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Abstract
In a recent article (Frenning in Comp Part Mech 24:1–4, 2021), we demonstrated that a Delaunay-based strain estimate
could be used as a starting point for the development of a particle-based method for continua. In this article, we argue that
the Voronoi diagram, dual to the previously used Delaunay tetrahedralization, provides a more natural description of the
underlying particulate system. For this reason, a Voronoi-based estimate of the deformation gradient is derived and used to
the same effect. Although the gradient vectors cease to be antisymmetric, sums over nearest neighbors vanish, which results
in a formulation that not only is linearly complete but also satisfies the patch test irrespective of initial particle placement.
Pairwise forces, inferred from the local (nonaffine) deformation of each bond or contact, impart a physical stabilization.
Forces are obtained from a discrete Lagrangian, thus ensuring that linear and angular momenta are conserved in the absence
of external forces and torques. Methods to enforce different types of boundary conditions are described; these are exact for
linear displacements, for constant stresses and for free surfaces. The performance of the method is assessed in a number of
numerical tests.

Keywords Particle-based methods · Granular mechanics · Smoothed particle hydrodynamics · Discrete element method ·
Stabilization

1 Introduction

Particle scale simulations of the mechanics of granular mate-
rials at high relative density remain challenging [27,51]. The
main reason for this is that particle contacts cease to be inde-
pendent of each other at a relative density of about 0.7–0.8
[37,49], invalidating the commonly used discrete element
method (DEM) [16] in its standard form.

The most common way to resolve this issue is to
resort to the multi-particle finite element method (MPFEM;
also referred to as the meshed DEM or the combined
finite/discrete element method, FEM/DEM), whereby the
discretization of each individual particle into finite elements
enables an adequate representation of its mechanical behav-
ior [28,55].Although theMPFEMhas successfully been used
to study compression of three-dimensional particle assem-
blies [23,37], it is not practical for large systems due to its
high computational cost [27].
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As an alternative, there have been some efforts to develop
what is commonly referred to as nonlocal contact models
for the interaction between particles. The first such model,
due to Harthong et al. [36], was based on curve fitting of
MPFEM results for elastoplastic particles and utilized a stiff-
ness that tends toward infinity when the local relative density
approaches unity, as appropriate for incompressible parti-
cles. The local relative density was in turn determined from
a Voronoi tessellation of space. Another nonlocal contact
model for elastoplastic particles has been developed and cal-
ibrated in our laboratory [44]. This model utilizes particles of
a (truncated) spherical shape and builds on the conceptions
of Arzt [3], who likened the deformation of individual parti-
cles at high relative densities to that of an extrusion process.
Particle deformation is compensated for by a corresponding
increase in the particle radius, so that the particle volume is
held constant. In effect, the model utilizes a contact pressure
that is considered to be a function of the current particle vol-
ume, estimated fromaVoronoi construction.Additionalwork
in this field has been carried out byGonzalez andCuitiño [34]
and Brodu et al. [10], who have devised nonlocal contact
models for elastic particles. Related recent work has focused
on nonlocal contact models for use in bonded particle pack-
ings (the so-called cohesive or bonded DEM) as a basis for
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fracture mechanics analysis [11,12]. Finally, an interesting
contact model has recently been devised by Giannis et al.
who included a nonlocal term based on the estimated average
pressure in each particle, as obtained from the interparticle
forces [31]. Despite their practical usefulness in simulations
of powder compression [53], the existing nonlocal contact
models are simplistic and typically do not properly account
for tangential forces.

A natural way to formulate more satisfactory models
would be to combine the DEM with an intrinsically non-
local method such a particle-based method for continua
(smoothed particle hydrodynamics, SPH, and related meth-
ods) [32,46,47]. In order to keep the representation of
interacting particles intact, it appears desirable to include
nearest-neighbor interactions only. If so-called virtual con-
tacts [5] are included, the contact network is often considered
to form a Delaunay tetrahedralization of space [17]. Hence,
the Delaunay tetrahedralization and its dual, the Voronoi
diagram, both constitute natural starting points for such
an analysis. (For simplicity, we in this work confine our-
selves to monodisperse granular materials; the appropriate
generalizations for polydisperse materials are the regular
tetrahedralization and the power diagram [4].)

To this end, we have recently shown how the most com-
monly used strain estimate for granularmaterials, due toBagi
[5], can be translated into a particle-based method for con-
tinua [24]. In effect, a compatible strain tensor [38] can be
obtained for each particle as the volume average of the local
deformation gradient over the corresponding Delaunay clus-
ter (the union of all Delaunay tetrahedra that contain the
particle in question; see also [58] where the term contiguous
Voronoi cell is used). The Bagi strain thus is a Delaunay-
based strain.

However, theDelaunay-based strain does, as anyDelaunay-
based quantity, suffer fromapotentially serious shortcoming:
It may change discontinuously when the reference state is
updated (when a particle moves over the circumcircle of one
of the tetrahedra) [39,64]. For this reason, a Voronoi-based
strain would be preferable, similar to the one proposed by
Satake [57] (see [6]).

The specific objective of this work therefore is to devise a
particle-basedmethod for continua that is based on aVoronoi
strain estimate. Such a method is expected to constitute an
essential building block for future macroscopically consis-
tent discrete methods for granular materials at high relative
density. It is also hoped that the developed method shall be
of interest in its own right.

Our method is related to the Voronoi component of the
hybrid Lagrangian Voronoi–SPH scheme developed for flu-
ids by Fernández-Gutiérrez et al. [19,20]. Voronoi cells were
recently used to estimate strain in DEM simulations via an
SPH approach [52], but the underlying methodology is dif-
ferent from ours. In addition, Voronoi cells have been used in

Fig. 1 Subdivision of the computational domain D into Voronoi cells
(bounded by red lines) based on the referential placement of particles
(filled circles) and ghosts (open circles). For clarity, the domain bound-
ary ∂D is indicated by a thick red line and the boundary ∂Va of Voronoi
cell a by black lines. The thin gray lines drawn between the particle
centers represent the underlying Delaunay tessellation. The black dots
indicate the referential placement of boundary points (color online)

SPH to refine simulations via particle splitting [14], to calcu-
late the volume attributed to each particle in order to improve
the accuracy of the SPH method [29,61] and as a means
to obtain an optimal particle arrangement via centroidal
Voronoi tesselation as obtained from Lloyd’s algorithm [29].
Additional related work includes the Voronoi finite element
method due to Ghosh et al. [30] and the virtual element
method on arbitrary polyhedral meshes [25]. Finally, the pro-
posed method has some, but certainly not all, features in
common with the recently proposed continuum-kinematics-
inspired or kinematically exact peridynamics [41,42].

2 Kinematics

2.1 Basic definitions

As illustrated in Fig. 1, we consider a set of particles that
between them form a material domain D. The material and
spatial coordinates of (the center of) particle a are denoted
Xa and xa , respectively. A standard Vornonoi tesselation is
used to subdivide the material domain D into Voronoi cells
Va , one for each particle, such that each material point X is
assigned to its closest particle center. The faces between par-
ticles thus are planar polygons, and two particles a and b are
considered to be nearest neighbors if and only if they share
a common face. To conveniently state and enforce boundary
conditions, we introduce ghost particles as mirror images of
particles located at the boundary ∂D of D [15,19] and con-
sider ∂D to be the union of a number of planar polygons.

123



Computational Particle Mechanics (2023) 10:427–443 429

As a result, the boundary ∂Va of Va can be decomposed into
a number of planar faces, such that each face ∂Vab either
separates two real particles a and b or a real particle a and
a ghost particle b. This procedure is straightforward when
the computational domain is bounded by flat surfaces, as in
Fig. 1, since the Voronoi faces then reproduce the bound-
aries exactly, and can be extended to complex geometries
[1]. Specifically, for each particle a located at a boundary,
we determine a boundary point Wab by closest point pro-
jection of Xa onto the boundary (indicated by black dots in
Fig. 1) and determine the coordinates Xb of the ghost par-
ticle from the equation Wab = (Xa + Xb)/2. The volume
Va of the Voronoi cell Va is a function of the location of
particle a and its nearest neighbors b. In the following, this
set of particles (including particle a itself) will collectively
be denoted by Pa . Similarly, P ′

a denotes the set of (proper)
nearest neighbors to a, not including particle a itself. When
stating boundary conditions (BCs), it will be convenient to
subdivide the set Pa of nearest neighbors to a into the set Ea
of external (ghost) particles and the set Ia of internal (real)
particles. The reduced set P ′

a is similarly divided into the
sets Ea and I ′

a , where the prime again is used to indicate
that particle a itself is not included. It proves convenient to
subdivide the set Ea into the sets E ′

a and E ′′
a . Specifically, a

ghost particle b ∈ Ea belongs to the set E ′
a if and only if the

current location of the boundary point wab = (xa + xb)/2
is fully prescribed. Consequently, the set E ′′

a contains those
ghost particles for whichwab is not fully prescribed. Finally,
we let ET

a denote traction boundaries, i.e., a ghost particle
b ∈ Ea belongs to the set ET

a if and only if the traction is
prescribed on the interface between particles a and b. Note
that ET

a is a subset of E ′′
a , since the displacement is not fully

prescribed on traction boundaries (most often not prescribed
at all). The vectors Xab = Xb − Xa and xab = xb − xa that
point from the center of particle a to the center of a neigh-
boring particle b in the reference and current configurations,
respectively, are often referred to as branch vectors in the
granular mechanics literature [5,17].

2.2 Global particle deformation: themean
deformation gradient

For each particle a, we define a discrete mean deformation
gradient Fa as an average of the continuum deformation
gradient, F = ∂ϕ/∂X = Grad ϕ, over the corresponding
Voronoi cellVa . Here, x = ϕ(X, t) is amotion that expresses
the spatial coordinates x as a function of the material coor-
dinates X and time t . From the definition of the deformation
gradient and the divergence theorem, one obtains

Fa = 1

Va

∫
Va

F dV = 1

Va

∫
∂Va

ϕ ⊗ N̂ dA

= 1

Va

∑
b∈P ′

a

∫
∂Vab

ϕ ⊗ N̂ab dA , (1)

where N̂ is the material outward unit normal to the surface
∂Va of Va . The final equality follows from a decomposition
of the surface integral into integrals over the planar Voronoi
faces ∂Vab with material outward unit normals N̂ab. To pro-
ceed further, we assume that ϕ(X, t) varies linearly either on
each face or in the whole Delaunay cluster [24] for particle
a. The Delaunay cluster represents the union of all Delaunay
tetrahedra that contain a certain particle. As such, it could be
interpreted as the convex hull of the set of nearest neighbors
of the particle. Assume first that ϕ(X, t) varies linearly on
each face. Introducing thematerial centroid Cab of face ∂Vab

with area Aab as

Cab = 1

Aab

∫
∂Vab

X dA , (2)

we can write ϕ = cab + Gab(X − Cab), where cab =
ϕ(Cab, t) and Gab is the constant gradient. For the assumed
linear variation of ϕ(X, t) on each face, Eq. (1) takes the
form

Fa = 1

Va

∑
b∈P ′

a

cab ⊗ Aab , (3)

where Aab = Aab N̂ab is the material area vector. However,
this equation is not useful unless a practical way to determine
cab = ϕ(Cab, t) is found. For this reason, we instead follow
Springel [64] and assume that ϕ(X, t) varies linearly in the
wholeDelaunay cluster, so thatϕ = xa+Ga(X−Xa),where
xa = ϕ(Xa, t) and Ga is the constant gradient. Hence, the
integrand in Eq. (1) takes the form

ϕ ⊗ N̂ = xa ⊗ N̂ + [Ga(X − Xa)] ⊗ N̂ . (4)

It is realized that only the term [Ga(X−Xa)]⊗ N̂ produces a
nonzero result in Eq. (1), because a straightforward applica-
tion of the divergence theorem demonstrates that the surface
integral of the first term can be transformed to the volume
integral of Grad xa = 0. To proceed further, we utilize to
following tensorial analogue of the vectorial triple product
expansion (‘BAC-CAB’ rule; see Appendix A):

[Ga(X − Xa)] ⊗ N̂ =(Ga N̂) ⊗ (X − Xa)

+ Ga × [N̂ × (X − Xa)] . (5)

Only the term (Ga N̂)⊗ (X − Xa) produces a nonzero result
in Eq. (1), because another application of the divergence
theorem shows that the surface integral of the second term
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corresponds to the cross product of Ga and the volume inte-
gral of Curl(X − Xa) = 0. It can be noted that Ga N̂ab is the
directional derivative of ϕ in the direction N̂ab, which for a
linearly varying function can be expressed as xab/Lab, where
xab = xb − xa is the spatial branch vector and Lab = |Xab|.
Since each directional derivative Ga N̂ab is independent of
X , Eq. (1) becomes

Fa = 1

Va

∑
b∈P ′

a

xab ⊗ Bab , (6)

where we have introduced the material vector

Bab = 1

Lab

∫
∂Vab

(X − Xa) dA = Aab

Lab
(Cab − Xa) , (7)

henceforth referred to as the gradient vector.
Since the deformation gradient reduces to the identity ten-

sor I when the material coordinates are substituted for the
spatial coordinates in Eq. (6), we obtain the following duality
relation

1

Va

∑
b∈P ′

a

Xab ⊗ Bab = I (8)

where Xab = Xb−Xa is thematerial branch vector. It proves
convenient to introduce [60]

Baa = −
∑
b∈P ′

a

Bab (9)

so that Eq. (6) can be restated as

Fa = 1

Va

∑
b∈Pa

xb ⊗ Bab , (10)

where the sum now includes particle a itself.

2.3 The gradient vectors

As demonstrated by Flekkøy et al. [21] and Serrano and
Español [60], the gradient vectors Bab exhibit interesting
relationships with derivatives of the Voronoi cell volume Va
with respect to its defining points b ∈ Pa (seeAppendixB). It
is also instructive to decompose the gradient vectors Bab into
components that are normal and tangential to the face ∂Vab,
denoted by Bn

ab and Bt
ab, respectively. From definition (7)

it is realized that the normal and tangential components
behave differently upon interchange of the indices a and b:
As illustrated in Fig. 2, the normal component is antisym-
metric (i.e., Bn

ba = −Bn
ab) and the tangential component is

symmetric (i.e., Bt
ba = Bt

ab). Moreover, it is realized that

Fig. 2 Illustration of gradient vectors Bab. The scaled gradient vector
(Lab/Aab)Bab points from the center of particle a (large blue circle) to
the centroid (small black circle) of the Voronoi face (red line) between
particles a and b. Here, Lab is the interparticle distance and Aab is the
Voronoi face area (color online)

−Bn
ba = Bn

ab = Aab/2, where Aab = Aab N̂ab is the mate-
rial area vector. This result has two important consequences.
First, thematerial area vector can be expressed as a difference
between oppositely directed gradient vectors:

Aab = Bab − Bba . (11)

Second, summing Eq. (11) over b ∈ P ′
a , noting that the sum

of outwards directed area vectors Aab over a closed surface
vanishes as a consequence of the divergence theorem, it is
seen that

∑
b∈P ′

a

Bab =
∑
b∈P ′

a

Bba . (12)

Adding Baa to eachmember of Eq. (12), we obtain according
to definition (9) a vanishing sum, i.e.,

∑
b∈Pa

Bab =
∑
b∈Pa

Bba = 0 . (13)

This result carries significant practical implications. Since the
deformation gradient shall be invariant under translations, the
substitution of xb + u (where u is a constant displacement)
for xb in Eq. (10) shall have no effect. Clearly, this is true
only if the sum of Bab over b vanishes. As demonstrated
below, the patch test will not be fulfilled in general unless
the sum of Bba over b vanishes.
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2.4 Boundary treatment

The location of ghosts needs to be updated when the
material deforms or undergoes rigid-body motion. This is
straightforward when the location of boundary points is pre-
scribed but less so on free boundaries. The location of free
(coordinates of) boundary points, or equivalently of free
(components of) branch vectors xab, can be determined from
a least-squares minimization [15,19]. Specifically, the loca-
tion is here determined from minimization of the functional∑

b∈P ′
a
|xab − FaXab|2 over the space of branch vectors xab

subject to the constraints resulting from known locations of
internal points or imposed displacement BCs. In order to
enforce (total, symmetric and antisymmetric) displacement
BCs, we introduce for each particle a located at the boundary
of the domain D and each ghost particle b ∈ Ea a projec-
tion Dab onto the constrained degrees of freedom and for
now assume that the remaining degrees of freedom are free.
Specifically,

Dab =

⎧⎪⎨
⎪⎩
I total,

N̂ab ⊗ N̂ab symmetric,

I − N̂ab ⊗ N̂ab antisymmetric,

(14)

where N̂ab is a unit normal to the face (for simplicity assumed
to be time independent, thus coincidingwith thematerial nor-
mal). Likewise, we let Dab = 0 on free boundaries (since
there are no constraints) and Dab = I for b ∈ I ′

a (since
the corresponding branch vector then is known). With the
aid of the projection Dab, we may specify constraints as
Dabxab = Dab x̄ab, where the relevant components of x̄ab
are considered known. Specifically, for displacement BCs,
x̄ab = 2(Wab + ūab − xa), where ūab the prescribed dis-
placement of the boundary point.

Introducing Lagrange multipliers λac, the constrained
minimization stated above is transformed into an uncon-
strained minimization of

La =
∑
c∈P ′

a

[
|xac − FaXac|2 − λac · Dac(xac − x̄ac)

]
.(15)

Using Eq. (6), we may expand FaXac as

FaXac =
∑
d∈P ′

a

Hacd xad (16)

where Hacd = Xac · Bad/Va . The stationary values of xab
are obtained by letting ∂La/∂xab = 0. A straightforward but
fairly lengthy calculation shows that

∂La

∂xab
= 2

∑
c∈P ′

a

Kabcxac − λab · Dab = 0 (17)

where

Kabc = δbc − (Habc + Hacb) +
∑
d∈P ′

a

HadbHadc . (18)

Letting ∂La/∂λab = 0 reproduces the constraint, i.e.,

∂La

∂λab
= Dab(xab − x̄ab) = 0 . (19)

Since Dab is a projection and hence symmetric and idempo-
tent, we find by multiplication of Eq. (17) by Dab from the
left that

2Dab

∑
c∈P ′

a

Kabcxac = λab · Dab (20)

which when substituted back in Eq. (17) produces

(I − Dab)
∑
c∈P ′

a

Kabcxac = 0 . (21)

Clearly, Eq. (21) is trivially satisfied when the branch vector
xab is known, i.e., when Dab = I , which is the case for
interior particles (b ∈ I ′

a) or for total displacement bound-
aries (b ∈ E ′

a). Otherwise (b ∈ E ′′
a ), at least one component

remains after projection, implying that the sum must vanish.
Wemay form a coefficientmatrix K a from the elements Kabc

with b ∈ E ′′
a and c ∈ P ′

a and extract a symmetric matrix K̄ a

from the elements Kabc with b, c ∈ E ′′
a . Provided that this

matrix is nonsingular, we may for each b ∈ E ′′
a solve for xab.

Letting x′
ab denote the obtained solution, we may write

x′
ab =

∑
c∈I ′

a∪E ′
a

K ′
abcxac , (22)

where the coefficients K ′
abc are obtained from the matrix

K ′
a = −K̄

−1
a Ka . It is sometimes convenient to separate the

sum in the above equation into sums over internal (real) and
external (ghost) particles and to write

x′
ab =

∑
c∈Ia

K ′
abcxc +

∑
c∈E ′

a

K ′
abc x̄ac (23)

where we have let K ′
aba = −∑

c∈I ′
a
K ′
abc. Pre-multiplying

x′
ab, as obtained from Eq. (22) or (23), with I − Dab, we

obtain the free components of xab. The constrained com-
ponents are obtained from Eq. (19), and hence, we finally
obtain

xab = Dab x̄ab + (I − Dab)x′
ab (24)

where the required components of x̄ab are obtained from the
displacement BCs.
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2.5 A possible static condensation

We may separate the sum in Eq. (10) into sums over inter-
nal and external particles and use Eq. (24) in the latter. For
convenience introducing

B̄ab = Bab + δab
∑
c∈Ea

Bac (25)

Eq. (10) can be restated as

Fa = 1

Va

⎛
⎝∑

b∈Ia
xb ⊗ B̄ab +

∑
b∈Ea

xab ⊗ Bab

⎞
⎠ . (26)

It can be noted that Eq. (26) reduces to Eq. (10) for inter-
nal particles (i.e., particles not located at the boundary). For
boundary particles that are not subject to any displacement
BCs, Dab = 0 in Eq. (24) and the second sum in Eq. (23)
vanishes. Inserting the resulting expression in Eq. (26), we
obtain

Fa = 1

Va

∑
b∈Ia

xb ⊗ B̃ab (27)

where

B̃ab = B̄ab +
∑
c∈Ea

K ′
acbBac . (28)

Equation (27) represents a static condensation that can be
used to evaluate the mean deformation gradient for boundary
particles not subject to any essential boundary conditions.

2.6 Local particle deformation: local displacement

As in our previous work [24], we introduce a local displace-
ment vector ulocab as a measure of nonaffine deformation of
the bond between particles a and b. For contact between two
(real) particles (i.e., for b ∈ I ′

a), this vector is defined as

ulocab = xab − yab = xab − FabXab , (29)

where yab = FabXab represents the image of the material
branch vector Xab under the affine transformation repre-
sented by the mean deformation gradient Fab = (Fa +
Fb)/2. In order to avoid complications resulting from a
nonzero local displacement on free boundaries, we include
the projection Dab in the definition for contact between a
real particle a and a ghost b (i.e., for b ∈ Ea), i.e.,

ulocab = Dab(xab − yab) = Dab(xab − FaXab) , (30)

where yab = FaXab. We can summarize Eqs. (29) and (30)
bywriting ulocab = x̃ab− ỹab where x̃ab = xab and ỹab = yab
if b ∈ I ′

a and x̃ab = Dabxab and ỹab = Dab yab if b ∈ Ea .

3 Equations of motions, stresses and forces

3.1 Variational total Lagrangian formulation

As in our previous work [24], we derive the equations of
motion in a total Lagrangian framework. The starting point
is a discrete Lagrangian L = T − V , where T is the total
kinetic energy of the particle system and V is its potential
energy (see, e.g., [33]). Specifically,

T = 1

2

∑
a

mav
2
a , (31)

wherema and va = |va | are the mass and velocity of particle
a, respectively. The potential energy V is expressed as

V = V int + Vcnt + Vext (32)

where V int is the internal strain energy resulting from the
global (affine) particle deformation, Vcnt is the strain energy
resulting from local (nonaffine) deformation at each contact
and Vext is the energy imparted by agents external to the
system, such as gravity. Specifically,

V int =
∑
a

VaUa(Fa) (33)

where Ua is the internal energy per volume unit in the
reference state, considered to be a function of themean defor-
mation gradient Fa . Similarly,

Vcnt =
∑
a<b

Uab(x̃ab, ỹab) . (34)

where Uab represents a pairwise interaction energy and the
sum extends over all pairs of nearest neighbors a and b. For
contact between internal (real) particles, Uab is considered
to be a function of the current branch vector xab (= x̃ab)
and the vector yab (= ỹab), defined in Sect. 2.6, in order to
facilitate a discrimination between the normal (x̂ab) and tan-
gential directions. In order to obtain a unified treatment,Uab

is expressed a function of x̃ab = Dabxab and ỹab = Dab yab
for contact between an internal (real) and an external (ghost)
particle. This is possible because the normal and tangential
directions are in this case defined by the normal to the bound-
ary and not by the branch vector xab.

Considering a body force resulting from gravity (gravita-
tional constant g) and nominal tractions T̄ab acting on the
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boundary between the internal (real) particle a and the exter-
nal (ghost) particle b, the energy due to external forces can
be expressed as

Vext = −
∑
a

ma g · xa −
∑
a

∑
b∈ET

a

Aab T̄ab · xa . (35)

The Euler–Lagrange equations (see, e.g., [33])

d

dt

(
∂L
∂va

)
− ∂L

∂xa
= 0 (36)

result in the equations of motion

ma
dva
dt

= f inta + f cnta + f exta (37)

where

f inta = −∂V int

∂xa
, (38a)

f cnta = −∂Vcnt

∂xa
, (38b)

f exta = −∂Vext

∂xa
, (38c)

are referred to as the internal, contact and external forces,
respectively. We remark that some care is needed to ensure a
proper distinction between internal and external forces when
ghost particles are used, as elaborated further upon below.

3.2 External force

Combining Eqs. (38c) and (35), the external force is imme-
diately obtained as

f exta = −∂Vext

∂xa
= g +

∑
b∈ET

a

Aab T̄ab . (39)

Moreover, for displacement BCs, reaction forces yield an
additional contribution to the external force, as elaborated
further upon below.

3.3 Internal force

Using Eqs. (38a) and (33), together with the chain rule, the
internal force is obtained as

f inta = −∂V int

∂xa
= −

∑
b∈Ia

Vb
∂Ub

∂Fb
: ∂Fb

∂xa

= −
∑
b∈Ia

VbPb : ∂Fb

∂xa
, (40)

where the colon indicates double contraction and Pb =
∂Ub/∂Fb is the first Piola–Kirchhoff stress tensor for particle
b. If particle a is located in the interior of the domain (i.e., if
none of the particles b ∈ Ia is located at the boundary), there
is no need to explicitly take boundary effects into account.
Hence, differentiation of expression (10) (most easily done
in Cartesian components; see [24]) and substitution of the
result in Eq. (40) produces the internal force in the form

f inta = −
∑
b∈Ia

PbBba . (41)

For interior particles, it follows from Eq. (41) that the force
resulting from a constant stress field vanishes provided that
the sum of Bba over b vanishes. This results is a special
instance of the integration constraint derived by Chen et al.
[13,56]. That the integration constraint indeed is fulfilled fol-
lows from Eq. (13).

Using definition (9), noting that Pa = Ia for particles in
the internal of the domain, the internal forcemay alternatively
be expressed as

f inta =
∑
b∈I ′

a

(PaBab − PbBba) =
∑
b∈I ′

a

f intab , (42)

where f intab = PaBab − PbBba represents the force on par-
ticle a caused by contact with particle b. When written in
this form, the expression for the internal force embodied in
Eq. (42) is valid also for particles located at boundaries. In the
special case that Pb = Pa , it follows from Eq. (11) that the
internal force can be expressed as f intab = Pa Aab = AabTab,
where Tab = Pa N̂ab represents the nominal traction on the
interface between particles a and b. Likewise, for a total
displacement BC, the reaction force on particle a caused
by contact with ghost particle b is obtained as Pa Aab. The
reaction force represents a contribution that is to be added
to expression (39). Hence, for a state of constant stress
(Pb = Pa , without body forces), the total force f inta + f exta
vanishes, as it should. When only some degrees of freedom
are prescribed, the projection operator Dab shall be included
to ensure that no spurious forces are picked up from free
boundaries, i.e., the reaction force takes the form DabPa Aab.

The formulation described this far is fully satisfactory
for static and quasi-static problems. In particular, it can
be noted that identical expressions are obtained for forces
due to applied tractions and for reaction forces (compare
f extab = Aab T̄abwith f extab = AabTabwhereTab = Pa N̂ab).
However, an alternative expression for the internal force is
preferable in highly dynamic situations. For particles located
at free boundaries, the internal force provided by Eq. (41) is
not in general derivable froma rotationally invariant potential
energy, and as a consequence, the total angular momentum
will not be conserved when this expression is used. To alle-
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viate this issue, one can base the derivation on Eq. (26) rather
than on Eq. (10). Moreover, (components of) branch vectors
corresponding to prescribed displacements [i.e., Dab x̄ab, c.f.
Eq (24)] are treated as constants to ensure that no spuri-
ous external forces are obtained. Hence, differentiation of
Eq. (26) and substitution of the derivative into Eq. (40) pro-
duces

f inta = −
∑
b∈Ia

⎛
⎝Pb B̄ba +

∑
c∈Eb

K ′
bca(I − Dbc)PbBbc

⎞
⎠ .(43)

Clearly, Eq. (43) reduces to Eq. (41) in the interior of the
domain, as is should. It is also instructive to consider the spe-
cial cases that all degrees of freedom are free or constrained.
When Dbc = 0 for all c ∈ Eb,

f inta = −
∑
b∈Ia

Pb

⎛
⎝B̄ba +

∑
c∈Eb

K ′
bcaBbc

⎞
⎠

= −
∑
b∈Ia

Pb B̃ba , (44)

which is identical in form to expression (41) valid for par-
ticles in the interior of the domain but with the effective
gradient vectors B̃ba substituted for the total gradient vec-
tors Bba . This result is consistent with the one obtained from
Eq. (27), as expected. On the other hand, when Dbc = I for
all c ∈ Eb,

f inta = −
∑
b∈Ia

Pb B̄ba , (45)

which again is identical in form to expression (41) valid for
particles in the interior of the domain butwith B̄ba substituted
for Bba . Utilizing definition (25) of B̄ba and definition (9) of
Baa , one finds that B̄aa = −∑

b∈I ′
a
Bab. Hence, Eq. (45)

reduces to Eq. (42) as it should.

3.4 Contact forces

The contact forces are obtained from Eqs. (38b) and (34)
together with the chain rule. The derivation parallels the one
outlined in [24] but ismore technical and is therefore deferred
to Appendix C. The final result can be expressed as

f cnta =
∑
b∈P ′

a

Eab
∂Uab

∂ x̃ab
− 1

2

∑
b∈Ia

∑
c∈P ′

b

M ′′
bcaEbc

∂Ubc

∂ ỹbc
(46)

where M ′′
bca is a symmetric second-order tensor defined in

Appendix C and where we have let

Ebc =
{
I c ∈ I ′

b

2Dbc c ∈ Eb
(47)

in order to be able to combine the terms obtained for internal
(real) and external (ghost) particles. Alternatively, one can
let M̃bca = M ′′

bcaEbc/2 to simplify the appearance of the
second sum somewhat. If b is located in the interior of the
domain (i.e., not at the boundary), M̃bca reduces to H̃bca I
with H̃bca ≡ Hbca/2 so that thematrix–vectormultiplication
can be avoided.

4 Constitutive equations

We use the same constitutive equations as in our previous
work [24], to which the reader is referred for further details.
The mean (first Piola–Kirchhoff) stress was inferred from a
neo-Hookean material model with strain energy of the form

Ua = λ

2
(ln Ja)

2 − μ ln Ja + μ

2
(tr Ca − 3) (48)

where Ca = FT
a Fa is the mean right Cauchy–Green defor-

mation tensor for particle a, Ja = det Fa is the determinant
of Fa and tr Ca is the trace of Ca . The Lamé parameters λ

and μ were calculated from Young’s modulus E and Pois-
son’s ratio ν in a standard manner. The contact forces were
derived from an elastic contact model with contact energy

Uab = 1

2
K n
ab

∣∣∣uloc,nab

∣∣∣2 + 1

2
K t
ab

∣∣∣uloc,tab

∣∣∣2 . (49)

The normal (K n
ab) and tangential (K

t
ab) contact stiffness were

expressed as

K n
ab = ξn

E Aab

Lab
(50a)

and

K t
ab = ξt

GAab

Lab
(50b)

where E is Young’s modulus, G = μ is the shear modulus,
Aab is the initial area of the interface and Lab = |Xab| is the
initial distance between particle a and b. Finally, ξn and ξt are
nondimensional parameters.Artificial viscositywas included
in some simulations, inwhich case a viscous stresswas incor-
porated as an addition to the elastic first Piola–Kirchhoff
stress. This addition has the form Pvisc

a = Jaσ visc
a F−T

a (see,
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Fig. 3 Geometry for the patch test. Particles are displayed as gray
spheres and Voronoi cells are drawn in blue (faces) and black (edges)
(color online)

e.g., [35]), where σ visc
a is the viscous Cauchy stress for par-

ticle a. Assuming a homogenous material, the latter was
calculated as [48]

σ visc
a = ρ

(
c1cph + c2h

2 |tr da |
)
da , (51)

where da is the rate of deformation tensor for particle a, ρ is
the material density, cp = √

(λ + 2μ)/ρ is the longitudinal
wave speed and h is a characteristic size, here taken as the
minimum length of the material branch vectors. Finally, c1
and c2 are two nondimensional constants.

5 Implementation details

Delaunay tetrahedralization and Voronoi tessellation were
performed using TetGen (version 1.6) [62]. A standard
leapfrog scheme was used to integrate the equations of
motion in time, as is commonly done in SPH [50], and the
velocity was calculated as described in [22] when damping
was applied.

6 Numerical tests and examples

6.1 Patch test

Apatch test was used to assess the basic characteristics of the
method. An irregular arrangement of 3× 3× 3 particles was
considered. The particles constituted a cube with side length
1m, occupying the referential domain 0 ≤ X1, X2, X3 ≤
1m. For illustrative purposes, the particles are displayed as
gray spheres in Fig. 3 and the Voronoi cells formed from
them and their ghost particles (not shown) are drawn in blue

Table 1 Results obtained from the patch test: Maximal errors (in the
L2 norm) in the force on or displacement of each particle

Test Maximal error

A 1.6 × 10−10 N

B 3.1 × 10−16 mm

C 2.1 × 10−16 mm

(faces) and black (edges). A linearly varying displacement
was prescribed, of the form

u = α

⎡
⎣1X1 + 2X2 + 3X3

4X1 + 5X2 + 6X3

7X1 + 8X2 + 9X3

⎤
⎦ , (52)

where α = 1 × 10−4. The material parameters were E =
1.0MPa, ν = 0.3 and ρ = 1.0 × 103 kg/m3 and the contact
parameters were set to unity (i.e., ξn = ξt = 1).

Following Taylor et al. [66], three different variants of
the test were performed. First, the displacement was pre-
scribed for all particles and force equilibrium was tested for
each particle (test A). Second, the displacement was pre-
scribed on all boundaries, and the displacement error was
determined for each particle (test B). Third, the displace-
ment was prescribed on the bottom face (i.e., for X3 = 0)
and the traction corresponding to the displacement field
(52) was prescribed on all other boundaries (test C). When
equilibrium solutions were sought (tests B and C), the dis-
placements and/or tractions were gradually applied during
50 s and damping was used. The obtained results are sum-
marized in Table 1, in which the maximal errors (in the L2

norm) in the force on or displacement of each particle are
provided.

It is evident that all versions of the patch test are passed.
(The error in test A is somewhat larger than those in tests
B and C, since a minute error in displacement is trans-
lated into a larger error in force unless the material is
very soft.) Satisfaction of test A demonstrates, firstly, that
the expressions for the mean deformation gradient embod-
ied in Eqs. (6) and (10) are exact for linear displacements
and, secondly, that the Chen integration constraint [13]
indeed is fulfilled. In essence, fulfillment of these require-
ments follows from the duality relation (8) and the fact that
the sum of the gradient vectors over the first and second
index vanishes, Eq. (13). Satisfaction of test B in addi-
tion shows that the stiffness is nonsingular, i.e., that no
spurious zero-energy modes exist [65]. Finally, satisfaction
of test C demonstrates that constant tractions can be pre-
scribed exactly, as anticipated from the discussion following
Eq. (42).
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Fig. 4 Configurations used in the swinging cube test. The color of each particle represents the magnitude of its initial shear (von Mises) stress
(color online)

Fig. 5 Convergence in the swinging cube test: Normalized displace-
ment error (in the L2 norm) vs. mean particle spacing

6.2 Swinging cube test

In this example, a cube with side length L = 1mwas consid-
ered, occupying the referential domain 0 ≤ X1, X2, X3 ≤
1m. The normal motion was constrained on the boundaries
at X1 = X2 = X3 = 0 (symmetric BCs), whereas the tan-
gential motion was constrained for X1 = X2 = X3 = 1m
(antisymmetric BCs). The initial displacement field u0 was
prescribed according to the following analytic solution [8,59]

u = cos(ωt)

⎡
⎣U1 sin(kX1) cos(kX2) cos(kX3)

U2 cos(kX1) sin(kX2) cos(kX3)

U3 cos(kX1) cos(kX2) sin(kX3)

⎤
⎦ (53)

which is valid in the linear regime for volume-preserving
motions (U1 + U2 + U3 = 0). Specifically, we let U1 =

U2 = 5.0 × 10−4 m and U3 = −1.0 × 10−3 m. Here, the
angular velocity ω = √

3πcs/(2L) with the transverse wave
speed cs = √

μ/ρ and the wave number k = π/(2L). It can
be noted that the investigated unit cube constitutes 1/8 of
a bi-unit cube with all boundaries constrained in the normal
direction only. Thematerial parameters were E = 17.0MPa,
ν = 0.45 and ρ = 1.1 × 103 kg/m3 and the contact param-
eters were set to unity (ξn = ξt = 1). No damping was
used. This example is typically used to test the convergence
of the solution [8,59] and it was here also used to assess the
boundary treatment (cf. Sect. 2.4). The four slightly irreg-
ular configurations displayed in Fig. 4 were considered, in
which particles are colored according to the magnitude or
their initial shear (von Mises) stress. The error of the numer-
ical solution after 5 × 10−3 s, which corresponds to about
1/6 of the period of oscillation, was benchmarked against the
analytical result. The results are summarized in Fig. 5, which
displays the normalized displacement error, measured in the
L2 norm, as a function of the mean particle spacing. It is evi-
dent that the displacement exhibits a quadratic convergence
toward the correct solution, as expected for a second-order
accurate method. This result is anticipated in the present con-
text, since our Voronoi gradient estimate [Eqs. (6) or (10)]
provides the material gradient. It deserves to be mentioned,
however, that convergence issues have been identified for
Voronoi gradient estimates on moving meshes [54] unless
proper account ismade for the change in geometry that occurs
during each time step. In fact, the original spatial Voronoi
gradient estimate derived by Springel [64], upon which our
work is based, was abandoned in favor of a least-squares gra-
dient estimate in the public release of the cosmological code
AREPO [67].
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Fig. 6 L-shaped block: Problem definition

6.3 L-shaped block

In this test, a free L-shaped block with dimensions provided
in Fig. 6awas subjected to oppositely directed transient nom-
inal tractions on two of its faces (shown in gray in the figure).
Specifically, T̄1 = −T̄2 = p(t) × [150, 300, 900]T N/m2,
where p(t) = max(2.5 − |kt − 2.5| , 0) is a triangular
impulse function (the rate constant k = 1 s−1 has been
included for dimensional consistency). The test was origi-
nally proposed by Simo [63] and has subsequently been used
by many others ([2] and references therein). Its main pur-
pose is to assess momentum preservation for t > 5 s when
no external forces are applied and, for this reason, the test
was continued for an additional 50 s. The material parame-
ters were E = 50.0 kPa, ν = 0.3 and ρ = 1.0 × 103 kg/m3

and the contact parameters were set to unity (ξn = ξt = 1).
No damping was used. As shown in Fig. 7, the block starts to
rotate and undergoes significant deformations as a result of
the applied forces. The linear and angular momenta (about
the origin) are provided in Fig. 8a. As expected, the com-
ponents of linear momentum remain negligible throughout
the test and the components of angular momentum increase

in magnitude during the first 5 s and thereafter stay constant.
This claim is substantiated by the data presented in Fig. 8b, in
which the change in linear momentum components from the
start of the test and the change in angular momentum com-
ponents from their value at the end of loading are displayed.
Clearly, all momentum components can be considered to be
conserved. This result is expected when the internal forces
are calculated with Eq. (43) [but not with Eq. (41)], since the
internal force is then derivable from a rotationally invariant
potential energy.

6.4 Punch test

In this test, a rectangular specimen (width 1m, height 0.5m
and thickness 0.1m) was considered. As illustrated in Fig. 9,
a rigid punch indented themiddle third of the top face (shaded
in the figure). The velocity of the punch was 0.1m/s and it
was assumed that friction was large enough to prevent any
slip at the punch–specimen interface. The remainder of the
top face was free. Symmetric BCs were enforced on all other
boundaries (i.e., zero normal displacement). This test has
previously been used to assess the performance of different
formulations in the near incompressible limit (for ν → 1/2)
[18,45]. However, our objective here rather is to assess the
performance of the proposed method in a compression-
dominated problem, and therefore, a compressible material
is considered. Specifically, the material parameters are E =
1.0MPa, ν = 0.45 and ρ = 1.0 × 103 kg/m3 and the contact
parameters are set to unity (ξn = ξt = 1). Viscous damping
was included in this example (c1 = c2 = 0.1). Follow-
ing [45], a discretization using 21 × 11 × 3 particles was
used. A regular particle arrangement was used in order to
facilitate the identification of potential instabilities, which
would be seen as irregular particle displacements and/or as
hourglass patterns [26]. However, no sign of instability can
be observed in Fig. 10, indicating that the contact forces,
obtained from Eq. (46), imparted sufficient stabilization to

Fig. 7 L-shaped block: Deformed shape at selected instants of time (color online)
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Fig. 8 L-shaped block: (a) Components of linear and angular momen-
tum (denoted by p1, p2, p3 and �1, �2, �3, respectively) and (b)
magnitude of change in each momentum component from its value
at the end of loading (color online)

the formulation. It is commonly observed that nodally inte-
grated meshless methods exhibit severe pressure oscillations
for highly constrained problems [18,45]. However, no pres-
sure oscillations are evident for this relatively compressible
material, although a strong pressure gradient exists in the
vicinity of the punch boundary. This is not surprising, since
an analysis based on linear elasticity reveals that the pres-
sure not only becomes infinite at this point but also exhibits
an oscillatory behavior indicative of the breakdown of the
linear theory [43, p. 49]. Note, however, that the described
displacement-basedmethod is not optimal in the near incom-
pressible limit (when ν → 1/2).

7 Conclusions

A Voronoi-based estimate of the mean deformation gradi-
ent has been derived and translated into a particle-based
method for continua. The gradient estimate is expressed in
terms of material gradient vectors, defined for each particle
and its nearest neighbors, and has a structure that resembles
strain estimates used in smoothed particle hydrodynamics

Fig. 9 Punch test: Problem definition

Fig. 10 Punch test: Configurations for regular (a and b) and irregular
(c and d) particle arrangements at 15 (a and c) and 30% (b and d)
deformation (color online)

and peridynamics. For each particle, the gradient vectors can
be computed from the geometry of its material Voronoi cell
(particle placement, face centroids and normals and cell vol-
ume). They can also be expressed in terms of the material
gradient of the Voronoi cell volume. A decisive advantage
of this Voronoi-based strain estimate over Delaunay-based
estimates is that it is guaranteed to evolve smoothly when
the reference state is updated. It is therefore expected to
provide an important corner stone in future developments
geared toward macroscopically consistent discrete method
for granular materials. Moreover, the sum of the gradient
vectors over either index vanishes, a fact that results in a
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formulation that not only is linearly complete but also sat-
isfies the patch test when forces are derived from a discrete
Lagrangian. Pairwise forces between particles, inferred from
the local (nonaffine) deformation of each bond or contact,
provide a physical stabilization. Procedures to enforce dif-
ferent types of boundary conditions in a consistent manner
are provided. The presented numerical tests demonstrate that
the formulation satisfies different versions of the patch test,
exhibits a second-order convergence toward the correct solu-
tion and conserves linear and angularmomenta in the absence
of external forces and torques.
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A Tensorial cross products

Although generalizations of the vectorial cross product to
tensors have been discussed in textbooks [7,40] and in recent
scientific literature [8,9], they may be less familiar to the
reader. For our purposes, it is sufficient to note that the cross
product between a second-order tensor T and a vector v pro-
duces a second-order tensor, denoted T × v, defined so that
the identity

(T × v)a = T (v × a) (54)

holds for all vectors a. This definition is consistent with (and
in fact follows from) the usual definition of the cross product
between vectors, as can be seen by expanding T , v and a
in an orthonormal Cartesian bases (i.e., T = Ti j êi ⊗ ê j ,
v = vk êk and a = a� ê� where êi , etc., denote basis vectors).
To prove Eq. (5) in the main text, we let the second-order
tensor Ga × [N̂ × (X − Xa)] operate on an arbitrary vector
V , to obtain

{Ga × [N̂ × (X − Xa)]}V = Ga{[N̂ × (X − Xa)] × V } =
Ga{(X − Xa)(N̂ · V ) − N̂[(X − Xa) · V ]} =
{[Ga(X − Xa)] ⊗ N̂ − (Ga N̂) ⊗ (X − Xa)}V (55)

where the first equality follows from the definition (54), the
second from the triple product expansion (‘BAC-CAB’ rule)
for vectors and the third from the definition of the tensor
product. Since the vector V is arbitrary, Eq. (5) follows.

B Gradient vectors as derivatives of Voronoi
cell volumes

Using a smoothed characteristic function of the Voronoi
cells, Flekkøy et al. [21] and Serrano and Español [60]
have provided elegant derivations of a number of Voronoi
cell properties. Of particular relevance to this work are the
derivatives of the Voronoi cell volume Va with respect to the
coordinates of its defining points Xb, with b ∈ Pa . These
results can also be straightforwardly derived as follows. For
b 
= a (i.e., b ∈ P ′

a), it proves convenient to introduce a local
coordinate system with origin at (Xa + Xb)/2, one axis (ζ̂ )
directed along the material branch vector Xab = Xb − Xa

and the other twomutually perpendicular axes (ξ̂ and η̂) in the
plane of the face ∂Vab, see Fig. 11. According to the defini-
tion of Voronoi faces, a change of Xb in the normal direction
ζ̂ by a small amount Δζ produces a translation of the face
∂Vab in the same direction by an amount Δζ/2 (Fig. 11a).
Edge effects are of second order, and the change in volume
of the Voronoi cell is obtained as ΔV = AabΔζ/2. The
directional derivative of Va with respect to Xb in direction
ζ̂ , denoted by Dζ̂Va(Xb), thus becomes

Dζ̂Va(Xb) = Aab

2
= Aab

Lab
× Lab

2
. (56)

A change of Xb in the tangential direction ξ̂ by a small
amount Δξ produces a rotation by an angle Δξ/Lab of the
face ∂Vab around an axis that is parallel to the η̂ axis and
passes through particle a (Fig. 11b). To the first order, the
change in volume of the Voronoi cell can therefore be calcu-
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Fig. 11 Determination of directional derivatives of the Voronoi cell
volume in directions (a) parallel and (b) perpendicular to the branch
vector Xab = Xb − Xa

lated as

ΔV = − Δξ

Lab

∫
∂Vab

ξ dA = − Δξ

Lab
Cξ Aab (57)

whereCξ is the ξ coordinate of the centroid of the face ∂Vab.
Hence,

D
ξ̂
Va(Xb) = − Aab

Lab
× Cξ . (58)

An analogous calculation shows that

Dη̂Va(Xb) = − Aab

Lab
× Cη . (59)

Combination of Eqs. (56), (58) and (59) produces

∂Va
∂Xb

= − Aab

Lab

(
Cξ ξ̂ + Cηη̂ − Lab

2
ζ̂

)
= − Aab

Lab
(Cab − Xa) .

(60)

Comparing this result with the definition (7) of the gradient
vectors, one arrives at the interesting conclusion that

Bab = − ∂Vb
∂Xa

. (61)

In addition

Baa = −
∑
b∈P ′

a

Bab =
∑
b∈P ′

a

∂Vb
∂Xa

= − ∂Va
∂Xa

(62)

where the sum does not include particle a itself.

C The contact force

The contact forces are obtained by differentiation of the
pairwise interaction energy (34) according to Eq. (38b). It
proves convenient to decompose this energy into contribu-
tions resulting from contact between internal (real) particles
and between an internal and an external (ghost) particle. In
this manner, one obtains

Vcnt = 1

2

∑
a,b

Uab +
∑
a

∑
b∈Ea

Uab , (63)

where the factor 1/2 is included because each pair is other-
wise counted twice and where it is understood that a 
= b in
the first sum. A straightforward application of the chain rule
shows that

∂Uab

∂xc
= ∂Uab

∂ x̃ab

∂ x̃ab
∂xab

∂xab
∂xc

+ ∂Uab

∂ ỹab

∂ ỹab
∂ yab

∂ yab
∂ yc

(64)

The derivatives ∂Uab/∂ x̃ab and ∂Uab/∂ ỹab are obtained
from the material constitution; cf. Sect. 4. Moreover, the
derivatives ∂ x̃ab/∂xab and ∂ ỹab/∂ yab equal I if b ∈ I ′

a
and Dab if b ∈ Ea ; cf. Sect. 2.6. The task thus boils down to
determining the derivatives ∂xab/∂xc and ∂ yab/∂ yc.

If b ∈ I ′
a , straightforward differentiation of the branch

vector xab = xb − xa produces

∂xab
∂xc

= (δbc − δac)I , (65)

where δab is theKronecker delta. The result is less immediate
if b ∈ Ea , in which case we introduce the shorthand notation
M ′

abc = ∂xab/∂xc. When all displacement components are
prescribed (i.e., for b ∈ E ′

a), Dab = I in Eq. (24). Hence,
xab = x̄ab and the derivative becomes

M ′
abc = ∂xab

∂xc
= −2δac I . (66)
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Otherwise (i.e., for b ∈ E ′′
a ), we find by differentiation of

Eq. (24) that

M ′
abc = ∂xab

∂xc
= −2δacDab + K̄abc(I − Dab) (67)

where K̄abc is defined as

K̄abc = K ′
abc − 2δac

∑
d∈E ′

a

K ′
abd . (68)

In order to determine the derivative of yab, defined in
Sect. 2.6, we introduce the vector zab = Fa · Xab. Since the
material branch vector Xab is antisymmetric (Xba = −Xab),
we find that yab = zab − zba if b ∈ I ′

a and that yab = zab if
b ∈ Ea . Using Eq. (26), zab can be expanded as

zab =
∑
d∈Ia

H̄abd xd +
∑
d∈Ea

Habd xad (69)

where H̄abd = Xab · B̄ad/Va , Habd is defined in conjunction
with Eq. (16) and where xad is given by Eq. (24). Differen-
tiation of the above equation with the help of Eqs. (66) and
(67) produces

∂ zab
∂xc

= H̄abc I +
∑
d∈Ea

HabdM ′
adc ≡ M ′′

abc (70)

where the equivalence defines the second-order tensor M ′′
abc.

Note that M ′′
abc reduces to Habc I for internal particles

[H̄abc = Habc in this case; cf. Eq. (25)]. In summary, we
can write

∂ yab
∂xc

=
{

1
2

(
M ′′

abc − M ′′
bac

)
b ∈ I ′

a ,

M ′′
abc b ∈ Ea .

(71)

With these results in hand, the contact force is obtained from
the chain rule, cf. Eq. (46) in the main text. The tensor M ′

abc
does not appear in the final expression, since it enters in the
form of the product DabM ′

abc = −2δacDab as a result of the
orthogonality of Dab and I − Dab.
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