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Abstract
Based on dynamic mode decomposition (DMD), a new empirical feature for quasi-few-shot setting (QFSS) skeleton-based 
action recognition (SAR) is proposed in this study. DMD linearizes the system and extracts the modes in the form of flattened 
system matrix or stacked eigenvalues, named the DMD feature. The DMD feature has three advantages. The first advantage 
is its translational and rotational invariance with respect to the change in the localization and pose of the camera. The second 
one is its clear physical meaning, that is, if a skeleton trajectory was treated as the output of a nonlinear closed-loop system, 
then the modes of the system represent the intrinsic dynamic property of the motion. Finally, the last one is its compact 
length and its simple calculation without training. The information contained by the DMD feature is not as complete as that 
of the feature extracted using a deep convolutional neural network (CNN). However, the DMD feature can be concatenated 
with CNN features to greatly improve their performance in QFSS tasks, in which we do not have adequate samples to train 
a deep CNN directly or numerous support sets for standard few-shot learning methods. Four QFSS datasets of SAR named 
CMU, Badminton, miniNTU-xsub, and miniNTU-xview, are established based on the widely used public datasets to vali-
date the performance of the DMD feature. A group of experiments is conducted to analyze intrinsic properties of DMD, 
whereas another group focuses on its auxiliary functions. Experimental results show that the DMD feature can improve the 
performance of most typical CNN features in QFSS SAR tasks.

Keywords  Skeleton-based action recognition · Dynamic mode decomposition · Quasi-few-shot setting · Translational and 
rotational invariance

1  Introduction

Action recognition (AR) demonstrates broad application 
prospects in intelligent security monitoring, human-machine 
interaction, virtual reality, and kinematic analysis (Zhu 
et al. 2020). With the development of deep learning (DL), 
AR methods based on deep convolutional neural networks 
(CNNs) have shown great superiority over traditional visual 
technologies. Those methods can be divided into three types: 
two-stream network (TSN), 3D CNN, and skeleton-based 
action recognition (SAR) methods. TSN and 3D CNN deal 
with a video clip in an end-to-end manner and utilize context 
information when actions are closely related to the context. 

Whereas, SAR methods operate in a decoupled manner and 
often consist of two stages. The first stage is human pose 
estimation, which detects skeleton trajectories (STs) of one 
or more humans from a video clip. The second stage is to 
classify the action category of the STs. The decomposition 
of human pose estimation from action classification can uti-
lize the powerful generalization ability of well-trained pose 
estimation frameworks (Cao et al. 2017; Open-MMLab 
2019) to eliminate the disturbance of background when the 
training set suffers from insufficient diversity.

Given that the collection of samples are expensive and 
time-consuming, some few-shot (Guo et al. 2018), one-
shot (Memmesheimer et al. 2020) or zero-shot (Jasani and 
Mazagonwalla 2019) learning-based AR methods have been 
proposed to deal with sample shortage based on numerous 
support sets in the past two years. However, in many tasks 
whose goals are to detect illegal behaviors, the samples in 
the training set are more than the few-shot setting but not 
adequate to train a deep CNN directly or to generate sup-
port sets. That is the quasi-few-shot setting (QFSS). The 
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challenge lies in seeking a priori knowledge to help the deep 
CNN to learn the feature better. The attention mechanism 
(Liu et al. 2020) and part-aware (Li et al. 2017a) convolu-
tional operation are two useful manners to guide the training 
process.

In this paper, we proposed a new empirical feature for 
SAR based on dynamic mode decomposition (DMD). DMD 
is a popular realization of Koopman (Takeishi et al. 2017) 
and has been widely used in nonlinear dynamic analysis. By 
modeling the human action as a nonlinear dynamic system 
that determines the evolution of the ST, the system matrix 
or its eigenvalues can be treated as an empirical feature. 
The DMD feature has multiple advantages. First, DMD 
has a clear physical meaning. Although some information 
would be lost during the linearization process, DMD con-
tains important time-frequency domain information that 
can recover the action appropriately when the initial state is 
given. Second, DMD has the property of translational and 
rotational invariance, that is, the DMD feature is constant 
when the position and pose of the camera changes. The 
DMD feature is also effective on 2D skeletons in a fixed 
scene. At last, the DMD feature can be concatenated with 
CNNs features to improve their accuracy.

The currently widely used CNN is optimized as a black 
box and extracts time domain features that are not interpret-
able. Whereas, the DMD feature, which is inspired by the 
control theory, is an empirical and interpretable feature in 
the frequency domain and has a fixed computational process 
without training owing to its clear physical meaning. Those 
differences allow the DMD feature to play an auxiliary role 
for CNN features in QFSS tasks.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews recent developments on AR. Section 3 pro-
posed a new DMD-based SAR framework and proves the 
translational and rotational invariance of DMD. Section 4 
presents and analyzes experimental results. Finally, Sect. 5 
concludes the study.

2 � Related work

The progress of video AR before the DL era is slow because 
of the inability of traditional visual technologies to perform 
high semantic-level tasks. A complete pipeline of traditional 
methods comprises feature extraction, combination, and 
classification. One typical method is the dense trajectory 
(DT) algorithm based on optical flow (Wang et al. 2013). 
The motion trail of the video is captured by optical flow 
first, then features including trajectory shape, histograms 
of oriented optical flow, gradient, and motion boundary are 
extracted. These features are encoded and used to train a 
support vector machine (SVM) classifier. Wang et al. also 
proposed the improved DT (IDT) algorithm (Wang and 

Schmid 2013) in the same year. Compared with DT, IDT 
utilized the improved optical flow graph, feature regulariza-
tion, and encoding method to increased accuracy from 84.54 
to 91.2% on the UCF50 dataset and from 46.6 to 57.2% on 
the HMD51 dataset.

Since DL flourished in 2015, many DL-based AR meth-
ods have been proposed (Kong and Fu 2018) and offered a 
wide range of possible applications in safety management 
(Zhu et al. 2020), violence detection (Sumon et al. 2019), 
and ambient assisted living (Singh et al. 2017). Accord-
ing to the architecture of the network, these methods can 
be divided into three categories, namely, TSN (Lin et al. 
2020), 3D CNN (Tran et al. 2017; Diba et al. 2017), and 
SAR (Yan et al. 2018). In some works, long-short temporal 
memory (LSTM) networks (Singh et al. 2017) are also used 
to model the evolution process of STs, but their performance 
is inferior to TSN and 3D CNN because of the difficulty of 
training.

TSN mainly uses a two-stream architecture to extract 
semantic information from RGB frames and time domain 
information from optical flow, and combines features to 
make collaborative predictions. This technical route was 
first proposed by Simonyan (2014) and improved by other 
researchers from several aspects. Feichtenhofer et al. intro-
duced 3D pooling (Feichtenhofer et al. 2016) and multiscale 
time (Feichtenhofer et al. 2018) into TSN. Wang et al. (2016) 
proposed temporal segment networks to address long-time 
videos and Zhou et al. (2018) put forward a temporal rela-
tion network to learn the dependency relationship between 
frames. Overall, TSN is the DL version of IDT that appro-
priately balances the computational burden and accuracy 
requirement.

Unlike TSN establishes the connection between frames 
with optical flow, 3D CNN executes the convolution opera-
tion in the time dimension to achieve the same goal (Tran 
et  al. 2015). To reduce the computational burden and 
improve the performance of 3D CNN, many equivalent oper-
ations have been proposed. ResNet-(2+1)D architectures, 
which uses 2D convolution on each RGB image and 3*1*1 
convolution on the temporal dimension, were proposed by 
Tran et al. (2015, 2017) and Qiu et al. (2017) individually. 
Diba et al. (2017) proposed a temporal 3D CNN to explore 
long-term information comprehensively, together with the 
temporal transition layer to replace the pooling layer. They 
initialized the 3D CNN with a pre-trained 2D CNN, which 
is also an enlightening approach. Lin et al. (2019) proposed 
a novel method suitable for 2D CNN models that remark-
ably reduces the computation and performs the cross con-
catenation of channels between frames to allow information 
sharing.

SAR consists of two steps. The first step is human pose 
estimation, which can be classified into top-down and 
bottom-up strategies. Top-down strategies use an object 
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detection framework to detect humans and locates skel-
eton joint points based on the detected boxes, whereas 
bottom-up strategies detect all possible joint points and 
cluster them to different humans. Many studies have been 
proposed and carried on open source frameworks Open-
Pose (Wei et al. 2016; Simon et al. 2017; Cao et al. 2017) 
or mmpose (Open-MMLab 2019).

Once the ST has been obtained by the human pose 
estimation module, the most intuitive method of SAR is 
to stack the ST into a one-channel image and input it 
into a one-channel 2D CNN, which is named as tempo-
ral convolution network (TCN) (Kim and Reiter 2017; 
Memmesheimer et al. 2020). Another direct way is to 
use recurrent neural networks (RNNs) to represent the 
temporal relation (Wang and Wang 2017; Liu et al. 2017; 
Singh et al. 2017). An indirect manner is to project the ST 
into three orthometric views and stack them as a three-
channel image (Hou et al. 2018) that is suitable for a 
general multi-channel 2D CNN.

To enhance the performance of SAR, a priori knowl-
edge about body parts are introduced into the network in 
the form of an undirected graph (Yan et al. 2018; Shi et al. 
2019; Holzinger et al. 2021) or a fixed concatenation (Li 
et al. 2017a; Zhang et al. 2017). Similar to the perfor-
mance of the graphical neural networks (Holzinger et al. 
2021) in other applications, those part-aware methods 
provide a supervised attention mechanism substantially. 
At the same time, the unsupervised attention mechanism 
has also been exploited by some researchers. Si et al. 
(2019) proposed an attention-enhanced graph convolu-
tional LSTM which achieves state-of-the-art on several 
public datasets; Li et al. (2019) combined an adaptive 
attention module with a two-stream RNN architecture. 
Furthermore, Zhao et al. (2019) combined a graphical 
neural network (GCN) with LSTM into a Bayesian frame-
work, and Peng et al. (2020) proposed a Neural Archi-
tecture Search (NAS) framework to design a part-aware 
GCN automatically.

Although a complex architecture can achieve better 
performance when the dataset is large enough, many 
applications fail to satisfy this requirement. Referring 
to flourishing few-shot learning methods (including the 
one-shot and zero-shot methods) in other visual tasks, a 
small group of researchers starts to seek one-shot learning 
methods for SAR (Memmesheimer et al. 2020). A new 
dataset for few-shot learning of SAR is established based 
on the NTU dataset (Li et  al. 2017b), which contains 
adequate support sets. Many few-shot learning methods 
would be extended to SAR in the following two years. 
Moreover, QFSS, which is closer to the requirements of 
real applications, deserves additional attention.

3 � Method

The human body is a complex dynamic system, with the brain 
as the controller, action target and external environment as 
the inputs, and human joints as the actuators. The sequential 
skeleton points, that is the ST, are the observed states of the 
system. When finishing different actions, the system would 
evolve under the navigation of different controllers and output 
different STs. Thus, if we can recover the close system from 
a given ST with DMD, the action type would be recognized 
according to the modes extracted by DMD.

Inspired by this motivation, the DMD-based SAR frame-
work is proposed in this section. DMD theory is introduced 
first; the translational and rotational invariance of the DMD 
feature is proven then; finally, the DMD-based action recog-
nition framework is proposed.

3.1 � Dynamic mode decomposition

Given a discrete system �k+1 = f
(

�k
)

 , where �k ∈ ℝ
n is the 

latent state, K is the Koopman operator (Takeishi et al. 2017). 
K is an infinite linear operator defined as K(g(�)) = g(f (�)) 
for ∀g ∶ M → ℝ(or ℂ) , where M is the state space of � , ℝ 
(or ℂ ) is the real (or image) set, f (⋅) is the dynamic function, 
and g(⋅) is the observation function.

It is assumed that K demonstrates discrete spectrums, 
which can be written in the form of infinite eigenval-
ues 

{

�1, �2, �3,⋯
}

 and eigenfunctions 
{

�1,�2,�3,⋯
}

 
with the relation K�i = �i�i . The observation func-
tion based on eigenfunctions is g(�) =

∑

i �i(�)ci , i.e., 
g
�

�k
�

=
∑

i �
k
i
�i

�

�0
�

ci . The Koopman operator approxi-
mates a lower-dimensional nonlinear system to an infinite-
dimensional linear system with sequential K + 1 samples by 
seeking a state transition matrix A ∈ ℝ

K×K that satisfies

DMD is the most widely used method to calculate A.
Performing a singular value decomposition on H1 , we 

have the following:

where U ∈ ℝ
n×n , � ∈ ℝ

n×K , and V ∈ RK×K . The diagonal 
elements of � are the singular values sorted descendingly, 
and all off-diagonal elements are 0. We can then obtain the 
similar matrix of A as follows:

A and Ã have the same eigenvalues.
Considering that the response of a dynamic system is 

mainly determined by low-frequency parts, only the first r 

[

g
(

�2
)

, g
(

�3
)

,⋯ , g
(

�K+1
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
H2∈ℝ

n×K

≈ A
[

g
(

�1
)

, g
(

�2
)

,⋯ , g
(

�K
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
H1∈ℝ

n×K

.

(1)H1 = U�VT ,

(2)Ã = UTAU = UTH2V𝜮
−1.



7162	 S. Dong et al.

1 3

eigenvalues are typically reserved to describe the feature 
of the system in practice, where r ≪ K  . Let Ur ∈ ℝ

r×n , 
Vr ∈ ℝ

K×r , and �r ∈ ℝ
r×r be the left-top submatrices of U , 

V and � with truncated eigenvalues, respectively. We can 
then obtain the approximated state transition matrix

and its eigenvalues 𝜆̃i , i = 1, 2,⋯ , r.
The state matrix Ãr determines the dynamic response of 

the system, including stability, response speed, and overshot. 
𝜆̃i is the pole of the approximate linear closed-loop system 
and determines the stability of the system. Thus, both Ãr 
and 𝜆̃i can serve as an empirical feature for SAR. The feature 
dimension is r2 for the flattened Ãr and 2r for the stacked 
𝜆̃i (r real parts and r image parts). 𝜆̃i is shorter, whereas 
Ãr contains more information. The experimental results in 
the following section show that the performance distinction 
between them is unclear.

3.2 � Translational and rotational invariance of DMD

For an action sample, when the sensor moves or rotates, 
the feature for SAR should be consistent. With a simple 
normalization method, DMD can satisfy this requirement 
theoretically, that is, translational and rotational invariance.

Two STs of one same action captured by different cam-
eras are denoted as follow:

and

G1 and G2 are captured by cameras with fixed coordinates 
O1x1y1z1 and O2x2y2z2 . The sth skeleton joint at step j cap-
tured by camera i is denoted as pi

j
=
[

xi
s,j
, yi

s,j
, zi

s,j

]

 . Then the 
spatial coordinate of all S skeleton points can be stacked as 
�i
j
= gi

(

� j
)

=
[

pi
1,j
, pi

2,j
,⋯ , pi

S,j

]T

∈ ℝ
3S×1.

The transfer matrix from O1x1y1z1 to O2x2y2z2 is denoted 
as

where r1to2 is the rotation matrix and l1to2 is the translation 
vector. r1to2 and l1to2 satisfy

for k = 1, 2,⋯ ,K + 1.
The translational and rotational invariance of DMD 

means that Ã
1

r
= Ã

2

r
 . This property is proven as follow:

(3)Ãr = UT
r
H2Vr𝜮

−1
r
,

G1 =
[

g1
(

�1
)

, g1
(

�2
)

,⋯ , g1
(

�K+1
)]

=
[

�1
1
, �1

2
,⋯ , �1

K+1

]

G2 =
[

g2
(

�1
)

, g2
(

�2
)

,⋯ , g2
(

�K+1
)]

=
[

�2
1
, �2

2
,⋯ , �2

K+1

]

.

(4)T1to2 =

[

r1to2 l1to2
01×3 1

]

∈ ℝ
4×4,

(5)p2
j
= r1to2 ⋅ p

2
j
+ l1to2,

Proof  Based on (5), we have

where,

Normalize �i with

where Li
0
=
[

pi
1,1
, pi

1,1
,⋯ , pi

1,1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
N blocks

T with RL1
0
= L2

0
− L , we can 

then obtain the following relation:

Thus,

Let Hi
1
=
[

�
i

1
, �

i

2
,⋯ , �

i

K

]

 and Hi
2
=
[

�
i

2
, �

i

3
,⋯ , �

1

K+1

]

 , and 
there is

The system matrices can be obtained with Eqs. (1 and 2) 
as follows:

Then, we have

and

Their similar matrices are as follows:

�2
j
=R�1

j
+ L

G2 =RG1 + L,

R =diag {r1to2, r1to2,⋯ , r1to2}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

N blocks

L =
[

lT
1to2

, lT
1to2

,⋯ , lT
1to2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
N blocks

T .

(6)�
i
= �i − Li

0
,

�
2
= R�

1
+ RL1

0
− L2

0
+ L = R�

1
.

(7)RG
1
= R

[

�
1

1
, �

1

2
,⋯ , �

1

K+1

]

=
[

�
2

1
, �

2

2
,⋯ , �

2

K+1

]

= G
2

(8)H2
1
= RH1

1
, H2

2
= RH2

1

(9)
Hi

1
=Ui𝜮 i

(

Vi
)T

Ã
i
=
(

Ui
)T
Hi

2
Vi
(

𝜮 i
)−1
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(10)
H1

1
=U1�1

(

V1
)T

H2
2
=RH1

2
=
(

RU1
)

�1
(

V1
)T
,

(11)
A1 =H1

2

(

H1
1

)−1

A2 =H2
2

(

H2
1
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=RH1

2

(

RH1
1

)−1
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(

H1
1

)−1
R−1.

(12)
Ã
1
=
(

U1
)T
A1U1 =

(

U1
)T
H2

1

(

H1
1

)−1
U1

Ã
2
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(

RU1
)T
RH1

2

(

H1
1

)−1
R−1

(

RU1
)
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As the rotation matrix is orthogonal and satisfies RT = R−1 , 
we can obtain the following:

Thus, there exists Ã
2

r
= Ã

1

r
 . 	�  ◻

From the proof above, DMD can guarantee rotational invar-
iance inherently, and the normalization method in Eq. (6) can 
guarantee translational invariance. Thus, the normalization is 
a necessary preprocessing step for the DMD feature. Some 
other normalization methods can also guarantee translational 
invariance, but they have some disadvantages. For instance, 
�
i
= (�i − �0)∕(�K − �0) or �i = (�K − �i)∕(�K − �0), can 

normalize the trajectory into [0, 1] and satisfy the translational 
and rotational invariance. However, when �K = �0 , they are 
not applicable.

3.3 � DMD feature for SAR with QFSS

Deep CNNs can extract more information than DMD because 
of their large amount of parameters. Deep CNNs are the stand-
ard answers for SAR if the training set is adequate. However, 
in many QFSS SAR tasks which do not have adequate train-
ing samples, training a deep CNN is impossible. Facing this 
problem, we design a framework to improve the performance 
of CNN features on QFSS SAR tasks with the empirical DMD 
feature.

Denote a skeleton trajectory that has been normalized 
according to formula (6) in the form of a matrix

where �j =
[

p1,j, p2,j,⋯ , pS,j
]T

∈ ℝ
3S×1 is stacked skeleton 

points with pj =
[

xs,j, ys,j, zs,j
]

 at step j. Then, we have

Ã
2
=
(

U1
)T(

R−1R
)

H1
2

(

H1
1

)−1(
R−1R

)

U1

=
(

U1
)T
H1

2

(

H1
1

)−1
U1

=Ã
1
.

G =
[

�1, �2,⋯ , �K+1
]

,

By substituting H1 and H2 into Eqs. (1, 2, and 3), we can 
obtain the DMD feature vDMD of G as follows:

Input G into a CNN, the output is

Then, a DMD-based SAR framework can be established, 
as depicted in Fig. 1, with the following five components: 

(1)	 A human pose estimation module, for instance, Open-
Pose or mmpose, that can obtain skeleton trajectories 
from video clips;

(2)	 Normalization of the ST to obtain G according to for-
mula (6);

(3)	 CNN feature extractor to obtain vCNN;
(4)	 DMD feature extractor to obtain vCNN;
(5)	 Final classifier to predict the action category.

As a trajectory can be recovered from its modes and eigen-
vectors approximately (Takeishi et al. 2017), DMD servers 
as an encoder in the framework. The physical meaning of the 
DMD feature is clear, compact, and informative. Although 
the order truncation operation and linearization may make 
some information lost, it is useful when the training set is 
not adequate.

The rank of DMD for a RAS task is often less than 10, 
and the length of vDMD is less than 100. When using vDMD 
together with vCNN , the increased computation is negligible.

Considering the perspective transformation in the imag-
ing acquisition of RGB videos, the DMD feature of a 2D 
skeleton trajectory cannot guarantee translational and rota-
tional invariance. However, in some applications where the 

H1 =
[

�1, �2,⋯ , �K
]

H2 =
[

�2, �3,⋯ , �K+1
]

.

vDMD = DMD(G)

vCNN = CNN(G)

Fig. 1   Framework of SAR based on DMD
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position and pose of the camera are fixed, the distortion of 
skeletons can be treated as one part of the action itself, and 
thus, the DMD feature is also suitable.

4 � Experiments and analysis

To analyze the performance of the DMD feature comprehen-
sively, two groups of experiments are conducted based on 
three datasets. In one group, the DMD feature is used alone 
to analyze its intrinsic properties. The matrix feature and 
eigenvalue feature of DMD is compared with basic LSTM 
on the CMU and Badminton datasets. In the other group, we 
focus on the auxiliary performance of the DMD feature. Five 
CNN-based methods, namely, ST-GCN (Yan et al. 2018), 
TCN (Kim and Reiter 2017), part-aware LSTM (PLSTM) 
(Shahroudy et al. 2016), ResNet18 (He et al. 2016) and basic 
LSTM (Graves 2012), have been chosen for comparison. 
DGNN (Shi et al. 2019), which used to be state-of-the-art 
on the NTU and Kinematic datasets, failed to converge on 
the miniNTU dataset. Thus, we did not present its results. 
ResNet18 is a special realization of TCN with its backbone 
as a one-channel residual network, which has a much deeper 
architecture than other methods. Basic LSTM contains three 
layers and each layer contains 100 neurons. In all methods, 
we have adjusted the feature length to 256 and the output 
layer to a linear fully-connected layer with 256 inputs and 4 
(CMU and Badminton) or 40 (miniNTU) outputs. All these 
methods are trained with randomly initialized parameters.

4.1 � Datasets

The DMD feature is an empirical feature with limited length, 
and it does not have a strong expressive ability like the CNN 
feature. Thus, the motivation of this work is to explore the 
applicable scenes of DMD, rather than seeking a state-of-
the-art accuracy. We have chosen three datasets with very 
different properties to analyze DMD fully.

(1) CMU dataset. CMU dataset (CMU 2013) is a classic 
dataset for motion capture, in which 29 skeleton points are 

measured by wearable devices. Thus, its precision is much 
higher than other datasets. We divided a subset from the 
CMU dataset in this group, which includes dancing, jump-
ing, running, and walking actions. Figure 2 shows some 
samples of the CUM dataset. A total of 119 samples are used 
for training and test, whose distribution is listed in Table 1. 
We removed 4 unnecessary skeleton joints to make it share 
the NTU’s data loader. CMU is easier than other datasets.

(2) Badminton dataset. The Badminton dataset is a self-
established dataset to illustrate the applicability of the DMD 
feature for 2D ST in a fixed scene. This dataset also contains 
four categories of actions, namely, backhand striking, fore-
hand striking, backhand lifting, and forehand lifting. The 
2D skeleton trajectories are obtained with the human pose 
estimation framework mmpose (Open-MMLab 2019) from 
some video clips. Some failed frames are replenished with 
linear interpolation. An action of badminton contains three 
stages, namely, move toward the shuttlecock, hit, and return 
to the defensive position. In addition, some athletes hold the 
racket in their right hand while the rest in their left hands. 
This makes the action more indistinguishable. Figure 3 show 
some samples. The training set contains 30 trajectories for 
each type, and the test set contains 12, 10, 10, and 13 for 
each type respectively. We only considered the athlete in 
the field below by limiting the detection region of their feet. 
In this dataset, the skeleton contains 17 joints. The distor-
tion of the 2D skeleton by perspective transformation, the 
consistency of the athlete’s movements, and the confusion 
of main hands between athletes, make it much more difficult 
than the CMU dataset.

(3) miniNTU dataset. NTU (Li et al. 2017b) is a widely 
used large-scale dataset for SAR. This dataset contains 
60 categories of actions, and 20 of them involve multiple 

Fig. 2   Four types of actions in 
the CMU dataset

Table 1   Number of samples in the CMU dataset

Dancing Jumping Running Walking

Training set 14 24 21 28
Testing set 5 7 9 11
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humans. The skeletons are captured with three RGBD sen-
sors located at different poses. In this work, we considered 
those 40 types of actions with only one human and chose 30 
training and 10 test samples for each type of action, so that 
it satisfies QFSS. Same as the standard NTU dataset, we also 
established the cross-subject and cross-view subsets. The 
former means that the humans in the training set and test 
set are different; the latter means that the trajectories in the 
training set and test set are captured by different cameras. It 
is much more difficult than the CMU and Badminton.

Another widely used dataset is the Kinetics (Kay et al. 
2017) dataset, which is even more difficult than NTU. Its 
skeleton trajectories cannot satisfy the requirement of trans-
lational and rotational invariance, and thus, we have not 
tested the Kinetics dataset.

4.2 � SAR based on DMD feature and ovoSVM

In this group, the intrinsic properties of DMD were explored. 
Because the miniNTU dataset is too difficult to fully exhibit 
the DMD feature’s properties, we only conducted experi-
ments on the CMU and Badminton datasets. We have con-
sidered the contrast experiment from several aspects.

First, as both DMD and LSTM can directly utilize tempo-
ral information, we have designed a DMD+ovoSVM frame-
work as the realization of the DMD feature and chosen a 
basic shallow LSTM for comparison from several aspects 
in this group. Shallow CNN performs much poorer than 
DMD+ovoSVM and LSTM because it cannot extract tempo-
ral information. Thus, we did not compare DMD+ovoSVM 
with the shallow CNN in this group. The DMD+ovoSVM 
framework is a simple realization of Fig. 1, in which the 
classifier is an ovoSVM with radial basis function (RBF) 
kernels, and the DMD feature is input into the ovoSVM 

without concatenation with any CNN feature. Considering 
that the length of many skeleton trajectories in the Badmin-
ton dataset is less than 40, we limited the DMD rank to be 
smaller than 7, and the number of RBF kernels in ovoSVM 
ranges from 0.1 to 300. Second, both two types of DMD 
features mentioned above, that is, the flattened matrix and 
the stacked eigenvalues, have been considered. Finally, to 
explore computation reducing method, a half truncation and 
four joints tricks were tested. The former truncates trajec-
tories from the middle inspired by the fact that all move-
ments in Badminton contain recovering processes. The latter 
reduces the skeleton to 4 joints including two wrists and two 
ankles, due to the limb’s movement range is relatively large 
than the body’s.

Table 2 shows all optional hyperparameter configurations 
of DMD+ovoSVM. A uniformly distributed noise is added 
to the trajectories to augment the training and test set, and 
10 duplicates of each trajectory are generated. The noise 
is defined as x → (1 + 0.05 ∗ �) ⋅ x , where � ∼ U(−1, 1) . 
The LSTM has three linear fully-connected layers with 100 
neurons to extract the feature, and another linear fully-con-
nected layer is used to predict the action categories. The 
input length of LSTM is truncated or padded with 0–200 for 
CMU and 40 for Badminton respectively. The appropriate 
hyperparameters in Table 2, including truncation, augmenta-
tion, and four joints, are also used on LSTM.

Each configuration is repeated 50 times and the best 
results of all configurations are listed in Table 4. Binary 
classification results on the striking and lifting subset of 
Badminton are also presented for reference. It can be found 
that: (1) LSTM achieved the highest accuracy on CUM with 
good stability, whereas, LSTM achieved the lowest accuracy 
on Badminton with the worst stability. (2) The matrix feature 
is preferred on the CMU dataset, whereas the eigenvalue 

Fig. 3   Four types of actions in the badminton dataset



7166	 S. Dong et al.

1 3

feature is preferred on the badminton dataset. (3) Backhand 
and forehand lift actions are more difficult to classify than 
strike actions because of their high similarity.

Figure 4 shows the corresponding distribution of the 
results in Table 3. In the figures, the flattened matrix and the 
stacked eigenvalues are denoted as Amat and Mu, respec-
tively. LSTM performs better than DMD+ovoSVM on the 
CMU dataset, but poorer on the Badminton dataset. The 
result of Amat on the CMU dataset is like a barbell, that is, 
it suffers from a large standard deviation. As DMD extracts 
the modes of an approximate linear system, the DMD feature 
has no relation with the input and would drop out some spa-
tial information that is useful for the classification of CMU. 
A latent temporal condition of Badminton is that lift actions 
must occur in the frontcourt and strike actions must occur 
in the backcourt. If this temporal condition can be utilized, 
the classification results on complete Badminton should be 
close to the subsets. However, both LSTM and DMD failed 
to utilize this condition.

To analyze the performance of DMD more comprehen-
sively, we compared the results of different hyperparam-
eters. We computed the accuracy of all executions in the 
rank test. Figure 5 shows the distribution of accuracy versus 
the rank (r) of DMD. The optimal results are achieved for 
lift and strike actions when r = 3 because the difficulty to 
obtain the feature boundary increases when the length of 
the feature increases. The results of r = 2 for strike action 
are poorer than that of r > 2 . This indicated that minimum 

low-frequency modes may be insufficient in describing the 
strike action. A tradeoff exists between the rank and length 
of the DMD feature, and how to determine the rank for dif-
ferent tasks is an important problem that deserves in-deep 
investigation.

Figures 6, 7 and 8 show the comparison of the half trajec-
tory, four points, and shuffle eigenvalue tricks, respectively. 
The half trajectory and four points tricks do not lead to loss 
of accuracy. Thus, they can be used to reduce the compu-
tation significantly in some tasks. Shuffling operation on 
eigenvalues composes a negative effect on the high accuracy 
region but makes the distribution converge to the middle 
region.

DMD+ovoSVM can achieve the best performance near 
the shallow LSTM. The training speed of DMD+ovoSVM 
is higher and more stable. The solving process of 
DMD+ovoSVM only takes approximately 0.02–0.4 ms 
when running on the CPU Intel@i9-9900K. LSTM takes 
approximately 2 min for 50 epochs training when running 
on the CPU Intel@i9-9900K. The time decrease to 0.2–4 s 
when running on one piece of GPU NVIDIA@RTX2080ti. 
Since DMD involves singular value decomposition and 
matrix inversion, a GPU cannot accelerate the computation 
of DMD. The inability to utilize the GPU is a disadvantage 
of DMD.

4.3 � SAR based on DMD feature and CNN feature

In this group, we considered the auxiliary role of the DMD 
feature for some popular deep CNNs, including ST-GCN, 
TCN, ResNet18, basic LSTM, and PLSTM. According to 
the framework in Fig. 1, the DMD feature in the form flat-
tened matrix is concatenated with the CNN feature that is 
extracted by one of those deep CNNs and input into a linear 
fully-connected layer for classification. No trick in Table 2 
has been used in this group. Table 4 shows all configuration 
for this group of experiments.

Tables 5 and 6 present the results on the CMU and Bad-
minton datasets, and the miniNTU datasets, respectively. 
We collected the mean, maximum, and standard devia-
tion of accuracy from 20 executions of ST-GCN and ST-
GCN+DMD on the miniNTU dataset and 50 executions of 
others. The results of DMD+ovoSVM are also presented 

Table 2   Optional hyperparameters for DMD+ovoSVM

Hyperparameters Values

CMU Badminton

Feature type Flattened matrix, stacked eigen-
values

Rank of DMD 2–14 2–7
Coefficient of RBF 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 

100, 200, 300
Half truncation false True, false
Random augmentation 10 10
Shuffled eigenvalues True, false
Four joints False True, false

Table 3   Comparison of optimal 
accuracy

Task configuration DMD+ovoSVM matrix 
feature

DMD+ovoSVM eigenvalue 
feature

LSTM

Max Mean Std Max Mean Std Max Mean Std

CMU 0.8500 0.6084 0.2392 0.7906 0.6716 0.0355 0.8750 0.7262 0.0767
Badminton-strike 0.8636 0.7609 0.0390 0.8591 0.7948 0.0617 0.9545 0.6345 0.1437
Badminton-lift 0.8043 0.6694 0.0619 0.8522 0.6523 0.0546 0.8696 0.6522 0.1003
Badminton 0.5622 0.4088 0.0467 0.5800 0.4711 0.0272 0.4889 0.3400 0.0637
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for reference. The result of TCN, LSTM, and PLSTM on 
miniNTU are ( mean = 0.025,max = 0.025, std = 0 ), which 
means that the networks have not converged and always out-
put a fixed prediction. Because the STs obtained by the pose 
estimation module often suffer from instability, the robust-
ness of the DMD feature should be analyzed. Thus, we aug-
mented the training and test sets 10 times with 5% uniformly 

distributed random noise according to x → (1 + 0.05 ∗ �)x , 
where � U(−1, 1) . The results are listed in Tables 7 and 8.

From the results, it can be found that:
(1) The DMD feature can improve the performance of 

most methods, particularly, help TCN become convergent on 
miniNTU-xsub and PLSTM convergent on miniNTU-xview. 
ResNet18 can represent the frequency domain information 

Fig. 4   Accuracy distribution of the optimal hyperparameter configuration

Fig. 5   Accuracy vs. rank of DMD
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owing to its deep architecture and multiple convolution lay-
ers. Thus, the DMD feature cannot provide supplementary 
information for ResNet18. The DMD feature would lose 
some spatial information and is not as complete as a deep 
CNN feature.

(2) A recurrent architecture can also extract temporal 
information, but shallow layers would limit its feature 
expression ability. Thus, LSTM and PLMST perform 
better than TCN but much poorer than ST-GCN and 
ResNet18.

Fig. 6   Accuracy of DMD+ovsSVM with eigenvalue feature: half trajectory vs. complete trajectories

Fig. 7   Accuracy of DMD+ovsSVM with eigenvalue feature: four points vs. complete skeleton

Fig. 8   Accuracy of DMD+ovoSVM with eigenvalue feature: shuffle vs. ordered
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(3) The performance of ResNet18 exceeds ST-GCN 
dramatically on all three datasets. However, ST-GTN is 
better than ResNet18 on the standard NTU dataset. In our 
test, the top 1 accuracies of ResNet18 are 79% and 87% 
on standard NTU-xsub and NTU-xview dataset, whereas 
ST-GCN achieves 81.3% and 89.1%. The results of 

ST-GCN+DMD are very close to ST-GCN, which means 
that DMD provides no information for ST-GCN. With the 
predefined relation of the human skeleton, ST-GCN has a 
stronger ability to extract spatial and temporal information 
than ResNet18. When the training samples are adequate, 
the spatial relation between joints brings more benefit than 
the frequency domain information. However, when the 
samples are not adequate in QFSS tasks, the predefined 
relation failed to perform fully.

(4) Although noise would injure the performance of all 
methods evidently, the auxiliary function of DMD still 
lasts when a 5% noise exists.

A deeper GCN, which combines the advantages of both 
deep architecture and part-aware knowledge, would own 
a better performance. However, it requires more samples 
and stronger computing power. When a deep architecture 
is unable to deploy, for instance, running on some embed-
ded neural computing devices or lack of training samples, 
the DMD feature can be used to assist some simpler CNN 
feature to achieve higher accuracy.

Table 4   Configuration for experiments of SAR based on DMD fea-
ture

Hyperparameters Values

Length of v
CNN

256
Lenght of v

DMD
25

Max epochs 40
Base learning rate 0.1
Learning rate decaying strategy Exponential
Optimizator ’SGD’
Weight decay 0.0001
Loss function Basic cross entropy loss

Table 5   Comparison of 
accuracy on the CMU and 
Badminton datasets

Method CMU Badminton

Mean Max Std Mean Max Std

ST-GCN 0.6725 0.8750 0.1211 0.8564 0.9200 0.0389
ST-GCN+DMD 0.6919 0.8125 0.0884 0.8564 0.9400 0.0370
TCN 0.4069 0.7188 0.1024 0.2720 0.4000 0.0465
TCN+DMD 0.5356 0.7500 0.0937 0.3188 0.4000 0.3004
ResNet18 0.8549 0.9062 0.0221 0.8864 0.9400 0.0228
ResNet18+DMD 0.8479 0.8750 0.0231 0.8840 0.9200 0.1960
LSTM 0.6771 0.7188 0.0230 0.2512 0.3200 0.0331
LSTM+DMD 0.6901 0.7500 0.0164 0.4455 0.4800 0.0189
PLSTM 0.6800 0.7188 0.0148 0.2536 0.3200 0.0397
PLSTM+DMD 0.6856 0.7188 0.0116 0.3244 0.4000 0.0297
DMD+ovoSVM – 0.6938 – - 0.4821 –

Table 6   Comparison of 
accuracy on the miniNTU 
dataset

Method MiniNTU-xsub MiniNTU-xview

Mean Max Std Mean Max Std

ST-GCN 0.4637 0.5275 0.0286 0.4987 0.5550 0.0295
ST-GCN+DMD 0.4829 0.5325 0.0218 0.5110 0.5600 0.0295
TCN 0.0250 0.0250 0.0000 0.0250 0.0250 0.0000
TCN+DMD 0.4591 0.4925 0.0205 0.0898 0.1025 0.0047
ResNet18 0.4665 0.4975 0.0184 0.5423 0.5925 0.0198
ResNet18+DMD 0.4643 0.5275 0.0193 0.5552 0.6000 0.0195
LSTM 0.0250 0.0250 0.0000 0.0250 0.0250 0.0000
LSTM+DMD 0.0902 0.1025 0.0044 0.0942 0.1050 0.0052
PLSTM 0.0250 0.0250 0.0000 0.0250 0.0250 0.0000
PLSTM+DMD 0.0883 0.0950 0.0038 0.3194 0.3300 0.0057
DMD+ovoSVM – 0.1508 – – 0.1813 –



7170	 S. Dong et al.

1 3

5 � Conclusion

The DMD feature for RAS is studied in this work. This fea-
ture has a clear physical meaning in the frequency domain 
and can guarantee translational and rotational invariance 
with an appropriate normalization. The DMD feature can 
achieve a performance close to a shallow LSTM when it is 
used solely in SAR tasks. A DMD-based SAR framework 
is proposed, in which the DMD feature is concatenated 
with a CNN feature. The DMD feature can improve the 
CNN features’ accuracy evidently in QFSS SAR tasks with 
a small computational cost, even when a 5% noise exists. 
Particularly, DMD can help TCN become convergent on 
the miniNTU-xsub dataset and PLSTM convergent on the 
miniNTU-xview dataset. Because we cannot utilize a GPU 
to accelerate the calculation of DMD, the DMD-based 
SAR framework cannot be combined in an end-to-end 
framework. Thus, one of our works in the future is to find a 
realization of DMD on GPU, for instance, training a CNN 
to extract the modes. Furthermore, as the DMD feature 

only represents the modes of an approximated linear sys-
tem and would lose some spatial information, another 
problem that deserves further research is to explore some 
empirical spatial features that can eliminate the informa-
tion loss problem of DMD.
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Table 7   Comparison of 
accuracy on the CMU and 
Badminton datasets with 5% 
uniformly distributed random 
noise

Method CMU Badminton

Mean Max Std Mean Max Std

ST-GCN 0.6631 0.8623 0.1251 0.8364 0.9027 0.0428
ST-GCN+DMD 0.6926 0.8420 0.0984 0.8453 0.9230 0.0380
TCN 0.3823 0.7068 0.1083 0.2612 0.4000 0.0551
TCN+DMD 0.5311 0.7287 0.1012 0.2933 0.4000 0.3001
ResNet18 0.8492 0.8925 0.0412 0.8642 0.9400 0.0328
ResNet18+DMD 0.8401 0.8723 0.0431 0.8645 0.9200 0.2061
LSTM 0.6555 0.7008 0.0420 0.2376 0.3028 0.0354
LSTM+DMD 0.6789 0.7311 0.0243 0.4364 0.4800 0.0205
PLSTM 0.6632 0.6928 0.0148 0.2388 0.3107 0.0404
PLSTM+DMD 0.6768 0.7006 0.0116 0.3014 0.4012 0.0322
DMD+ovoSVM – 0.5938 – – 0.3855 –

Table 8   Comparison of 
accuracy on the miniNTU 
dataset with 5% uniformly 
distributed random noise

Method MiniNTU-xsub MiniNTU-xview

Mean Max Std Mean Max Std

ST-GCN 0.4625 0.5217 0.0273 0.4969 0.5549 0.0333
ST-GCN+DMD 0.4825 0.5356 0.0214 0.5104 0.5543 0.0204
TCN 0.0250 0.0250 0.0000 0.0250 0.0250 0.0000
TCN+DMD 0.4578 0.4950 0.0201 0.0900 0.1023 0.0032
ResNet18 0.4632 0.4921 0.0184 0.5407 0.5899 0.0194
ResNet18+DMD 0.4640 0.5253 0.0201 0.5536 0.6000 0.0208
LSTM 0.0250 0.0250 0.0000 0.0250 0.0250 0.0000
LSTM+DMD 0.0925 0.1088 0.0041 0.0844 0.0915 0.0033
PLSTM 0.0250 0.0250 0.0000 0.0250 0.0250 0.0000
PLSTM+DMD 0.0866 0.0982 0.0056 0.3190 0.3387 0.0061
DMD+ovoSVM – 0.0912 – – 0.1031 –
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