
first considered case, the metabolic demand of the tis-
sue decreases radially from 3.0 ml/min/g at the center to 
0.3 ml/min/g in the periphery. For the second simulated 
case, the metabolic demand increases radially from 0.1 
ml/min/g at the center to 1.5 ml/min/g in the periphery. 
Note that the maximum and minimum metabolic demand 
values are slightly modified to preserve the same total 
required flow for the tissue. The perfusion simulation 
was conducted assuming the permeability coefficient is 
0.000107/mmHg/s. The sink pressure is set at 0 mmHg 
and the pressure-coupling coefficients �source and �sink are 
initially set at 0.000281/mmHg/s and 0.00117/mmHg/s, 
respectively. The pressure-coupling coefficient �sink was 
adjusted slightly within 2.0 % to match the prescribed 
total flow in the tissue.

The generated synthetic trees and simulated perfusion 
results are shown in Fig. 4. Due to the different metabolic 
demand distribution, different vessel networks are produced 
for the two cases. For the tissue with radially decreasing 
metabolic demand, synthetic trees with larger radii of vessels 

Table 1  Tissue volume, flow, 
and vascular volume data of the 
generated synthetic trees with 
different tree resolutions

Number of terminal segments 567 1189 2369 5003 11,192 24,493

Tissue volume supplied by the left source (ml) 1765.8 1695.6 1770.8 1803.9 1771.4 1796.9
Tissue volume supplied by the right source (ml) 1815.3 1888.9 1813.1 1779.9 1813.2 1787.9
Ratio 0.97 0.90 0.98 1.01 0.98 1.01
Total flow of the left source (ml/s) 30.9 29.7 31.0 31.6 31.0 31.4
Total flow of the right source (ml/s) 31.8 33.0 31.7 31.1 31.7 31.3
Ratio 0.97 0.90 0.98 1.02 0.98 1.00
Tree volume of the left source (ml) 11.82 12.29 13.07 14.33 15.98 17.06
Tree volume of the right source (ml) 11.95 12.96 13.27 14.46 15.70 17.05
Ratio 0.99 0.95 0.98 0.99 1.02 1.00
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at the center were generated. For the tissue with radially 
increasing metabolic demand, however, the synthetic trees 
exhibit smaller radii of vessels at the center and the radius 
values increase as one moves away from the center. For the 
peripheries, however, the radius values decrease again, even 
for the case of radially increasing metabolic demand. This 
can be explained by the fact that the terminal segment loca-
tion is dependent on the volume mesh resolution for simplic-
ity. As the volume mesh refines towards the surface of the 
tissue, the unit tissue volume perfused by each terminal seg-
ment which corresponds to the mesh element size is smaller, 
resulting in smaller terminal segments. The source flow and 
perfusion territory, however, is not affected by the mesh 
resolution as shown in Fig. 4. Even though the metabolic 
demand of the tissue is non-uniform, the flow distributions 
of the two source locations are the same and the generated 
tree structures are symmetric due to the fact that two source 
locations have the same radius values.

3.1.3  Comparison with a constrained constructive 
optimization algorithm

The tree network generated with the proposed methods is 
compared with the network generated with a constrained 
constructive optimization algorithm. Synthetic trees were 
generated with different tree resolutions for two algo-
rithms: the constrained constructive optimization (CCO) 
and growth-based tree generation algorithm (GBO). The 
number of generated synthetic terminal segments varies 
between 567, 1189, 2369, and 5003. The metabolic demand 
of the tissues is uniform at 1.0 ml/min/g and the tissue 
density is uniform at 1.05 g/cm3 . The perfusion simula-
tion was conducted assuming the permeability coefficient 
is 0.000107/mmHg/s. The sink pressure is set at 0 mmHg 
and the pressure-coupling coefficients �source and �sink are set 
to 0.000281/mmHg/s and 0.00117/mmHg/s. For the perfor-
mance comparison, we used an identical computing resource 
with an Intel Core i7-10700K CPU 3.80 GHz with 32 GB 

Fig. 3  Generated synthetic tree networks and simulated perfusion 
with different number of terminal segments. Pressure distribution of 
the synthetic trees is displayed on the surface of the synthetic trees 

whereas the tissue flow per each volume mesh element is plotted for 
the tissue domain
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RAM. Note that only a serial computation is compared as 
the CCO algorithm can be run in serial only. GBO can be 
executed in parallel, reducing the execution time further.

The execution time and total vascular volume are reported 
in Table  2. The execution time of the two algorithms 
increases as the number of terminal segments increases. 
The execution time of GBO is a lot faster than that of CCO. 
The CCO algorithm executes optimization for a global tis-
sue domain and is in general expensive to execute. GBO 
executes optimization for the localized, growing tissue par-
titions and the computation is not as demanding as that of 
the constrained constructive optimization algorithm. The 
execution of GBO can be further accelerated as they can be 
executed in parallel.

The vascular volume generated with CCO and GBO is 
comparable with less than five percent difference. There-
fore, GBO seems to be a better choice for generating syn-
thetic trees as it generates similar tree structures as the CCO 

Fig. 4  Generated synthetic tree networks and simulated perfusion 
with different number of terminal segments with radially decreasing 
metabolic demand (top), radially increasing metabolic demand (mid-
dle), and the terminal radius distribution as a function of normalized 
distance from the center for the generated synthetic trees with uni-
form, radially decreasing, and radially increasing metabolic demands 

(bottom). Pressure distribution of the synthetic trees is displayed on 
the surface of the synthetic trees whereas the tissue flow per each 
volume mesh element is plotted for the tissue domain. The radius 
distribution of uniform metabolic demand is plotted in blue whereas 
the distribution of radially increasing in green and the distribution of 
radially decreasing in orange

Table 2  Comparison of the performance and vascular tree volume for 
two different synthetic tree generation algorithms

CCO stands for a constrained constructive optimization whereas 
GBO refers to a growth-based optimization

Method Number of terminal segments 567 1189 2369 5003

CCO Execution time (min) 1.90 10.4 68.3 457.4
CCO Total synthetic volume (ml) 22.81 25.44 27.08 29.42
GBO Execution time (min) 0.23 0.77 3.47 17.3
GBO Total synthetic volume (ml) 23.77 25.24 26.34 28.54
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algorithm while reducing computation time significantly as 
demonstrated in Table 2.

Figure 5 compares the generated vascular trees and per-
fusion results for the two tree generation algorithms. One 
of the limitations of the CCO algorithm is the randomness 
of the perfusion territories. The perfusion territories are 
defined for each segmented coronary artery by collecting 
all the tissue partitions supplied by the descendants of the 
artery. The computed perfusion territories with different tree 
resolutions are slightly different for the CCO algorithm com-
pared to the territories generated with the GBO algorithm. 
This difference can be more outstanding when applying this 
algorithm to patient-specific, complex geometries. In previ-
ous studies, when the CCO algorithm was implemented for 
multiple sources, the generated vascular networks sometimes 
showed unrealistic tree structures, supplying blood to distant 
tissues (Jaquet et al. 2019; Papamanolis et al. 2021). This 

happens as the CCO algorithm randomly selects terminal 
segment locations and they may therefore supply distant 
tissues prior to nearby tissues. With the GBO algorithm, 
however, the trees are generated in the nearby tissues first 
and grow with the tissue. Thus, the generated vessels with 
the GBO algorithm supply similar perfusion territories at 
the source locations independent of the number of terminal 
segments.

Finally, the execution time and total vascular volume with 
different numbers of processors are reported in Table 3. The 
GBO algorithm can be executed in parallel without introduc-
ing any changes in total volume of the synthetically gener-
ated vessels. The execution time decreases with an increase 
in the number of computing processors. The scalability is 
less than one as some parts of the algorithms need to be 
executed in serial but the tree generation can be executed in 

Fig. 5  Generated synthetic tree networks and simulated perfusion 
with a constrained constructive optimization (top) and tissue growth-
based optimization (bottom). Pressure distribution of the synthetic 

trees is displayed on the surface of the synthetic trees whereas the 
tissue flow per each volume mesh element is plotted for the tissue 
domain

Table 3  Comparison of the performance and total vascular tree volume with different number of processors when generating 5003 terminal seg-
ments using a growth-based optimization (GBO) algorithm

Number of processors for 5003 terminal segments 1 2 3 4

Execution time with GBO (min) 17.3 10.37 7.85 6.70
Total synthetic volume with GBO (ml) 28.54 28.54 28.54 28.54
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parallel, enabling the generation of patient-specific, com-
plex, synthetic trees in a more reasonable time frame.

3.2  Synthetic Tree Generation and Perfusion 
Simulation of a patient‑specific cerebrovascular 
model

The tree generation was conducted for a patient-specific 
cerebrovascular model with the left and right brain hemi-
spheres. The metabolic demand of the brain tissue is uni-
form at 0.5 ml/min/g and the tissue density is 1.04 g/cm3 
(Abe et al. 2008; Fantini et al. 2016). The total brain tissue 
volume is 907 ml and the assigned total baseline flow is 7.86 
ml/s. The segmented cerebrovascular arteries have 58 outlets 
and the generated synthetic tree network has 9713 synthetic 
terminal segments and 19,368 synthetic segments in total. 
The total synthetic tree volume is 11.5 ml. The perfusion 

simulation was conducted assuming the permeability coef-
ficient is 0.000107/mmHg/s (Chapelle et al. 2010; Papam-
anolis et al. 2021). The sink pressure is set at 0 mmHg and 
the pressure-coupling coefficients �source and �sink are uni-
form at 0.000269 ml/mmHg/s and 0.000553 ml/mmHg/s, 
respectively.

Figure 6 shows the synthetic trees generated for the cer-
ebrovascular arteries with a volume rendering of perfused 
tissue flows. As the segmented cerebrovascular arteries are 
healthy, the perfused tissue flow is uniform with little varia-
tion. The tree density is not uniform as the terminal segment 
locations of the terminal segments were assigned to the cen-
troids of the tissue volume mesh for simplicity. Even though 
the synthetic tree density is dependent on the mesh reso-
lution, the terminal segment diameter is dependent on the 
metabolic demand. To comply with the uniform metabolic 

Fig. 6  Generated synthetic tree networks and simulated perfusion on 
brain tissues for patient-specific cerebrovascular arteries. Pressure 
distribution of the synthetic trees is displayed on the surface of the 

synthetic trees whereas the tissue flow per each volume mesh ele-
ment is plotted for the tissue domain. Note the tissue flow varies little 
between 0.0086 and 0.0087 ml/s
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demand, the diameter of vessels and terminal segments is 
reduced at locations of dense terminal locations.

3.3  Synthetic Tree Generation and Perfusion 
Simulation of a patient‑specific coronary model

The tissue-growth based tree generation methods were 
applied to a patient-specific coronary artery model with 
the left and right ventricle tissue models. The metabolic 
demand of the left ventricle is uniform at 1.0 ml/min/g 
and that of the right ventricle is uniform at 0.65 ml/min/g 
(Bakkum et al. 2015; Liu et al. 2018). The segmented 
coronary arteries have 26 outlets in total, 18 of them 
exclusively supply blood to the left ventricle while the 
remaining 8 outlets supply blood to the right ventricle. 
Those outlets are assumed to supply to one tissue only for 
simplicity. The outlets supplying blood to the right ventri-
cle supply 0.37 ml/s in total whereas the outlets supplying 
blood to the left ventricle supply 2.96 ml/s in total. The 
total perfusion volume of the right ventricle is 32.7 ml 

and that of the left ventricle is 169.3 ml. The generated 
synthetic trees contain 17,633 terminal segments for the 
left ventricle and 10,811 for the right ventricle. The total 
number of generated synthetic tree segments is 35,321 for 
the left ventricle and 21,661 for the right ventricle. The 
synthetic tree volume feeding the left ventricle is 11.8 ml 
whereas the synthetic tree volume feeding the right ven-
tricle is 0.7 ml. The perfusion simulation was conducted 
assuming the permeability coefficient is 0.000107/mmHg/s 
(Chapelle et al. 2010; Papamanolis et al. 2021). The sink 
pressure is uniform at 0 mmHg and the pressure-coupling 
coefficients �source and �sink for the left ventricular tissue are 
set at 0.000269/mmHg/s and 0.00120/mmHg/s. The pres-
sure-coupling coefficients �source and �sink for the right ven-
tricular tissue are set at 0.000281/mmHg/s and 0.000747/
mmHg/s. Figure 7 demonstrates that the synthetic trees 
have denser tree resolution and relatively bigger vessels 
for the left ventricle compared against the trees of the right 
ventricle as the left ventricle has higher metabolic demand 
and a bigger volume.

Fig. 7  Generated synthetic tree networks and simulated perfusion 
on the left and right ventricles for patient-specific coronary arteries. 
Pressure distribution of the synthetic trees is displayed on the surface 

of the synthetic trees whereas the tissue flow per each volume mesh 
element is plotted for the tissue domain
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Figure 8 shows the perfusion territories supplied by 
each segmented coronary artery. Using the tissue-growth 
based tree generation algorithms, the synthetic vessels are 
generated for nearby tissues first. Thus, arteries perfuse 
nearby tissues first. As demonstrated in various experi-
mental studies, the association between the blood vessels 
and the perfusion territories is highly dependent on the 
distance between the two Ide et al. (2017), Kang et al. 
(2019), Kim et al. (2016), Kurata et al. (2015), Malkasian 
et al. (2018), van den Wijngaard et al. (2013) and Van 
Horssen et al. (2016). The generated perfusion color map 
demonstrates realistic perfusion territories as they map 
major vessels to nearby tissues. As the tree generation 
algorithms rely on the metabolic demand of the perfusing 

tissue and the competition with neighboring vessels, the 
perfusion territories have various volumes and shapes.

4  Discussion

We have demonstrated a synthetic tree generation algo-
rithm based on physiological principles whereby the tis-
sue growth and increased metabolic demand trigger the 
angiogenesis process. The generated synthetic trees supply 
blood to nearby tissues similar to the findings observed in 
actual anatomies. Additionally, as the tree growth depends 
on the diameter of the source locations, the generated syn-
thetic vessels obey the allometric scaling laws (West et al. 
1997). The tissue-growth based tree generation algorithm 

Fig. 8  Perfusion territories of the left and right ventricles supplied by the segmented coronary arteries. The color of each perfusion territory is 
associated with the coronary artery which supplies blood to it
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was successfully executed on idealized geometries with a 
uniform metabolic demand for different tree resolutions. The 
two source locations supplied the same amount of flow to the 
tissues for different tree resolutions as the diameter of the 
two source locations is the same. The perfusion territories 
at the source locations were also independent of the number 
of generated terminal segments. Next, the tree generation 
algorithm was run on the idealized tissue with non-uniform 
metabolic demands. When there was increased metabolic 
demand as the tissue approaches the center or vice versa, 
the generated synthetic trees were adapted to supply blood to 
the tissues based on their metabolic demands. For the tissue 
with radially decreasing metabolic demand, the synthetic 
tree generation algorithm developed bigger tree structures 
toward the center of the tissues. The vessels supplying the 
periphery of the tissues were relatively atrophied as the met-
abolic demand of the peripheral tissue was diminished. For 
the case of radially increasing metabolic demand, opposite 
tree structures were observed. These idealized cases dem-
onstrated the capability of the tissue-growth based synthetic 
tree generation to construct trees while interacting with the 
tissues which they supply blood to. The algorithm is capa-
ble of adapting tree structures depending on the growth and 
metabolic demand of the tissue.

Further, the tree generation algorithm was applied to two 
actual patient-specific geometries. First, an application to 
a cerebrovascular system was performed to demonstrate 
the capability to construct synthetic trees on a complex 
geometry obtained from medical image data of a brain. 
The synthetic trees on the left and right brain hemispheres 
demonstrated that the trees can be constructed based on the 
growth and the metabolic demand of the brain tissues. For 
this study, we applied a uniform metabolic demand for the 
generation of the synthetic trees and conducted the perfu-
sion simulation. The results demonstrated uniform tissue 
perfusion with small variations as expected from a healthy 
subject. As another real, patient-specific application, the cor-
onary artery system was chosen. The synthetic trees for the 
left and right ventricles developed different tree structures as 
they have different metabolic demands. The synthetic trees 
developed smaller diameters and less dense networks on the 
right ventricle due to its lower metabolic demand.

The execution time of the tissue growth-based tree gen-
eration algorithm is reduced up to 26 folds compared to that 
of the constraint constructive optimization algorithm. We 
performed the comparison study between the growth-based 
optimization (GBO) and constrained constructive optimiza-
tion (CCO) algorithms for the generation of 567, 1189, 2369, 
and 5003 terminal segments and the execution time reduced 
by 8, 13, 20, and 26 folds, respectively. The execution time is 
further reduced as the number of segments increases. Both 
the GBO and CCO algorithms require iterative search for 
an optimal tree configuration within a prescribed search 

distance and the number of candidate tree configurations 
grows exponentially as the number of segments increases. 
When applying the GBO algorithm, however, we can effec-
tively reduce the number of computed tree configurations to 
the subtrees in the vicinity of actively growing tissue parti-
tions and significantly reduce the execution time. And as the 
GBO algorithm can be executed in parallel, the execution 
time can be further reduced. This optimized algorithm is 
successful in finding a minimum total vascular volume as 
well. The vascular volume generated using the CCO algo-
rithm is either comparable or slightly higher compared to 
the volume generated using the GBO algorithm, exhibiting 
differences of less than five percent for the idealized geome-
tries. The reason why the total vascular volume using a CCO 
algorithm has a tendency to be larger than the volume using 
the GBO algorithm seems to be due to the search constraints. 
When the CCO algorithm seeks for a global minimal volume 
it constrains search bounds from a big domain initially and 
scales back to a small domain to reduce the time spent in 
the search. Additionally, there is randomness when setting 
terminal segment locations for initial iterations which influ-
ences search domains of the subsequent iterations. Depend-
ing on how this search length is designed, the optimization 
algorithm determines the subspace where a local minimum 
of the loss function is sought. Jessen et al. also reported 
that the CCO algorithm searches for a locally optimal tree 
configuration and obtained a more optimal tree structure by 
expanding the search space using the nonlinear program-
ming based optimization methods (Jessen et al. 2022). For 
the GBO algorithm, however, there is less randomness in 
the algorithm as it relies on the tissue growth. Depending on 
how the growth rate of the tissue is set, the generated ves-
sels will have different structures. Further, as the algorithm 
minimizes the loss function for each iteration of the tissue 
growth, synthetic trees are constructed in an optimal fashion 
when supplying blood to the nearby tissues.

When the GBO algorithm seeks for a minimal volume for 
partially grown tissues—as the tissue grows from a small 
volume supplied by the initial source location to the final tis-
sue—it can be projected to be computationally demanding as 
the tissue dynamically grows and optimal vascular networks 
are sought for each iteration. The computation, however, is 
a lot cheaper compared to that of a CCO algorithm as it is 
constrained to actively growing tissue partitions only. Fur-
thermore, the computation can be optimized by paralleliza-
tion. In comparison to existing tree generation approaches, 
the GBO algorithm generates synthetic trees more quickly 
while utilizing the physiological principles of the custom 
and nonlinear programming based CCO algorithms. The 
CCO algorithms sometimes fail to represent anatomically 
realistic vessels by generating trees to rather distant tissues. 
With the GBO algorithm on the other hand, the tissue and 
vessel growth happens in tandem and the vessels supply 
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nearby tissues first. Compared to the staged growth-based 
CCO algorithms, the GBO algorithm is robust as the tis-
sue and vessels grow interactively. Furthermore, the GBO 
algorithm satisfies the minimum work principle in addition 
to the supply–demand relationship which is not necessar-
ily satisfied by the supply–demand relationship-based tree 
generation methods. Lastly, the GBO algorithm is versatile 
to model trees in different organs and with different morpho-
logical characteristics by adjusting the metabolic demand 
and the tissue growth rate as well as the direction of the 
tissue.

There are limitations of this study that must be addressed in 
future work. First, the proposed tree generation methods rely 
on the assumption that the segmented vessels are the origi-
nal source locations where the tissue starts growing from. We 
start from the source location with a prescribed small vessel 
diameter and a unit tissue which is supplied by this source and 
start growing the tissues and the vessels. If the initial source 
location at the beginning of the tissue growth is different, the 
generated tree structure can change significantly. Second, the 
location of the generated terminal tree segments is dependent 
on the discretized tissue volume mesh for the results presented 
in this study. We assumed that each centroid of the finite ele-
ment mesh of the tissue domain is a candidate location for 
a new terminal segment. Therefore the tree structure highly 
depends on the mesh quality of the tissue volume mesh. Due 
to this simplification, anisotropic tissue volume meshes result 
in non-uniformly generated tree structures. The tissue volumes 
of the patient-specific models have uneven mesh resolution 
for certain regions and have contributed to the generation of 
uneven synthetic trees. However, as the generated synthetic 
vessel diameters are set according to the metabolic demand 
of the tissue, the tree vascular volume is not much affected by 
this uneven mesh density. However, we plan to address this 
issue in the future. Third, the synthetic tree generation relies 
on the segmented arteries as they serve as the source locations. 
Vessels with a size below the image resolution are overlooked 
and are not modeled. In the applications treated in this paper, 
there are perforating arteries present in both the coronary and 
the cerebrovascular systems. We did not model these perforat-
ing arteries as additional source locations. As adding these 
perforating arteries can introduce changes in the perfusion 
and blood flow distribution, future work will address these 
unseen vessels before starting the synthetic tree generation. 
Fourth, the perfusion model utilized in this study is a single 
compartment Darcy flow model. Depending on the resolution 
of the synthetically generated vessels the perfusion model can 
contain vessels of different scales. As the flow and material 
characteristics of these vessels are heterogeneous, they need to 
be modeled with different compartments. Many studies have 
reported limitations of a one-compartment Darcy flow model 
due to the dependency on the mesh resolution and failure to 
model scale-separation, to list a few (Hyde et al. 2014; Michler 

et al. 2013; Lee et al. 2015). Future work will address these 
limitations by implementing a multi-compartment Darcy flow 
model. Lastly, more research and validation work will be con-
ducted by applying the proposed methods to patient-specific 
geometries and validate against measurement data. Patient-
specific validation, however, is limited by the resolution of 
available in-vivo image techniques which allows to validate the 
morphology of arteries and larger arterioles only. For major 
vessel networks like coronary and cerebrovascular beds, mor-
phology studies that use ex-vivo data acquired from humans 
or animals are available for validation. They are however not 
specific to the patient.

5  Conclusion

We developed a tissue-growth based synthetic tree genera-
tion algorithm and a perfusion simulation framework for the 
generation of vascular networks below the medical image 
resolution and perfusion simulation using the interactions 
between the blood vessels and the supplied tissues. The pre-
sented methods can generate realistic vascular networks as a 
function of metabolic demand of perfused tissues. Further, 
the algorithm is a lot faster compared to the execution time 
of a constrained constructive optimization algorithm and can 
be parallelized to expedite the execution. We successfully 
simulated perfusion of tissues by coupling the generated 
vessel networks to a Darcy flow model which approximates 
the small arteriole and capillary blood flow using a porous 
medium. The methods were demonstrated with ideal geom-
etries with uniform and non-uniform metabolic demands and 
two patient-specific geometries—cerebrovascular arteries 
with segmented brain tissues and coronary arteries with left 
and right ventricles—to demonstrate that realistic synthetic 
trees can be generated promptly by considering local meta-
bolic demand of perfused tissues.
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