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Abstract
The growing interest and direct impact of carbon trading in the economy have drawn an increasing attention to the evolution 
of the price of CO2 allowances (European Union Allowances, EUAs) under the European Union Emissions Trading Scheme 
(EU ETS). As a novel financial market, the dynamic analysis of its volatility is essential for policymakers to assess market 
efficiency and for investors to carry out an adequate risk management on carbon emission rights. In this research, the main 
autoregressive conditional heteroskedasticity (ARCH) models were applied to evaluate and analyze the volatility of daily data 
of the European carbon future prices, focusing on the last finished phase of market operations (phase III, 2013–2020), which 
is structurally and significantly different from previous phases. Some empirical findings derive from the results obtained. 
First, the EGARCH (1,1) model exhibits a superior ability to describe the price volatility even using fewer parameters, partly 
because it allows to collect the sign of the changes produced over time. In this model, the Akaike information criterion (AIC) 
is lower than ARCH (4) and GARCH (1,1) models, and all its coefficients are significative (p < 0.02). Second, a sustained 
increase in prices is detected at the end of phase III, which makes it possible to foresee a stabilization path with higher prices 
for the first years of phase IV. These changes will motivate both companies and individual energy investors to be proactive 
in making decisions about the risk management on carbon allowances.
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Introduction

Emissions trading is a market instrument that pursues an 
environmental benefit, creating an economic incentive or 
disincentive to reduce industrial plants emissions of pol‑
luting gases into the atmosphere, thus minimizing the asso‑
ciated environmental externalities. This mechanism both 
imposes a maximum on the levels of  CO2 that can be emit‑
ted by industrial facilities and airlines, and it also issues 
allowances that concede the rights to emit a limited amount 

of gases, a limit which tend to be reduced over time. In addi‑
tion, a market is created for the purchase and sale of those 
allowances, which companies must acquire according to 
their yearly gas emissions (otherwise, they will be punished 
with economic sanctions).

The European Union Emissions Trading System (EU 
ETS) was ambitiously designed with the aim of achieving a 
mature and successful system, and currently includes a total 
of 30 countries (27 EU countries plus Norway, Iceland and 
Liechtenstein1). The initial goal was to achieve price levels 
that would lead the large polluting industries, both station‑
ary installations and the aviation sector (incorporated into 
the EU ETS in 2012), to consider a technological change 
towards a greener and more efficient economy.

Phase 3 (2013–2020), the main target of this research, 
began in a climate of uncertainty and pessimism, after two 
previous phases that were quite unstable and convulsive. 
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The initial period or phase 1 (2005–2007) was conceived 
as a trial process (see timing of the phases in Fig. 1), later 
characterized by the existence of several errors that would 
lead to major improvements. First, the design of a decen‑
tralized operating scheme caused a great lack of coordina‑
tion since each Member State defined its own ceilings and 
mode of rights allocation through the national allocation 
plans (NAPs). Second, the over allocation of allowances, 
based on estimated needs according to historical activity 
data, resulted in the number of allowances for the period 
exceeding projected emissions by some 160 million 
(Anderson & Di Maria 2011), which led to the price of 
first‑period allowances falling to practically zero in 2007.

In phase 2 (2008–2012), the allocation of allowances 
(EUAs) continued to be decentralized but supervised by the 
European Commission (EC) in order to avoid over alloca‑
tion. There also existed the possibility of carrying forward 
to phase 3 those EUAs not used in this period (known as the 
“banking” mechanism), aiming to reduce price volatility. 
Free allocation was maintained, resulting in a marginal use 
of allowances auctions. Although the number of allowances 
was reduced by 6.5%, the irruption of the economic crisis 
and the consequent reduction in economic and industrial 
activity, caused the demand for allowances to plummet, 
which together with the lack of unanimous agreements and 
delays in decision making, prolonged the negative outlook 
for the evolution of the EUA price, clearly resulting in a new 
surplus of allowances.

In phase 3 (2013–2020) some significant changes took 
place that led to a new twist in market operations. Among 
them, the following stand out: (i) instead of the previous 
national emission limits system, a single EU‑wide emis‑
sion limit applied (reduced by 1.74% per year); (ii) auction‑
ing was the widespread method of allocating allowances 
(instead of free allocation), and free distribution allowances 
were subject to harmonized allocation rules; (iii) regulation 
included a higher number of sectors and gases covered; and 
(iv) the new entrants reserve was endowed with 300 million 
allowances to finance the deployment of innovative renew‑
able energy and carbon capture and storage technologies 
through the NER300 program.2

As for the fourth phase (2021–2030), on April 8, 2018, 
the Directive (EU) 2018/410 (revised EU ETS Directive) 
entered into force, introducing the necessary changes to the 
ETS for compliance with the EU’s emission reduction tar‑
gets under the 2030 climate and energy framework (Euro‑
pean Commission 2020) and as part of the EU’s contribution 
to the implementation of the 2015 Paris Agreement (United 
Nations Framework Convention for Climate Change 2017). 
The first global stocktaking is planned for 2023. The revised 
Directive focus on four aspects: (i) consolidating the EU 
ETS as an investment driver, increasing the pace of emis‑
sion allowance reductions to 2.2% per year starting in 2021; 
(ii) strengthening the market stability reserve mechanism, 
established by the EU in 2015 to reduce the surplus of allow‑
ances in the carbon market and improve the resilience of the 
EU ETS to future shocks; (iii) maintaining the free alloca‑
tion of emission allowances as a guarantee of international 
competitiveness of industrial sectors exposed to a risk of 
carbon leakage, i.e., the risk that a company will relocate 
its production to countries where it is not mandatory to pay 
to emit greenhouse gases if it is too expensive for them to 
operate in Europe; and (iv) helping industrial and energy 
sectors to meet the innovation and investment challenges of 
the transition to a low‑carbon economy through a range of 
financing mechanisms.

The recently concluded phase III (2013–2020) is the 
longest operational period to date, a stage in which impor‑
tant transformations have taken place that will provide new 
perspectives for the future, especially with respect to market 
efficiency, a necessary feature for financial markets to fulfill 
their primary tasks (Charles et al. 2013). Market efficiency 
is critical for policymakers and financial supervisors, and 
it is reached when information is complete, perfect, and 
costless, and is fully reflected in the price of the exchanged 
financial assets (Fama 1991). In this context, market partici‑
pants are unable to consistently anticipate the movements of 
asset prices to obtain returns above average, and thus, market 
prices reflect the real behavior and interaction of the forces 
of supply and demand (preventing price manipulations that 
benefit some investors and harm the rest). In financial mar‑
kets, lower levels of volatility imply higher levels of market 
efficiency. In fact, volatility is a fundamental and intrinsic 
characteristic of financial series and describes price fluctua‑
tions based on their degree of variation over time. Volatility, 
which is frequently measured by the variance or the standard 
deviation of returns, is also relevant for investors, so as they 
can estimate the risk‑reward profile of their investments, 

Fig. 1  EU ETS implementation 
phases

2 The NER 300 program took its name from the sale of 300 million 
emission allowances from the new entrants’ reserve (NER). Funds 
received from the sales (about 2 billion euros) were distributed to dif‑
ferent selected projects.
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adjust their portfolios, and even for the valuation of financial 
options through the Black–Scholes formula.

Volatility implies variability and instability in the trajec‑
tory of the financial series and is usually not constant. For 
this reason, classical models with homoscedastic variance 
are not appropriate, and it is necessary to apply autoregres‑
sive conditional heteroskedasticity econometric models, that 
is, ARCH‑type models. The ARCH model has the advantage 
of considering conditional volatility, but the disadvantage 
that the number of parameters to be estimated is usually 
very high (and therefore, worse fits are usually obtained) 
in this type of financial series. The GARCH model has an 
advantage over the ARCH model, since the conditional vari‑
ance not only depends on the squares of the observations, 
but also depends on the conditional variances of previous 
periods. However, it does not include the sign (positive or 
negative) of these variations. This inconvenience is solved 
by the EGARCH model, by allowing to identify the positiv‑
ity or negativity in the price fluctuations.

Given the scarcity of research about risk in carbon mar‑
kets (Zhu et al. 2019), our main aim is to explore and analyze 
the market volatility of the European CO2 allowances future 
market by applying these three ARCH‑type models (ARCH, 
GARCH, and EGARCH).

After the introduction, the rest of the article is divided 
into four additional sections. Section 2 details some previ‑
ous contributions regarding the application of GARCH and 
EGARCH models in markets with high price volatility. Sec‑
tion 3 includes the data sample and a brief description of the 
EGARCH methodology. Section 4 shows the main results 

derived from the empirical analysis, and finally, Sect. 5 
exhibits the main conclusions, limitations, and future lines 
of research.

Background

The European carbon market has attracted academic 
attention since its inception, given its novelty (acting as 
a testing laboratory for all the countries and economic 
regions aiming to create a similar mechanism, such as 
China) and its worldwide implications for a greener and 
sustainable economy. Risk management is a major issue 
for academics, practitioners, and policymakers in the 
carbon market. Researchers have tackled this question 
measuring risk using different approaches, particularly 
volatility and the value at risk (VaR) method. This method 
only focuses on the probability of a maximum loss in a 
time interval, given a certain degree of confidence (Sheng 
et al. 2021), and has been applied to the study of carbon 
markets (Zhu et al. 2019). About the former, research‑
ers have put a special emphasis in volatility spillovers 
between carbon markets and other related such as oil 
(Do et al. 2020; Oikonomikou 2018; Y. J. Zhang and Sun 
2016), the presence of persistent volatility asymmetry 
(Bentes 2018; Olbrys & Majewska 2017), and volatility 
clustering, that is (and as any other tradeable asset), the 
price of carbon allowances is exposed to periods with 
high volatility and low volatility (Aliyev et al. 2020).

In this regard, the family of autoregressive conditional 
heteroskedasticity models (ARCH) (Bollerslev 1986; 
Engle 1982) has proven to be the best methods to measure 
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volatility. Among the wide variety of extensions, the gener‑
alized ARCH (or GARCH) subtype stands out in recent lit‑
erature on financial markets dynamics for developed regions 
such as the major European stock markets of the UK, France, 
and Germany (Olbrys & Majewska 2017); South Europe 
and Ireland (Bentes 2018); the USA (Aliyev et al. 2020); 
and China (Do et al. 2020), but also for less developed stock 
markets such as Pakistan (Mohsin et al. 2020) or Ghana 
(Omari‑Sasu et al. 2015). GARCH models have also been 
applied to the analysis of exchange rate markets volatility 
(Hung 2021).

Volatility on energy markets has been modelized using 
GARCH‑type models in the Portuguese and Spanish elec‑
tricity markets (Macedo et  al. 2020; J. Zhang and Tan 
2013); US crude oil markets (Lin et al. 2020); crude oil, 
natural gas, and electricity in the USA (Efimova and Serletis 
2014); crude oil and new energy markets in China (Chen 
et al. 2020); or European crude oil prices (Maraqa and Bein 
2020). Within the scope of  CO2 prices in the European mar‑
ket, various studies have been carried out on European car‑
bon prices and coal, natural gas, and Brent oil prices (Y. J. 
Zhang and Sun 2016; Zhu et al. 2019),  CO2 emission allow‑
ances in EU‑ETS phase II and phase III (Galán‑Valdivieso 
et al. 2018), the interactions between EU Allowances and 
Certified Emission Reductions (CERs) in the EU‑ETS 
(Koop and Tole 2013), or the relevance of traders’ behavior 
(Wang et al. 2019).

Data and methods

Data sample and description

Data used for the analysis were retrieved from the Thom‑
son Reuters Eikon (Refinitiv) database and correspond 
to daily quotations of EUAs future contracts on the main 
organized market, the European Climate Exchange (ECX), 
based in London and integrated into the ICE (Intercontinen‑
tal Exchange), which channels 95.2% of global EUA and 
CER transactions. Figure 2 shows the evolution of the daily 
prices of both EUAs and CERs in the two main phases of 
operation of the EU ETS (phase II: 2008–2012 and phase 
III: 2013–2020).

As can be noted, the evolution of CERs  (CO2 credits from 
investments in clean mechanisms in developing countries) is 
similar to the EUAs’ prices until the end of 2011, but from 
2012 onwards, there is a clear break in the trend of both 
series, where the price of CERs falls from approximately 5 
euros per ton to values below 1 euro in 1 year, and close to 
zero from that year on. The collapse in the price of carbon 
credits is due to the low level of operations with these assets 
since the EC imposed ceilings on their use, in accordance 
with the principle of supplementarity, according to which 
the use of carbon credits from reduction projects must in 
any case be supplementary to the measures applied inter‑
nally by the Member States. This situation generated a clear 

Fig. 4  Histogram and Q‑Q plot 
of log‑returns
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imbalance between supply and demand, with an oversup‑
ply of credits that would exceed 5000 million tons. This, 
together with the lack of commitment of the signatories of 
the Kyoto Protocol with this instrument, has led to great 
uncertainty about its future, as it is unable to fulfill the func‑
tions for which it was designed.

As regards the behavior of the EUA price, it was consist‑
ent with the imbalance between supply and demand in phase 

2, as detailed above. After reaching a peak of 30 €/t in 2008, 
the price fell to 12–14€/t, remaining in this range until mid‑
2011, when it began to decline again to end phase 2 below 
€7/t. The economic recession generated an oversupply of 
allowances, which, together with the use of international 
credits (clean development mechanisms and joint implemen‑
tation), generated an accumulation of unconsumed allow‑
ances of close to 2 billion at the end of 2012.

Fig. 5  Volatility, residuals, 
and autocorrelation function of 
standardized residuals and QQ 
plot of standardized residuals. 
ARCH (4) model

Table 1  Estimates parameters 
of models and goodness of fit

The table shows the estimated value for each parameter and below, in italics, the p‑value of the significance test

Model �
0

�
i

�
i

�
i

AIC Log‑lik LM arch test

ARCH (4) 0.0003***

(2·10−16)
0.1806***

(2·10−5)
0.1986***

(2·10−5)
0.2438***

(2·10−6)
0.1623***

(9·10−5)

 − 4.3371 4438.57 0.0665

GARCH (1,1) 0.00001*

(0.0137)
0.0981***

(2·10−9)
0.8991***

(2·10−16)
 − 4.3797 4480.09 0.8474

EGARCH (1,1)  − 0.1550***

(2·10−16)
 − 0.0372*

(0.0179)
0.9782***

(2·10−16)
0.2133***

(2·10−16)
 − 4.3842 4485.66 0.8065
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Thus, phase III was born with the problem of excess 
EUAs left over from phase 2, which led the price of EUA 
to free fall, with consecutive reductions in its price in 
the first weeks of up to 18%, dropping below 4 euros per 
ton of  CO2. Two main reasons caused this situation: a 
large supply and the inexistence of counterpart demand 
from the European industry (with no need at that time 

to resort to auctions, still affected by the economic cri‑
sis) and the growing penetration of renewable energies 
in the electricity sector and the increase in investment 
in energy efficiency. Considering that the oversupply of 
rights is structural, and foreseeably lasting in time, as an 
emergency measure, the European Parliament and the 
Council approved in December 2013 different measures: 

Fig. 6  Volatility, residuals, 
and autocorrelation function of 
standardized residuals and QQ 
plot of standardized residuals. 
GARCH (1,1) model

Fig. 7  Volatility/absolute values 
of log‑returns and QQ plot 
of residuals. EGARCH (1,1) 
model
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postponing the auctioning of 900 million allowances to 
2019–2020, and the creation of a market stability reserve 
to neutralize the negative impacts of the existing allow‑
ance surplus and improve the system’s resilience to future 
shocks.

In January 2016, the EU ETS suffered another major 
shock marked by the announcement of the UK referendum, 
which caused the price of  CO2 to plummet to a 3‑year low 
of below €5 per ton. While other markets, such as the finan‑
cial market, were recovering, the carbon market extended its 
losses even further. The year 2017 was marked by succes‑
sive rebounds that ended with an average price of €5.8 per 
EUA. It is worth noting the significant increase in the price 
of emission allowances that occurred throughout 2018, ris‑
ing more than threefold from €7 to €25 per ton at the end of 
the year, justified by the speculative motive that led agents 
to buy a large quantity of allowances in the hope of selling 
them more expensively in the future in the expectation that 
Europe would raise the minimum sale price. The year 2019, 
despite the successive price rises and falls, was characterized 
by higher prices, staying on average at around €25 per ton. 
The lower relative price of coal, compared to natural gas, 
led to major purchases of EUA in advance of a foreseeably 
price increase of electricity.

There is a clear turning point in 2020, marked by a sig‑
nificant drop in mid‑March as the market’s response to the 
health crisis triggered by COVID‑19. The price of  CO2 
allowances dropped from €24.5 per ton of  CO2 at the begin‑
ning of the year to reach its lowest peak on March 18, 2020 
(days after the state of alarm was decreed in many EU coun‑
tries), at a price of €15.23 per ton, placing the EUAs quota‑
tion at the lowest price since 2018. This negative response 
from the energy and financial markets was the reflection 
of anticipated forecasts of the loss of wealth and employ‑
ment resulting from the containment measures necessary to 
control the pandemic, with the consequent paralysis of an 
important part of the industrial sector. For instance, electric‑
ity demand in Spain decreased by 5.6% in 2020 as a result of 
the pandemic, leading to a 27.8% reduction in  CO2 equiva‑
lent emissions associated with electricity production.

During the second and third quarters of 2020, the price 
of EUAs rebounded according to the different worldwide 
surges caused by the impact of COVID‑19, closing the year 
with a climate of optimism due to the imminent start of vac‑
cination to stop the pandemic, which was reflected in a rise 
in prices, reaching 33.2 euros per ton on December 28, 2020, 
the highest since the EU ETS began to operate.

As described, both external and internal issues have 
shaped the trend of EUAs prices, resulting in large fluctua‑
tions hard to anticipate for investors (Alberola et al. 2008; 
Y. J. Zhang and Sun 2016). As a “young” market, the Euro‑
pean carbon market must face internal issues that are being 
solved by the European authorities, in search for a stable 

and efficient market. This is the reason behind exploring 
its volatility behavior: determining if, despite the external 
shocks, this market is close to maturity or new measures 
are to be taken.

Methods

Autoregressive conditional heteroskedastic (ARCH) 
model proposed by Engle (1982, 1983) has been widely 
used to analyze and forecast economic or financial time 
series characterized by periods of high or low volatil‑
ity and significant kurtosis. Bollerslev (1986) proposed 
the generalized autoregressive conditional heteroskedas‑
tic (GARCH) model, which recognized the difference 
between the unconditional and the conditional variance, 
allowing the latter to change over time as a function of 
past errors. This generalized model provides a longer 
memory and a more flexible lag structure (Brockwell 
and Davis 1996). However, the GARCH model has the 
disadvantage that conditional variance depends on mag‑
nitude of delayed innovations, but not of their sign. This 
problem was solved with the exponential generalized 
autoregressive conditional heteroskedastic (EGARCH) 
model (Nelson 1991) by introducing a measure of the 
sign of innovations. While the starting point of GARCH 
models is that positive and negative error terms have a 
symmetric effect on the volatility, previous research has 
shown that this effect is in fact asymmetric in financial 
time series, due to market imperfections such as transac‑
tion costs (Aliyev et al. 2020) and the different response 
of investors to good and bad news (Barberis et al. 1998; 
Bentes 2018). Thus, EGARCH models are probably more 
suitable to analyze financial time series.

Let the series yt , in the ARCH (q) model, be yt = �t ⋅ �t , 
where �t is the volatility and �t i.i.d. white noise with zero 
mean and finite variance. The conditional variance of the 
series at each time V

(
yt|yt−1

)
= �2

t
 is characterized by the 

following autoregressive process:

𝛼i ≥ 0i=1⋯q, 𝛼0 > 0 where �
0
 is the minimal value observed of 

conditional variance (Bera & Higgins 1993). This ARCH model 
is the starting point for the temporal analysis of financial series in 
which the variability is not constant. The behavior of this type of 
series is characterized by exhibiting periods of sudden changes 
(higher volatility) and others full of stability, with hardly any 
changes (lower volatility). In general, we assume that it depends 
on q lags in the observed values, which is usually very large in 
this type of series and therefore requires estimating a large num‑
ber of parameters. For all these reasons, generalizations such as 

�2

t
= �

0
+

q∑

i=1

�i ⋅ y
2

t−i
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the GARCH model arise, in which conditional variability also 
depends on its past values (in general, on p past values).

The GARCH (p,q) model adds a term that allows us to 
assume that the conditional variance also depends on its past 
observations:

where

to ensure stationarity and a conditional variance that is 
strictly positive.

In both models, the conditional variance is lin‑
ear in lagged and only collect the magnitude of the 
time changes but not the positivity or negativity. The 
EGARCH model solves this inconvenience. In EGARCH 
(p,q) model, the specification for the conditional vari‑
ance is as follows:

where the coefficient �i captures the sign effect and �j the size 
effect. The exponential operator to get conditional volatility 
guarantees its positivity, so no restrictions are required, for 
conditions’ volatility is positive (McAleer and Hafner 2014).

The time series analysis and estimated models by 
maximum likelihood estimation were performed with R 
software (R Development Core Team 2020), specifically 
forecast (Hyndman et al. 2020), fGarch (Wuertz et al. 
2020) and rugarch (Ghalanos 2020) packages.

Results

Descriptive analysis of  CO2 emission allowances

Data is transformed, as usual in finance, using the natural 
logarithm of the daily returns, defined as:

Figure 3 shows the log‑returns of carbon EUAs’ future 
contracts. The second half of April 2013, in the midst of 
the economic crisis, began with a sharp fall, the most sig‑
nificant in all the years the market has been operating, with 
the price of EUA falling by 35%, close to €3/ton, reflecting 
a marked volatility. The large drop in the price undoubtedly 
had a negative impact on investment and the reactivation of 
the economy. The process of determining the price of the 

�2

t
= �

0
+

q∑

i=1

�i ⋅ y
2

t−i
+

p∑

i=1

�i ⋅ �
2

t−i

𝛼i ≥ 0i=1…q, 𝛽i ≥ 0i=1…p, 𝛼0 > 0, p ≥ 0, q > 0,

q∑

i=1

𝛼i +

p∑

i=1

𝛽i < 1

ln�2

t
= �

0
+

q∑

i=1

(
�i ⋅ yt−i + �j

(||yt−i|| − E||yt−i||
))

+

p∑

i=1

�i ⋅ ln�
2

t−i

yt = Ln

(
Pt+1

Pt

)

EUA is governed, like any other good or service in the econ‑
omy, by the law of supply and demand, which means that an 
increase in the demand for EUA (ceteris paribus) will lead 
to an upward trend in prices, and vice versa. These changes 
in demand can be determined by various factors (Erias‑Rey 
and Dopico‑Castro 2011) such as variations in the prices of 
other energy markets, such as oil or renewable energies, the 
cheaper the latter are, the lower the use of EUA will fall and 
thus its price; phases of economic crisis or growth, which 
will lead to variations in the levels of industrial production 
and thus changes in the demand for EUA; the levels of pen‑
alties for non‑compliance, which will make the purchase of 
rights more or less profitable; the possibility of new agents 
participating in the market; and exogenous factors such as 
the weather, which has a direct influence on the possibility 
of using renewable energies (solar, wind, etc.), which will 
undoubtedly affect the demand for rights.

The returns appear to fluctuate around a constant level, 
but exhibit volatility clustering. The original series is not 
stationary, but the series of log‑returns shows low struc‑
ture in the mean. Log‑returns show great variability with 
some peaks indicating the presence of heteroskedasticity, 
both positive and negative. Taking this feature into account, 
ARCH‑type models are advisable, which assume that the 
conditional variance depends on the past with autoregressive 
structure (Bollerslev et al. 1992), its generalization in the 
GARCH model or its exponential variant EGARCH.

The great advantage of the EGARCH model is that it 
allows to reflect how positive and negative changes in the 
series affect volatility, which is not the case in the GARCH 
model. The conditional variance of the GARCH model is 
a function of the square of the past innovations, so it does 
not collect positive or negative changes. Regarding the nor‑
mality of the log‑returns (Fig. 4), the skewness coefficient 
is − 1.1566, which is not excessively high, but the kurtosis 
is equal to 16.6511, which is quite far from normal behav‑
ior. The Kolmogorov–Smirnov test indicates that log‑returns 
cannot be considered normal (p < 0.0001).

We used Lagrange multiplier ARCH test (Engle 1982) to 
test the null hypothesis of adequately fitted ARCH type pro‑
cess (Fisher and Gallagher 2012), asymptotically distributed 
as χ2 under the null hypothesis of no autocorrelation in the 
squared residuals. This test indicates that the use of ARCH‑
type models is appropriate for various lags (p < 0.0001). The 
partial autocorrelation function also shows significant cor‑
relations in lags two and four.

The mean has not been included in the models, since 
it is not significant and close to zero, and the conditional 
distribution that bests fits is the t‑Student. The results of 
the ARCH (4) model graphically indicate a good fit in this 
model (Fig. 5 and Table 1). There are no strange behaviors 
of the residuals, the ACF is significant for lag = 0, and the 
QQ plot indicates normality of the residuals. However, in 
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ARCH model, often we must consider many parameters or 
lags to explain the volatility. In our analysis, the LM‑ARCH 
test indicates that we need four lags in ARCH model. This 
problem can be solved considering the GARCH model 
(Zivot 2009).

Considering the GARCH model, the best fit is GARCH 
(1,1). We reduced the number of parameters with respect 
to ARCH model, improving the AIC/BIC test (Table 1). 
As previously mentioned, this is a great advantage of the 
GARCH model: the reduction of the parameters. Goodness 
of fit of this model can also be seen graphically (Fig. 6). 
Weighted Ljung‑Box test on standardized squared residuals 
confirms its randomness.

The best EGARCH model is EGARCH (1,1) whose esti‑
mated parameters are significant and improves the log‑like‑
lihood (Table 1), confirming results from previous literature 
(Mohsin et al. 2020). We can also graphically observe the 
correct behavior of the residuals (Fig. 7).

In short, EGARCH is the best model to fit the log‑returns 
of  CO2 emission allowances: reduces the number of param‑
eters compared to other models, improves the model log‑
likelihood, and ensures the good behavior of the residuals. 
These results are in line with previous research, confirming 
that EGARCH estimations outperform other models (Hung 
2021).

Conclusions

The recent experience of operating the EU ETS has shown 
that one of the greatest difficulties faced in the carbon mar‑
kets is the adjustment of the optimal supply of allowances 
so as to ensure that the market efficiently prices the car‑
bon emission rights. The evolution of the price of carbon 
allowances show that the market is already responding to 
the reforms introduced to strengthen the price signal, which 
is reflected in the consolidation and stability of the market 
at the end of phase III. The expected rise in the price of  CO2 
rights will undoubtedly keep affecting the price of electric‑
ity on the wholesale market, with the consequent microeco‑
nomic impact on inflation and household spending.

In this research, the modelization of volatility using 
EGARCH (1,1) models exhibits a greater ability to describe 
market behavior. These results can help policymakers to ana‑
lyze the effectiveness of their legislations towards a more 
efficient carbon market, but also are useful results for inves‑
tors and firms who must manage their risk regarding the 
purchase or sale of carbon emission rights. Future lines of 
research could focus on the aviation industry (because of its 
particular characteristics) or applying additional methodolo‑
gies, such as the value at risk (VaR) to enlarge the applicabil‑
ity of the EGARCH models.
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