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Abstract The current study investigates the stability structure of the base periodic motion of an inverted
pendulum (IP). A uniform magnetic field affects the motion in the direction of the plane configuration. Fur-
thermore, a non-conservative force as one that dampens air is considered. Its underlying equation of motion is
derived from traditional analytical mechanics. The mathematical analysis is made simpler by substituting the
Taylor theory in order to expand the restoring forces. The modified Homotopy perturbation method (HPM) is
employed to achieve a roughly adequate regular result. To support the prior result, a numerical method based
on the fourth-order Runge-Kutta method (RK4) is employed. The graphs for both the analytic and numerical
solutions are highly consistent with one another, which indicates that the perturbation strategy is accurate. The
solution time history curve exhibits a decaying performance and indicates that it is steady and without chaos.
The resonance and non-resonance cases are found through the stability study by using the time scale method. In
all perturbation approaches, the methodology of multiple time scales is actually regarded as a further standard
approach. The time history is used to create a collection of graphs. Some graphical representations are used to
illustrate how the typical physical values affect the behavior of the discovered solution. It has been discovered
that the statically unstable IP can have its instability reduced by raising the spring torsional constant stiffness as
well as the damped coefficient. Moreover, the magnetic field has a significant role in the stability configuration,
which explains that at higher values of this field, the decaying waves take much more time than the smaller
values of this field. Accordingly, it can be employed in various engineering devices that need a certain period
of time to be more stable.

Keywords Inverted pendulum · Magnetic field · Parametric excitation · Homotopy perturbation method ·
Multiple time scales method

1 Introduction

In the control theory and experimentation, the IP signifies a vital aspect. Numerous physical models, such as
rockets, can be characterized as flexible IPs. Many present studies focus exclusively on rigid instances, despite
the fact that rigid models are simply an approximation of elastic bodies. Rigid models are incompetent in
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accurately describing the kinetic features of real-world systems. When high-frequency disturbances disrupt
the system, the controllers established on the small-frequency estimate prototype are unable to stabilize it. Due
to the approximation, the features of elastic systems differ significantly from those of rigid systems. Because
traditional approaches presume that the flexible structure is a rigid prototype, they are inadequate in more
complicated engineering situations. A new kind of IP, elastic IP, was planned, and flexibility was investigated
[1]. The Mathematical prototype originated from the Hamiltonian theory and variational techniques, which
were created by a combination of partial and ordinary differential equations. The prototypical nonlinear and
the completely unstable system is an IP. An optimization model of an IP procedure depending on the vision
motion was suggested to control the triple IP successfully and steadily [2]. The IPs can be thought of as
a close approximation to the problem of robot stability. A hypothetical and investigational foundation for
estimating the system speed and distortion was investigated [3]. The Hamiltonian canonical equation was
used to investigate the chaotic dynamics of a double IP with a large swing angle [4]. The research led to new
concepts and theoretical foundations for chaotic dynamics analysis in the sectors of aircraft, electronics, and
biological manufacturing. A semi-analytical approach to explore the stability and bifurcation of the IP with
periodic motions was used [5]. It was demonstrated that the stability of IP could be predicated on the periodic
motion of its base. Nonlinear fluctuations of a rotatory IP with a full-state feedback control were examined
[6]. The theoretical conclusions of the nonlinear vibrations of the rotary IP are confirmed by experimental
quantities, and the findings of both methodologies show remarkable agreement. Using a combination of Lab
VIEW and MATLAB algorithms, the animation software simulations built a realistic triple IP model [7]. The
swinging of the pendulum and the entire traveling procedure of the cart were seen in multi-dimensional and
multi-angle simulations. The strategy introduced a new research platform for IP simulation that is observable.
The work of Johnson et al. [8] enhanced perceptive controls for uses other than IP, like human motion. If
these technologies are successful, it would be much easier to argue that perception control theory adequately
explains how living creatures behave.

The concept of parametric excitation seemed to be another important issue in dynamics. When at least one
of the parameters in the equation of motion is clearly dependent on time, this concept arises. The stiffness
of the harmonic oscillation, around a non-zero value in a linear system, was a historically specific oscillator
regulated by Mathieu’s equation. In this case, the Floquet theory can be used to show the stability of a given
pair of stiffness fluctuation frequency and amplitude. The existence of unconstrained solutions to Mathieu’s
equation is more likely in the situation of primary parametric instability, which happens when the parametric
excitation frequency is double that of the normal frequency. A more detailed analysis of Mathieu’s equation
was earlier shown [9, 10]. The dynamical behavior of a floating body in the presence of parametric resonances
was studied [11]. It was discovered that the presence of stable quasiperiodic motions agreed with both pitch
and heave resonance. A model was established on the specific nonlinear Froude–Krylov strength computation
that was used to qualitatively validate the results. The vibrating motion of an automatic parametric pendulum
coupled to a damped system was studied [12–15]. The kinematic equations of the system were obtained
using Lagrange’s equations in agreement with their generalized coordinates. A wide-ranging examination
of variable-length pendulums was presented [16]. Using mathematical modeling, dynamical analysis, and
innovative computer simulations, an attempt at a unique evaluation of current advancements in this domain was
made. Major developments were addressed of many notions and their theoretical and engineering applications.
Dedicated numerical approaches were used to verify some key physical ideas, which were evaluated utilizing
dynamical analysis. Multi-harmonic resonances were widespread in rotor systems and had a major impact on
their nonlinear properties [17]. The convergence of the conclusions and the confirmation of the solutions with
the existing literature data were provided. The nonlinear mathematical model was used to discover nonlinear
and double-factor chaotic fluctuations for the construction under a combination of aerodynamic intensity and
variable spinning velocity [18]. The parameterized and external resonances were used to simplify the variable
rotational speed and aerodynamic force, respectively. Membranes have been commonly employed in long-
span pitches and other constructions due to their light and flexibility qualities [19]. External loads, on the other
hand, will result in a rather substantial displacement. Consequently, experts have been concerned about the
substantial deviation oscillation of the membranes. It should be noted that the existing problem of an IP reveals
the presence of periodic circular functions which arise due to its periodic move bases.

Perturbation methods, which are extensively used techniques, were of remarkable interest for use in engi-
neering and many areas of practical physics. A novel strategy founded on homotopy terminology has been
developed to overcome the limitation of a small parameter (SP) which inevitably exists in all perturbation
methodologies. Consequently, the methodology of the new approach was given the name (HPM). The Chinese
Mathematician Prof. He [20] was the first who proposed the HPM. Therefore, without utilizing the perturba-
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tion procedure, a nonlinear challenge was reduced to an endless set of easy complications. Allowing the SP
to proceed from zero to unity effectively converts the problem into a particular perturbation problem with a
little embedded factor. Many studies showed the powerful effectiveness of the new technique [21–23]. The
classic perturbation methodology and homotopy analysis method can be fully utilized in this approach. The
new approach has been used for ordinary as well as partial differential equations in both linear and nonlinear
features. It has been used to solve a wide range of different forms of differential equations. When compared
to other perturbation methods, the HPM clearly generates better accurate outcomes. Consequently, the HPM
offers all the advances of traditional perturbation methods without the necessity of SP in the solution tech-
nique. The method has an easier form than the prior classical approaches because it requires less computation
time and has higher computational precision. The method takes only initial conditions to solve any problem
and gives an analytical approximate solution to the structure of an infinite power series. A lot of researchers
employed HPM to solve nonlinear differential equations, and their results have been conveniently reported.
Considering the HPM, the accurate solution of the Duffing equation was achieved [24]. This equation has
considerable significance in biology, manufacturing, physics, and communication hypothesis. The motion of a
sliding particle on a smooth upright parabola was investigated [25]. An analytic bounded solution was obtained
by combining the HPM and the Laplace transforms. In accordance with the effectiveness and accuracy of the
HPM, a modified approach is utilized throughout the current paper.

In light of the aforementioned aspects, this paper focuses on the vibrating dynamical motion of IP. The
current work attempts to provide an overview of the nonlinear mechanism concept, established on its straight-
forward form and rich nonlinear prototype. Typically, the IP is statically unstable in its initial state in view of
the gravitational attraction. Therefore, it is subjected to a light torsional spring, which is associated with the IP
with the vertically upward axis. According to the potential purposes of the presence of the magnetic strength,
the IP is affected by an unchanged magnetic field, which is orthogonal to the vertical plane containing the IP.

The following questions should have their answers at the conclusion of this investigation:

• How can an accurate approximate solution consistent with RK4 be found?
• What is about the stability analysis in resonance and non-resonance situations?
• What are the influences of the different physical factors on the stability profile?
• How can the static instability of the IP be suppressed?

The remainder of the current work is constructed as follows: The regulating equation of motion of the
magnetic IP is derived in Sect. 2. Section 3 is devoted to introducing the application of the frequency equivalence
technique as a novel procedure to the stability analysis as well as the approximate solution of the given IP.
The relationship connecting the numerical and analytical solutions displays the good precision of the used
perturbation method. The non-resonance as well as the resonance cases are examined. Some plots are given
to show the impact of different factors on the examined motion. Finally, the concluded remarks are drawn in
Sect. 4.

2 Physical modeling of the IP

As shown in Fig. 1, a sketch of an excited parametric IP is displayed. For more convenience, the Cartesian
coordinates (x, y, z) will be utilized to modulate the physical prototype. The system contains a bob which,
for simplicity, is treated as a point with the mass m and connected to a mass-less rigid rod of length L to the
pivot, which is located at the origin of the frame of reference O . This pivot has a periodic movement as the
periodic function Q0 cos�t , where Q0 and � are the movement amplitude and frequency, respectively. As
seen, the considered IP rotates along with the vertical xy− plane, where i and j are unit vectors along the
x− and y− axis, correspondingly. Simultaneously, the unit vector k acts along with the normal z− direction.
At this stage, the IP is fundamentally unstable, where it is hung above the horizontal plane, and it will go
down by the gravitational impacts. Therefore, a light torsional spring of stiffness k is attached to the vertical
axis from the IP. Additionally, an air-damping force with a damped coefficient δ to the horizontal direction is
considered. Moreover, a uniform magnetic field B k acting along with the negative z− direction is considered.
The fundamental goal of the considered control system is to address the stability of the IP.

In light of the previous simplified description, the governing equation of motion may be considered as a
particle of massm, whichmoves in the xy− plane and subjected to a normal uniformmagnetic field. Therefore,
the position vector of the mass m may be written as:

r � (L sin θ + Q0 cos�t) i + L cos θ j , (1)
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Fig. 1 Sketches the IP with a horizontal periodic moving base

where i and j are the unit vectors in the paths of x and y axes. It follows that its velocity may be given by

v � (L θ̇ cos θ − �Q0 sin�t) i − L θ̇ sin θ j, (2)

where the dot sign stands for the differentiation with time.
The kinetic energy of the point mass is addressed as follows:

T � m

2
[L2θ̇2 − 2L�Q0θ̇ cos θ sin�t + �2Q2

0 sin
2 �t]. (3)

Actually, the potential energy results from different activities; these circumstances may be classified as
follows:

• The gravitational potential energy, which gives the energy of an object concerning a gravitational field, is
characterized as mgL cos θ .

• The elastic potential energy is the potential energy which results from the distortion of an adaptable body,
such as the spring enlargement. It is a prime example of the work done by stretching the spring. It depends
upon the stiffness of the spring constant k and the reduced distance. It may be formulated as: kθ2/2.

• The charged IP moves in a uniform magnetic field B � B k; therefore, the potential function of the problem
must include the magnetic term q P . v, where P is the magnetic vector potential; for instance, see Eyal and
Goldstein [26]. Keep in mind that the relationship between the magnetic field B and the magnetic potential
P is given by: B � ∇ ∧ P . One may show that one of the possibilities of the vector potential is given by
P � 1

2

(
B ∧ r

)
. It follows that P can be expressed as:

P � 1
2 B[−L cos θ i + (L sin θ + Q0 cos�t) j]. (4)

Combining Eqs. (2) and (4), the potential energy due to the uniform magnetic field may be formulated as
follows:

P. Emag � − 1
2qlB[L θ̇ + Q0θ̇ sin θ cos�t − �Q0 cos θ sin�t]. (5)

Consequently, the total potential energy may be expressed as follows:

V � mgL cos θ + 1
2kθ

2 − 1
2qLB

[
L θ̇ + Q0θ̇ sin θ cos�t − �Q0 cos θ sin�t

]
. (6)

Combining Eqs. (3) and (5), it follows that the Lagrangian function of the considered magnetic IP is given
by

� � T − V

� 1

2
m[L2θ̇2 − 2L�Q0θ̇ cos θ sin�t + �2Q2

0 sin
2 �t] − [mgL cos θ

+
1

2
kθ2 − 1

2
qLB(L θ̇ + Q0θ̇ sin θ cos�t − �Q0 cos θ sin�t)]. (7)

The air-damping force can be considered as a non-conservative force. This force may be created as follows:

GD � −δ v. (8)
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It follows that

GD � δ[(�Q0 sin�t − L θ̇ cos θ ) i + L θ̇ sin θ j]. (9)

Along with this description, the system has one-degree-of freedom, and the generalized coordinate is
represented by θ . Therefore, the generalized force is identified as:

Q � GD.
∂r

∂θ
� −δL2θ̇ + δ �LQ0 cos θ sin�t. (10)

From the elements of the analytical mechanics, Lagrange’s equation with the non-conservative force may
be written as:

d

dt

(
∂�
∂θ̇

)
− ∂�

∂θ
� Q. (11)

Inserting Eqs. (7) and (10) into Eq. (11), it follows that the governing equation of motion of the considered
magnetic IP may be written as follows:

m L2θ̈ + δ L2θ̇ + kθ − L�Q0(m � cos�t + δ sin�t) cos θ − L(mg + qBQ0� sin�t) sin θ � 0. (12)

Equation (12) signifies the fundamental equation of motion with restoring as well as multi-parametric
forces. This equation may be converted to a linear forcing Mathieu equation under the highest approximation
of the restoring forces as follows:

mL2θ̈ + δ L2θ̇ − (mgL − k + qB LQ0� sin�t)θ � Q0L�(mL� cos�t + δ sin�t). (13)

Analogous situations of Eq. (8) were previously presented in [27], and [28]. Now, let’s return to the original
controlling equation as given in Eq. (12). In what follows, a novel technique will be utilized to examine the
stability standards of themagnetic IP. Before dealingwith themathematical analysis of the controlling equation
of the IP as given in Eq. (12), a non-dimensional procedure will be needed for more convenience. For this
objective, the non-dimensional procedure canbe accomplished in numerousways, basedmainly on the selection
of qualities. Let us consider the characteristic parameters:Q0,

√
Q0/g andm stand for length, time, and mass,

respectively. Along with these characteristics, Eq. (12) may be converted to the following non-dimensional
form:

L2θ̈ + δ L2θ̇ + kθ − L�(� cos�t + δ sin�t) cos θ − L(1 + H� sin�t) sin θ � 0, (14)

where the parameter H refers to the non-dimensional term of the magnetic contribution, which results from
the product qB.

3 An improved frequency evaluation

In what follows, the underlying aim is to achieve a uniform analytical estimate solution of the fundamental
equation of motion as shown in Eq. (14). For the sake of simplicity of the mathematical procedure, approxima-
tions of the restoring forces sin θ and cos θ will be used, where sin θ ≈ θ − 1

6θ
3 + ... and cos θ ≈ 1− 1

2θ
2 + ....

Therefore, Eq. (14) can be rewritten as

(15)

θ̈ + δ θ̇ + ω2θ − � H

L
sin�t θ +

�

2L
(� cos�t + δ sin�t) θ2

+
1

6L
(1 + � H sin�t) θ3 − �

L
(� cos�t + δ sin�t) � 0,

where ω2 � (k − L)
/
L2.

The following performance is based on a coupling of HPM and LT as:
Equation (15) may be divided as:

I (θ ) � θ̈ + ω2θ, (16a)
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and

(16b)

N (θ ) � δ θ̇ − � H

L
sin�t θ +

�

2L
(� cos�t + δ sin�t) θ2

+
1

6L
(1 + � H sin�t) θ3 − �

L
(� cos�t + δ sin�t) .

For this objective, it is convenient to assume the following initial conditions:

θ (0) � 0, and θ̇ (0) � 1. (17)

It follows that the Homotopy equation may be written as follows:

I (θ ) + ρ N (θ ) � 0; ρ ∈ [0, 1], (18)

where a synthetic incorporated factor is denoted by ρ. It is frequently referred to as the Homotopy parameter.
The HPM can offer a selection of approximate solutions, as was explicitly indicated in our earlier works

[24] and [25]. One of these approaches results in a traditional solution with secular terms. Unfortunately, the
removal of these secular terms produces a trivial solution that is not acceptable. Using the extended frequency
hypothesis, an alternative approach generates solutions that are typically appropriate, however, the produced
solutions do not fulfill the numerical ones. Therefore, the HPMmust consequently be changed once more. The
delayed parameter, which is more effective in avoiding bifurcations and reducing vibration, has a dominant
influence on this situation. So, we can perform another examination. The basic Homotopy equation uses a
novel expansion in place of the conventional one. As shown in our prior work [29], it is believed that θ(t, ρ)
may be extended to another formula. Consequently, the following are the procedures to obtain the required
solution:

The time-dependent function may be expressed as:

θ (t ; ρ) � e−δρt/2(θ0(t) + ρ θ1(t) + ...). (19)

As stated earlier, Eq. (18) reveals the homotopy expression for the equation under consideration. Since the
normal frequency of the exiting prototype is ω2. It should be noted that the value of the stiffness parameter
needs to exceed the length of the IP in order to obtain real natural frequency. The subsequent stability standards
will be established on the extended frequency evaluation [24]. In agreement with thismethodology, an extended
synthetic frequency σ 2 can be expressed as:

σ 2 � ω2 +
∞∑

j�1

ρ jσ j , (20)

where the factors σi will be calculated afterward, as a mixture of the previous qualities of the considered
structure. This will be accomplished in order by ignoring secular terms [30–32].

Combining Eqs. (18)-(20), while taking over the Laplace transforms and taking into consideration the
preliminary circumstances that are provided in Eq. (17), one gets

LT {θ (t ; ρ)} � 1

s2 + σ 2 − ρ

s2 + σ 2 LT [σ1θ − δ θ̇ − δ

2
t θ̈ − δ

2
tσ 2 θ + ρδ θ̇ − � H

L
θ sin�t

+
�

2L
(� cos�t + δ sin�t) θ2 +

1

6L
(1 + � H sin�t) θ3 − �

L
(� cos�t + δ sin�t)]. (21)

Employing the inverse transforms to Eq. (21), one realizes

θ (t ; ρ) � 1

σ
sin σ t − L−1

T

{
ρ

s2 + σ 2 LT [σ1θ − δ θ̇ − δ

2
t θ̈ − δ

2
tσ 2 θ + ρδ θ̇ − � H

L
θ sin�t

+
�

2L
(� cos�t + δ sin�t) θ2 +

1

6L
(1 + � H sin�t) θ3 − �

L
(� cos�t + δ sin�t)]

}

.

(22)
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By using the development of the dependent function θ (t ; ρ) as presented in Eq. (22), and later identifying
the coefficients of comparable powers ρ on both sides, one gets

ρ0 : θ0(t) � 1

σ
sin σ t , (23)

and

ρ : θ1(t) � −L−1
T { 1

s2 + σ 2 LT [σ1θ0 − δ θ̇0 − δ

2
t θ̈0 − δ

2
tσ 2 θ0 + ρδ θ̇0 − � H

L
θ0 sin�t

+
�

2L
(� cos�t + δ sin�t)θ20 + +

1

6L
(1 + � H sin�t) θ30 − �

L
(� cos�t + δ sin�t)]}. (24)

Usually, the consistent acceptable formula results from the removal of the secular terms. Consequently,
the coefficient of the circular function sin σ t should be overlooked. This implementation produces the factor
σ1 as:

σ1 � 1

8L σ 2 . (25)

The regular solution at this point is provided by

θ1(t) � − [2H (σ 2 − �2)(9σ 2 − �2)(16σ 2 − �2 − 2) + �2(4σ 2 − �2)(16σ 2 − �2)(9σ 2 − �2 − 3)]

L{3σ 4(91�4 + 192σ 4) + �2[�6 − 10σ 2(82σ 4 + 3�4)]} cosσ t

− sin3σ t

192 Lσ 5
+

{σ 4[64δ(�4 + �2) + 9] + �2[�2 − σ 2(10 + 576δσ 4)]}
64 Lσ 5(�2 − 9σ 2)(�2 − σ 2)

sinσ t

+
1

4 Lσ 2

[
(4σ 2 − 1)�

(σ 2 − �2)
(�cos�t − δsin�t) +

H (8σ 2 − 1)

(4σ 2 − �2)
cos(σ − �)t

]

+
�

8Lσ 2

{
[δ sin(2σ − �)t − �cos(2σ − �)t]

(3σ − �)(σ − �)
− [δ sin(2σ + �)t + �cos(2σ + �)t]

(σ + �)(3σ + �)

}

+
H �

48 Lσ 3

[
cos(3σ + �)t

(2σ + �)(4σ + �)
− cos(3σ − �)t

(4σ − �)(2σ − �)

]
. (26)

As a consequence, the following is how the constrained approximation of the equation of motion provided
in Eq. (14) can be formulated:

θ (t) � lim
ρ→1

e−δρt/2(θ0(t) + ρ θ1(t) + ...). (27)

The arguments of the circular functions must actually have a valid value in order to yield the constrained
estimated solution shown in Eq. (27). When Eq. (25) and Eq. (20) are combined for this goal, it implies that
the synthesized frequency matches a certain distinctive equation. The computations revealed that this equation
reflects a synthesized fourth-degree polynomial. One may write this equation as follows:

σ 4 − ω2σ 2 − 1

8L
� 0. (28)

It is suitable to evaluate this solution with the numerical approach as established by RK4 to assess the
practicality of the previous expanded frequency implications. The requirements for this implementation are
listed below. Therefore, the RK4 is used to achieve the numerical solution of Eq. (14), and then the curves of
Fig. 2 are drawn according to the following data:

k � 0.9, L � 0.5, H � 0.2, � � 0.01, δ � 0.1.

The computations demonstrated that the synthetic frequency has the amount σ � 1.32038 and the other
roots (two are complex conjugate and the third is real and negative).

Equation (27) reads that the damped coefficient δ performs a dominant role in damping the solution.
Therefore, it plays a major part in suppressing the instability of the IP. On the other hand, the curve of the
time history of this solution has the form of decay behavior which means that this solution is stable and free of
chaos, as seen in Fig. 2a. To confirm this conclusion, the corresponding phase plane plot is graphed in Fig. 2b,
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Fig. 2 Depicts a for the numerical solution, while b for corresponding to phase plane of Eq. (14)

Fig. 3 a Shows the analytic solution, while b describes for the corresponding phase plane, of Eq. (27)

Fig. 4 Reveals the comparison between the NS and the AS: a for the time history, while b for the corresponding phase plane

which has the form of a spiral curve toward one point. On the contrary, considering the above data, the analytic
solution (AS), as given by Eq. (27), is graphed in Fig. 3. The portions (a) and (b) of this picture display the
temporal history of the AS and the phase plane of this solution, respectively. The comparison between the NS
and the AS shows consistency as illustrated in portions (a) and (b) of Fig. 4. The inspection of this figure shows
that the two curves are highly in accord. This means that the expanded frequency, as a systematic estimated
solution, is a favorable and powerful perturbation procedure.

Examining the contours of Fig. 5 demonstrates the impact of the various values of the non-dimensional
term of the magnetic field H (� 0, 20, 40) on the time history of the obtained analytic solution and its phase
plane plot when k � 0.9, L � 0.5,� � 0.01, and δ � 0.1. As previously interpreted, the waves have decay
forms, but also the amplitude of the waves increases with the increase of H , as seen in Fig. 5a. Moreover, the
decay rate of the drawn waves rises with the decrease of the amounts of H . The function H is drawn via its
first derivative to yield the phase plane diagram, as seen in Fig. 5b. These curves have spiral forms, pointing
toward one point, which indicates the stability of the obtained solution. Therefore, the magnetic field has a



Analytical and numerical study of a vibrating magnetic inverted pendulum 2541

Fig. 5 Describes the variation of H , a for the analytic time history, and b for the corresponding the phase plane diagram of
Eq. (27)

Fig. 6 Describes the influence of various values of k on the curves in the plane σ − L

substantial impact on the stability of the considered model, in which the decaying wave period increases for
greater values of this field, in comparison to its lower values.

The curves of Fig. 6 represent the solution of Eq. (28) at various values of spring stiffness k. These curves
have symmetric forms about the horizontal L axis. Therefore, these curves have a decayed form with the
change of k, which implies the motion is stable.

4 Multiple time scale method

The multiple time scales method [27] is employed to accomplish the stability behavior of Eq. (15). One may
contemplate that the dependent variable as a function t may be formulated in light of the HPM. Subsequently,
rather than treating the expansion as a function of only one independent variable or scales, it is handled as
a function of many time measures. In the perturbation theory, the methodology of multiple time scales is
generally regarded as a further normative concept. To achieve this, one starts by including two additional
independent variables in accordance with what follows:

Tn � ρnt, n � 0, 1, . . . (29)

In light of the derivatives, they will be transformed as:

d

dt
≡ dT0

dt

∂

∂T0
+
dT1
dt

∂

∂T1
+ . . . � D0 + ρD1 + . . . , (30)

and
d2

dt2
≡ D2

0 + 2ρD0D1 + . . . , (31)

where Dn ≡ ∂
∂Tn

.

The solution of Eq. (15) is assumed to be characterized as:

θ (t ; ρ) � θ0(T0, T1, . . .) + ρθ1(T0, T1, . . .) + . . . (32)
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It should be mentioned that the order of any function is determined by the number of independent time
scales. In otherwords, if the construction is completed up to O(ρ), then T0 and T1 are the essential requirements.

In light of the Homotopy perturbation, Eq. (15) may be written as follows:

θ̈ + ω2θ + ρ

[
δθ̇ − �H

L
sin�tθ +

�

2L
(� cos�t + δ sin�t) θ2 +

1

6L
(1 + � H sin�t) θ3

]

� �

L
(� cos�t + δ sin�t); ρ ∈ [0, 1]. (33)

For further suitability, to achieve a precise development, we carry out the extension up to O(ρ). In this
situation, only two-time scales, T0 and T1 are required.

Combining Eqs. (30)-(32) into Eq. (33), then connecting the amounts of similar powers of ρ, One gets the
formulas shown as follows:

ρ0 : (D2
0 + ω2)θ0 � �

L
(� cos�T0 + δ sin�T0), (34)

and

ρ : (D2
0 + ω2)θ1 � −

[
2D0D1θ0 + δD0θ0 − �H

L
sin�T0θ0 +

�

2L
(� cos�T0 + δ sin�T0)θ

2
0 +

1

6L
(1 + � H sin�T0)θ

3
0

]
,

(35)

Through this methodology, it is straightforward to formulate the solution to Eq. (34) as follows:

θ0(T0, T1) � A(T1)e
iωT0 + A(T1)e

−iωT0 − �

2L(�2 − ω2)
[eiT0�(� − iδ) + e−iT0�(� + iδ)], (36)

where A is an unspecified complex function that can be established later and A is a corresponding complex
conjugate.

Substituting Eq. (36) into Eq. (35), one finds

(D2
0 + ω2)θ1 �

{
�2(δ2 + �2)[2L(�2 − ω2) − 1] − 4i L3δω(ω2 − �2)2

4L3(ω2 − �2)2
A(T1) − A2(T1)A(T1)

2L
− 1

2
iωD1A(T1)

}

eiωT0

+ N .S.T . + c.c. (37)

wherever c.c. signifies the complex conjugate of the previous relationships, and NST describes the terms that
do not generate secular terms.

The necessary consistent development of the function θ1(T0, T1) can be achieved by eliminating the secular
term. The resources of this secular term come from the coefficients of the exponential e±iωT0 . Consequently,
the uniform valid expansion necessitates that

�2(δ2 + �2)[2L(�2 − ω2) − 1] − 4i L3δω(ω2 − �2)2

4L3(ω2 − �2)2
A(T1) − A2(T1)A(T1)

2L
− 2iωD1A(T1) � 0. (38)

Equation (38) is frequently referred to as the amplitude equation and is well recognized as the solvability
criterion.

4.1 Examination of stability in the non-resonance situation

Let’s return to the solvability requirement provided in Eq. (38) for the non-resonance case to examine the
stability outline. In reality, the unidentified function A(T1) might be defined in terms of the time-independent
factor T1 using this equation. Furthermore, the structure of this function is heavily influenced by this factor.
For this purpose, Eq. (37) is partially integrated in relation to the parameter. One may return to the initial
time-independent variable in a subsequent process. Remember that the complex function is not a function
of time. Of course, doing so requires multiplying Eq. (38) by ρ. Therefore, the amplitude equation can be
transformed into d A

/
dt . To this end, one could arrive at the amplitude equation shown as follows:

2iω
d A(t)

dt
− [

�2(δ2 + �2)[2L(�2 − ω2) − 1] − 4i L3δω(ω2 − �2)2

4L3(ω2 − �2)2
]A(T1) − A2(T1)A(T1)

2L
� 0. (39)
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Fig. 7 Describes the temporal histories when δ(� 0.1, 0.15, 0.2): a for the function α and b for the function β

Having complex coefficients, Eq. (39) is a first-order nonlinear differential equation. In the non-resonant
case, this amplitude equation would regulate the stability fundamental to the current issue. The accompanying
polar form procedure can be used to determine the solution to this equation:

A(t) � α(t)eiβ (t), (40)

where α(t) and β(T ) are two real functions.
The two additional algebraic equations result from the process of reorganizing Eq. (59) into Eq. (58) and

evaluating the real and imaginary components through both sides:

8ωβ ′(t) − 2α(t)2

L
+

�2(δ2 + �2)(2L�2 − 1 − 2Lω2)

L3(ω2 − �2)2
α(t) � 0, (41)

and δα(t) + 2α
′
(t) � 0. (42)

The solutions of Eqs. (41) and (42) reveal the following functions:

α(t) � c1e
− δt

2 , and β(t) � c2 − c21e
−δt

4Lδω
+

�2(δ2 + �2)(1 + 2Lω2 − 2L�2)t

8L3ω(ω2 − �2)2
. (43)

As a result, stability exists even in the non-resonant situation assuming that

δ ≥ 0. (44)

An examination of the curves in Fig. 7 demonstrates the time histories of the functions α and β. This
figure is drawn when k � 0.9, L � 0.5, H � 0.2, and � � 0.01 for the values of the damping parameter
δ(� 0.1, 0.15, 0.2). It is shown that the curves of α function have a decaying behavior with the variation of δ
values as seen from Fig. 7a. On the contrary, the variation of the function β with time when δ varies is graphed
in Fig. 7b, where the curves of this function increase to certain values and then become stationary till the end
of time interval. The plotted curves of Fig. 7 are aligned with the mathematical formula (43) of the functions
α and β.

4.2 Evaluation of stability in the resonance situation

As realized in the preceding Section, the stability standards of the non-resonance situation do not consider
all such characteristics. The investigation that follows tackles the resonance cases. Interestingly, the choice to
use non-homogeneous periodic terms all across the zero-order equation results in a large number of resonance
occurrences. Such resonance situations can be divided into super-harmonic and sub-harmonic ones, with the
following list:

• Sub-Harmonic Resonance
(1) As � ≈ ω, the coefficients of the exponentials ei�T0 , ei(2�−ω)T0 and ei(2ω−�)T0 become secular terms.
(2) As � ≈ 2ω, the coefficient of the exponential ei(3ω−�)T0 becomes secular terms.
(3) As � ≈ 3ω, the coefficient of the exponential ei(�−2ω)T0 becomes a secular term.
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(4) As � ≈ 4ω, the coefficient of the exponential ei(3ω−�)T0 becomes a secular term.
• Super-Harmonic Resonance
(1) As � ≈ ω

/
2, the coefficients of the exponentials e2i�T0 and ei(2ω−2�)T0 become secular term s .

(2) As � ≈ ω
/
3, the coefficient of the exponential e3i�T0 becomes a secular term.

(3) As � ≈ ω
/
4, the coefficient of the exponential e4i�T0 becomes a secular term.

(4) As � ≈ 3ω
/
2, the coefficient of the exponential ei(2�−2ω)T0 becomes a secular term.

(5) As � ≈ 2ω
/
3, the coefficient of the exponential ei(3�−ω)T0 becomes a secular term.

The resonance case has a benefit when used. It aids in the introduction of non-secular terms. The present
review only addresses one of these resonance situations in order to shorten the computations for the sub- and
super-harmonic resonances. For instance, we are going to examine only two cases: one for the sub-harmonic
resonance which is � ≈ 3ω and the other for the super-harmonic resonance which is � ≈ 3ω

/
2.

To investigate one case of the sub-harmonic resonance, the quantitative nearness of � to 3ω is studied
while proposing a detuning factor ε to get

� � 3(ω + ρε), (45)

Here, one gets

i(� − 2ω)T0 � iωT0 + 3iεT1. (46)

Consequently, the secular terms will commence increasing. At this point, the solvability requirement
provided by Eq. (38) will be changed to read as:

2iωD1A(T1) −
[

�2(δ2 + �2)[2L(�2 − ω2) − 1] − 4i L3δω(ω2 − �2)2

4L3(ω2 − �2)2

]

A(T1)

+
A2(T1)A(T1)

2L
− �(� − iδ)(1 + Lω2 − L�2)A

2
(T1)

4L2(ω2 − �2)
e3iεT1 � 0. (47)

Similar to the reasons presented in the non-resonance example, one observes

2iω
d A(t)

dt
−

[
�2(δ2 + �2)[2L(�2 − ω2) − 1] − 4i L3δω(ω2 − �2)2

4L3(ω2 − �2)2

]

A(t)

+
A2(t)A(t)

2L
− �(� − iδ)(1 + Lω2 − L�2)A

2
(t)

4L2(ω2 − �2)
e3iεt � 0. (48)

Equation (48) is a complex and variable first-order nonlinear differential equation. The following is how
to find its solution:

A(t) � λeiεt , (49)

where λ and ε are real constants.
Equating the real and imaginary terms after substituting Eq. (49) into Eq. (48), one gets

L(�2 − ω2){�2(2δ2 + λ + 2�2) + L(�2 − ω2)[8Lεω − λ(2λ + �2)]} − �2(δ2 + �2) � 0, (50)

and
(
Lλ� − 4L2ω

)(
ω2 − �2) + λ� � 0. (51)

The solutions of Eqs. (50) and (51) generate

λ � 4L2ω(ω2 − �2)

�(1 + Lω2 − L�2)
,

ε � {4L4ω(ω2 − �2)3[2�3 + 4L(ω2 − �2)(8L ω + �3)] + �4(δ2 + �2)

× [1 + L(ω2 − �2)(4 + 5L2(ω2 − �2))] + 2L3�3(ω2 − �2)2[2ω

+ �(δ2 + �2)(ω2 − �2)]}/{8L3ω(ω2 − �2)2�2[1 + L(ω2 − �2)]2}. (52)

Equations in the system (52) are graphed in the planes �λ and �ε to yield parts (a) and (b) of Fig. 8,
respectively. The influence of different amounts of L on the behavior of the plotted curves is consistence with
these equations.
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Fig. 8 Shows the influence of the various values of L(� 0.4, 0.5, 0.6): a in the plane �λ and b in the plane �ε

• Super-harmonic resonance
The quantitative nearness of � to 3ω

/
2 yields

� � 3

2
(ω + ρμ). (53)

where μ is a new detuning parameter. In this case, one finds

2i(� − ω)T0 � iωT0 + 3iμT1. (54)

Consequently, secular terms will start increasing. At this point, the solvability requirement provided by
Eq. (38) will be changed to read as:

2iωD1A(T1) − �2(δ2 + �2)[2L(�2 − ω2) − 1] − 4i L3δω(ω2 − �2)2

4L3(ω2 − �2)2
A(T1) +

A2(t)A(T1)

2L

+
H(δ + i�)�2A

2
(T1)

8L2(ω2 − �2)
e3iμT1 � 0. (55)

Corresponding to the justifications presented in the non-resonance situation, one observes

2iω
dA(t)

dt
− �2(δ2 + �2)[2L(�2 − ω2) − 1] − 4i L3δω(ω2 − �2)2

4L3(ω2 − �2)2
A(t) +

A2(t)A(t)

2L

+
H(δ + i�)�2A

2
(t)

8L2(ω2 − �2)
e3iμt � 0. (56)

Equation (56) is a first-order nonlinear differential equation with complex and variable coefficients. Its
solution may be obtained as follows:

A(t) � ηeiμt , (57)

where η and μ are any two real amounts.
Replacing Eq. (57) into Eq. (56), and then comparing the real and imaginary relationships, one realizes

(ω2 − �2)2(4L2η2 − 16L3μω) + 2�2(δ2 + �2) + L�2(ω2 − �2)(4δ2 − Hδη + 4�2) � 0, (58)

and L(ω2 − �2)[8L2δω(ω2 − �2) − Hη�3] � 0, (59)

The solutions of Eqs. (58) and (59) produce

η � 8L2δω
(
ω2 − �2

)

H�3 (60)

and μ � �2(δ2 + �2)

8L2ω(ω2 − �2)

[
2 +

1

L(ω2 − �2)

]
+
16L3δ2ω(ω2 − �2)2

H2�6 − δ2

2�
. (61)

The above two Eqs. (60) and (61) are graphed in the parts (a) and (b) of Fig. 9 when considering the same
values of k � 0.9 and H � 0.2 when L(� 0.14, 0.5, 0.6). It is obvious that the included curves in Fig. 9a
decrease till a certain value of � and then they have a stationary manner over time. On the other hand, curves
of Fig. 9b start from higher values of μ and then oscillates between decreasing and increasing till � � 2.
Finally, they behave decreasing manner till the end of time period.
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Fig. 9 Shows the impact of the various values of L(� 0.4, 0.5, 0.6): a in the plane �η and b in the plane �μ

5 Concluding remarks

The current work examines the base periodic motion of an IP to achieve the stability structure IP. A steady
magnetic field has an impact on the motion normal to the plane configuration. Additionally, a non-conservative
force that dampens air is considered. The traditional analytical mechanics is employed to derive its fundamental
equation of motion. In order to get rid of the restoring forces, the Taylor theory is utilized for simplifying the
mathematical analysis. To provide a nearly appropriate periodic solution, the modified HPM is applied. A
numerical approach based on RK4 is employed to support the earlier finding. The graphs of the two solutions
are very similar to one another, proving better accuracy of the perturbation technique. There is a strong
agreement between the analytical and numerical schemes when they are compared. The solution time history
curve displays a decaying behavior, demonstrating stability and the absence of chaos. Utilizing the time scale
approach, resonance and non-resonance cases are discovered during the stability investigation. The concept of
multiple time scales is actually recognized as a further conventional approach in all perturbation approaches.
The cases of sub- and super-harmonic resonances are examined. Certain graphical representations are used
to demonstrate the influence of the characteristic physical factors and to demonstrate the behavior of the
obtained solution. To show how the behavior of the obtained solution is influenced by the typical physical
parameters, some graphical representations are employed. It has been found that increasing the spring torsional
consistent stiffness and the damped coefficient can improve the statically unstable IP instability. Additionally,
the magnetic field has an important impact on the stability of the investigated model, which explains why the
time of the decaying waves increases with higher values of this field, relative to smaller values of the field. It
can therefore be used in a variety of engineering devices that require a certain time to become more stable.
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