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Abstract
Natural ingredients (NIs) from plant biodiversity represent a value creation strategy in the transition to a sustainable 
biobased economy, especially in biodiversity rich countries. A necessary action to achieve this purpose is to orientate 
research and strengthen the knowledge base of NIs following a value chain (VC) approach. Although the promotion of 
NIVCs has gained increasing attention in the bioeconomy, a description of the scientific progress, research advances 
and gaps towards their development  is necessary. This review aimed to scrutinize the existing literature on NIVCs to 
determine its state of progress. Firstly, we explored the global diffusion of research on natural plant ingredients. Secondly, 
we examined the research landscape in Colombia, focusing on the cooperation between countries, economic sectors 
impacted, and plant species reported. Lastly, we selected the most reported plant species as a promising NI source in 
Colombia to assess the literature that constitute the knowledge base of this plant in relation to the VC building blocks: 
biomass production, biomass processing, product development, and transversal aspects such as sustainability and gov-
ernance. We show that research on NIs has risen worldwide, with notable scientific output from China, India, and the 
United States. In Colombia, the interest in NIs from plant biodiversity has also gained importance in the research agenda. 
Its progress is based on extensive collaboration between institutions, mainly from Spain, the United States, and Brazil. Its 
research prospects include diverse applications in the pharmaceutical and food sectors. We identify Lippia origanoides 
as the most reported native plant in scientific literature in Colombia. Using this plant as case study, we provide an over-
view of the knowledge base of L. origanoides in relation to the VC. Our results indicate that most publications focus on 
product development, suggesting a lack of comprehensive coverage of the VC and potentially neglected aspects. Based 
on this, we describe the current and desired scenario of L. origanoides VCs, as well as needs and opportunities for their 
sustainable implementation in Colombia. This contributes to build research and development roadmaps of sustainable 
NIVCs from plant diversity supported by multi-stakeholder collaboration.
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1 Introduction

Biodiversity has intrinsically driven human well-being through the delivery of ecosystem services [1]. Its definition encom-
passes the variety and complexity among living organisms, including DNA, genes, the proteome, and the metabolome, 
and their interaction with ecological systems [2]. Biodiversity studies have always been associated with different areas 
of knowledge due to the plural values of biodiversity, and they have been the focus of the Bioeconomy (BE), particularly 
from a resource use perspective [3]. BE is a term that is booming globally and refers to all economic activities derived 
from biological resources, including related knowledge, science, technology, and innovation to provide information, 
products, processes, and services towards sustainable development [4]. The BE contributes to improving knowledge on 
biodiversity, conserving or restoring habitats, increasing social participation, and potentially helping to move towards a 
truly sustainable use of nature [5]. In highly biodiverse regions, the relationship between sustainable use of biodiversity 
and BE has become evident in research and policy agendas [6]. For example, the promotion of the BE using biodiver-
sity resources for innovative natural products is one of the lines of action that receives increasing support in the Latin 
American and Caribbean regions [3].

 Natural ingredients (NIs) provide a biodiversity-based BE opportunity. NIs, also called bio-ingredients or natural 
products, are any ingredient whose starting material originates from plants, minerals, microbes, or animals, as well as 
biological industry by-products [5, 7]. These have been used for food supplements, medicinal chemistry, pharmaceuticals, 
agrochemicals, fragrances, and cosmetics, and consequently have attracted growing interest in scientific communities 
that bridge research with industry [8]. The global market for NIs in natural cosmetics, phytotherapeutic products, and 
functional foods exceeds 43 billion dollars [9, 10]. The special attention paid to NIs has been triggered mainly by health 
and environmental issues [11]. In health, NIs exert functional properties in food products such as antidiabetic, antican-
cer, antiobesity, antioxidant, and antimicrobial properties [12]. For the environment, NIs based on renewable resources 
could contribute to close material and energy cycles and substitute minerals and chemicals [13]. NIs are also particularly 
interesting as a valorization strategy for biomass from novel plants, established crops, and residues by taking advantage 
of natural properties and extracting targeted constituents to produce specialty products [14].

Value chains (VCs) have the potential to promote bioproducts [15], such as NIs. A VC consists of actors’ relations and 
a set of interlinked activities related to the primary production of biobased resources, the technological conversion to 
higher-value goods, commercialization, and use [16]. VCs rely on a knowledge base for their development and sustain-
able performance [17], where multiple social, cultural, environmental, economic, institutional and technological aspects 
converge [18]. The establishment of NIVCs encompasses bioprospecting, biofunctionality analysis, and product formula-
tion, as well as production processes in the upstream and downstream (e.g., isolation, extraction, and separation) [7]. In 
addition, it includes the primary production of biomass, sustainability analysis, VC actors’ relations, and governance [19, 
20]. Studies from a VC perspective break with the paradigm of individual and isolated scientific fields that do not allow 
elucidating the preparedness and suitability of novel bioresources, such as NIs.

Colombia’s BE mission focuses research efforts on bioprospecting and the development of NIVCs as strategies for 
the use of biodiversity from a material perspective [21, 22]. This mission is supported by national policies and programs 
such as the "Green Growth Policy" and the "Colombia BIO Program" [23]. Colombia has a comparative advantage over 
other countries as it is the second most biodiverse country in the world, which allows it to see biological resources as 
a key asset to change its productive matrix [24]. Colombia’s rich biodiversity accounts for more than 28,900 reported 
plant species [25] (37,290 including non-vascular plants [26]) of which around 26% are reported to have human uses and 
socio-economic importance [25, 27]. Most of these plants, distributed across all bioregions and ecosystems of Colombia 
[28, 29] (Fig. 1), are locally marketed sources of food and medicine, such as Annatto (Bixa orellana) and Sauco (Sambucus 
peruviana) [30]. Strengthening competitiveness of NIVCs is among main goals of BE-oriented efforts between the govern-
ment, academia, and the private sector in Colombia [31]. While NIVCs have recently gained interest in Colombia, there 
are few systematic efforts that critically document the state of the art of the research, thus limiting the identification of 
barriers, needs, and projections. Actions in Colombia could be implemented in another country rich in biodiversity with 
similar characteristics in terms of capacities and context conditions [29].

To move this field of study forward, we conducted a literature review to assess the knowledge base of NIs in Colombia 
for the development of VCs through a case study. The literature review was carried out in three steps, from the general to 
the particular. Firstly, the world literature reported in peer-reviewed journals on NIs was compiled and analyzed bibliomet-
rically. Secondly, research on NIs associated with Colombia was characterized by international cooperation, impacted eco-
nomic sectors, and informed plant species. Finally, the assessment of the literature of the most reported plant species as 
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novel sources of NIs was carried out by associating the findings of the publications to the VC’s phases, from biomass 
production to end products, including sustainability and governance as transversal aspects. In that vein, insights were 
compiled, gaps were identified, and recommendations were proposed to provide an overview of its progress status and 
drive tangible actions. This work can be used as an interdisciplinary reference for BEs in countries rich in biodiversity and 
represents a call to promote the development of knowledge-based VCs for the sustainable production of NIs.

2  Materials and methods

2.1  Global bibliometric analysis

A search of the publications on NIs reported between 2010 and 2020 was performed on May 20, 2021. The types of docu-
ments defined for the investigations included journal articles, books, book chapters, and conference articles. The Scopus 
index was selected as the data repository to search for documents because it provided a larger collection of this topic 
of scientific literature compared to the Web of Science. The search scope was "topic," which included the title, abstract, 
and keywords. Boolean operators (OR and AND), the truncation symbol (*), and the proximity operator ("") were used to 
facilitate and enable the selection of the investigations of interest. The terms used in the search strategy are proxies to 
the topic of study and were defined based on synonyms for NIs and biomass sources to focus the search particularly on 
vegetal biomass (dedicated crops—novel and conventional—, crop residues, non-domesticated plants) and applications 

Fig. 1  Bioregions of Colombia 
(Gori et al. [28]) (CC BY 4.0)
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in economic sectors (Table 1). NIs represent a valorization strategy for biomass related to its material use. Therefore, 
renewable energy was excluded from the search with the aim of retrieving literature related to NIs and biobased products. 
The parameters provided by the Scopus database were: (i) number of publications per year; (ii) number of publications 
per country; (iii) number of publications per subject area in each year; and iv) number of publications per subject area 
in each country. The bibliometric analysis was performed using the results obtained from Scopus and the VOSviewer 
1.6.14 software (University of Leiden, The Netherlands). The graphs were made using Prism 8 software (Graphpad, USA).

2.2  Data synthesis and analysis for Colombia

To study the literature related to Colombia, the publications were filtered both by country and by the keyword "colom-
bia*", which was added to the search equation. A three-tiered and iterative classification process was developed for 
screening the retrieved publications. The first classification grouped publications into two categories: experimental 
and review or explorative articles. Explorative literature refers to ethnobotanical studies with valuable information for 
bioprospecting and key insights from traditional knowledge. As this work is oriented to assess the knowledge base in the 
context of NIVCs, only experimental publications that provide in-depth and technical data were selected for further analy-
sis. A network analysis was carried out to identify the cooperation of countries with Colombia based on co-authorship. 
Using the VOSviewer 1.6.14 software package (University of Leiden, The Netherlands), the list of countries was filtered 
to a minimum of five publications. VOSviewer generated the network visualization map of country co-authorship, with 
countries clustered.

The second classification process was performed based on the plant species reported. The plant species were screened, 
listed, and characterized in their attribute of origin using the ‘Catalogue of Plants and Lichens of Colombia’ [32]. Non-
reported plant species in this catalogue were further searched on the platform ‘Global Biodiversity Information Facility’ 
[33]. Plant species were classified as native, native and endemic, and native and cultivated to strengthen the focus on 
Colombian biodiversity. Those plants that were classified as naturalized, adventitious or non-native cultivated accord-
ing to  the consulted databases were excluded from further analysis. Consecutively, a ranking of the most investigated 
species was generated based on the frequency in the publication sample. Plants’ applications to industrial sectors were 
assigned according to the information from the corresponding studies.

2.3  Value chain’s knowledge base assessment of the most reported plant species

The plant species with the largest number of publications was selected as a case study for the assessment of the knowl-
edge base of NIVCs in Colombia. A complementary search of publications reported up to the year 2020 in Scopus was 
carried out, using both the selected plant species and Colombia as keywords. Moreover, an exhaustive search of grey 
literature was carried out, including (i) government reports and other official documents; (ii) reports of national and 
international non-governmental organizations; and (iii) conference papers, technical notes, memories of seminars, and 
other scholarly publications that are not indexed in the peer-reviewed journals.

All the literature obtained was classified along four main building blocks or phases of biomass-based VCs: (i) biomass 
production, (ii) biomass processing, (iii) product development, and (iv) transversal aspects [20, 34–37]. Applied knowledge 

Table 1  Definition of the 
search equation applied in 
the Scopus database on NIs 
between 2010 to 2020

Parts of the search equation Keywords and Boolean operators

Synonyms to NIs ("natural ingredient*" OR "plant extract*" OR "natural prod-
uct*" OR "bioactiv*" OR "natural colorant*" OR "vegetable 
oil*" OR "plant metabolite*" OR "bioprosp*" OR "ethno-
bot*" OR "traditional use*" OR "essential oil*")

AND
Sources of obtaining ("agr*" OR "forest*" OR "herb*" OR "biodivers*" OR "plant*")

AND
Economic sectors impacted ("agr*" OR "cosmet*" OR "pharma*" OR "chemistr*" OR 

"food*" OR "medicin*" OR "fiber*" OR "fibre*" OR "thera-
peutic*" OR "bioeconom*" OR "biobased econom*" OR 
"bio-based econom*" OR "industr*" OR "nutraceut*")

AND NOT
Topics excluded: renewable energy ("bio-ene*" OR "bioener*" OR "renewable ener*")
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on biomass production embraces aspects related to germination, plant propagation, and agronomic management, 
supported by fundamental knowledge on species biology, phytochemistry, botanical aspects, plant ecology, and tax-
onomy. Knowledge on biomass processing covers the conversion into targeted intermediate or end products, including 
post-harvest and processing technologies. Knowledge of product development includes the identification of specific 
applications according to plant properties, quality, and product formulation. The transversal aspects include applied 
knowledge on sustainability performance as well as VC management, logistics, financing, actors, and governance. The 
classification was based on the publication’s main focus by considering the actual content of the title, abstracts, and 
conclusions. In addition, a compilation of its content was described to analyze knowledge gaps, challenges, recommen-
dations, and future research directions.

3  Results and discussion

3.1  Annual publications trend, documents by country, and subject areas

To study global trends in research on NIs, a bibliometric-based analysis of the publications reported between 2010 and 
2020 around the world was performed. A database of 153,818 publications was obtained, which was mainly composed 
of research articles (85.8%) and review articles (9.1%). Overall, the publication trend was upward (Fig. 2-a), with an aver-
age annual increase of 6%. This indicates that research on NIs is receiving increasing attention. Various aspects promote 
interest in NIs. The global rise of the BE, for instance, in the political context has intensified efforts to expand knowledge 
in diversifying biobased products from biodiversity [38].

Fig. 2  Global overview of the dissemination of knowledge about NIs between 2010 and 2020. a Number of documents published each year. 
b Top 10 countries or territories with the most publications. c Annual percentage of publications by subject area. d Percentage of publica-
tions by thematic area in the top 10 countries



Vol:.(1234567890)

Review Discover Sustainability            (2023) 4:33  | https://doi.org/10.1007/s43621-023-00150-w

1 3

The bibliometric analysis showed the countries with the largest production of research publications in their respec-
tive subject areas. China leads the production of publications on NIs with 28,390 (Fig. 2b). India was ranked second with 
22,670 documents, showing a considerable advantage over the United States (US), located in third place with 13,323 
documents. Then, there were Brazil (10,003), South Korea (9206), Italy (6655), Iran (6561), Spain (4910), Japan (4768), 
and Germany (4761). This indicates that Asia led scientific production, followed by Europe and America. Asia has always 
been outstanding for its rich biodiversity and still has enormous potential to develop biobased products with NIs, mainly 
based on traditional medicine [39]. The prominence of Africa and Oceania is very scanty. Therefore, there is a need to 
develop research projects in these regions promoted by their governments and research institutions with a focus on the 
potential of biodiversity for a sustainable environment.

According to our study, the top five subject areas associated with NI research were: (i) biochemistry, genetics, and 
molecular biology; (ii) pharmacology, toxicology, and pharmacy; (iii) agriculture and biological sciences; (iv) chemistry; 
and (v) medicine (Fig. 2c). The category ‘other subjects’ consisted of more than five areas that presented percentages of 
publications much lower than the first five already mentioned. These areas were immunology and microbiology, nursing, 
earth and planetary sciences, mathematics, and multidisciplinary. Studies associated with environmental, social, and 
economic issues are possibly included in the multidisciplinary area, showing scarce prominence. Surprisingly, publica-
tion productivity showed contrasting trends across all subject areas. Both pharmacology, toxicology, pharmacy, and 
medicine were the only subject areas that showed a decrease over time (30%). The other three subject areas showed a 
similar number of publications each year.

The subject areas in the top ten countries with the largest documentary production were also analyzed (Figs. 1–d). 
South Korea is the country with the most research carried out in biochemistry, genetics, and molecular biology with 
20.5%; India in pharmacology, toxicology, and pharmacy with 28.2%; Spain in agriculture and biological sciences with 
26.5%; Japan in chemistry with 17.8%; and Iran in medicine with 20.2%. Finally, Spain was the country with the most 
research in the group of "other subjects," with 24.7%.

Research led by South Korea has been influential in the biological synthesis of phytochemicals, mainly silver nano-
particles, for the prevention and therapy of cancer, obesity, diabetes, and Alzheimer’s. Panax ginseng, Humulus japonicus, 
Scutellaria baicalensis, Cirsium setidens, and Schisandra chinensis are the most studied plants [40–42]. India’s focus is the 
application of novel drug delivery systems for herbal formulations such as Curcuma longa, Withania somnifera, Bacopa 
monnieri, Aegle marmelos, and Ocimum sanctum. Studies in cardiotoxicity, nephrotoxicity, Parkinson’s disease, and ath-
erosclerosis have been carried out [43–45].

In Spain, researchers work primarily on applications and new opportunities for bioactive compounds in the food 
industry. One of its most recent investigated approaches is the extraction of carotenoids, polyphenols, dietary fibers, 
vitamins, enzymes, and oils from fruit and vegetable waste [46–48]. Finally, Japan mainly leads the advancement of 
chemical extraction techniques used for botanical products in industrial uses and optimization strategies. For instance, 
the isolation of cellulose nanocrystals. Japan is also promoting modern plant metabolomics for natural product gene 
discovery [49, 50].

All the countries mentioned above that stand out in research on NIs have promoted BE strategies and policies, except 
Iran [51]. The US, Italy, Spain, Japan, and Germany have a dedicated BE strategy. China, India, Brazil, and South Korea have 
a BE-related strategy [52]. Although some of these countries differ in the scope of their BE actions, NIs do not represent 
a specific focus in any country. This does not mean that NIs are undervalued, but rather that these were included as 
a diversification strategy of  plants’ uses to increase their contribution to gross domestic product. In contrast, Costa Rica, 
France, Ireland, Malaysia, Norway, and Thailand have proposed specific efforts for NIs in their BE plans [53]. For instance, 
one of Malaysia’s agricultural focuses is the production of high-value NI biobased fragrances, bioflavors, and functional 
foods [54]. Likewise, Costa Rica has promoted new rural agro-industries through  NIVCs to enhance local resources [55].

3.2  Natural ingredients research in Colombia: an overview

We next sought to explore NI research in Colombia. In the database obtained, 689 documents (0.45% of publications 
worldwide) associated with Colombia between 2010 and 2020 were found. This set of scientific publications was clas-
sified by type of document into explorative and review (41.3%) and experimental studies (58.6%). For the following 
analysis steps, we focus on the experimental studies. The first feature that characterized the literature was the coopera-
tion between countries, measured by the co-occurrence parameter based on co-authorship and authors’ affiliations 
[56]. Cooperation in research can be analyzed using bibliometrics and is key to strengthening alliances and formulating 
future projects [57]. Colombia has conducted research on NIs with 11 countries. The most prominent are Spain, Brazil, 
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and the United States (Fig. 3). The countries were distributed in four clusters, which were differentiated by colors. The 
first group included Brazil, Chile, the United States, and Colombia. The second is France, Germany, Mexico, and Peru. The 
third is Argentina and Spain, and the fourth is Italy. Cooperation with Spain has promoted work with various bioactive 
compounds from the asai fruit, cocoa extracts, and lettuce by-products [58–60]. Advances include a comprehensive data-
base of carotenoid content in Ibero-American foods and the bioprospection of Piperaceae species in Choco (Colombia) 
to obtain essential oils (EO) [61, 62]. Collaboration with Brazil comprises studies on pharmacogenetics and ethnomedi-
cine, herbal medicine, cardiovascular disorders, and psychiatric disorders [63, 64]. The synthesis, characterization, and 
application of biobased active food packaging have also been studied [65]. Additionally, the properties of Baccharis 
trinervis, Lippia origanoides, and Echinacea plants have been investigated [66–68]. Joint research with the United States 
has leveraged scientific advancement in mint, passion flowers, and African oil palm. Improvements of mint cultivars for 

Fig. 3  Cooperation of 
countries with Colombia 
in research on NIs. The size 
of each node reflects the 
quantity of publications in 
co-authorship. The thickness 
of each link indicates the 
strength of the collaboration. 
Clusters are color-coded

Fig. 4  Research overview on NIs in Colombia. a Percentage of applications in industrial sectors of NIs reported in publications. b Most 
reported plant species
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germplasm banks and the modeling of influential factors of peppermint EO composition and yield have been docu-
mented [69, 70]. Evidence on the ability of polyphenol extracts from passion fruit to mitigate intestinal barrier dysfunc-
tion has been published [71]. Oil-palm-based biorefinery concepts and sustainability strategies for oil palm cultivation 
have been addressed [72, 73].

The second assessed feature aimed to elucidate the targeted industrial sectors and was based on those publica-
tions focused on plants from Colombian biodiversity (n=267) . We noted that the pharmaceutical sector is the most 
impacted, followed by the food sector (Fig. 4-a). These two sectors represented more than 80% of the studies. The 
cosmetics and agri-products sector accounted for 15%, and the remaining sectors reported were animal feed, chemi-
cals, and energy. The orientation to the pharmaceutical sector is based on the bioprospecting of plants with attributes 
such as antifungal, neuroprotective, anti-toxoplasmic, and antiparasitic properties [74–76]. Plant derivatives against 
psychiatric disorders, snakebites, malaria, Chagas disease, and leishmaniasis are reported [77–79]. Furthermore, 
efforts in microencapsulation for the release of bioactives have spread, including bioactive compounds from cactus 
acid fruits and papaya [80, 81]. The food sector presented trends in antimicrobial food packaging systems, nanoe-
mulsions, and functional foods [65, 82]. There has also been a growing interest in green cosmetics and the potential 
of agro-industrial by-products. Numerous plant species have been analyzed for properties such as UV-filtering, 
UV-absorbing, bleaching, skin-protecting, and antioxidant action to promote the cosmetic use of plant biodiversity 
[83]. The antioxidant capacity and bioactive compounds of coffee pulp, as well as natural pigments from the coffee 
exocarp, have been studied [84, 85]. The mango seed has been investigated for its high protein content with all the 
essential amino acids, lipids rich in unsaturated fatty acids, and high antioxidant capacity of seed extracts [86]. Further 
topics include the biological production of bee-pollen-based food [87, 88].

The third step was to determine the most studied plant species in the sample of literature. We found that Lippia 
origanoides is the most reported plant species associated with NIs in Colombia, with 21 publications (Fig. 4b). This 
observation supports the fact that L. origanoides has stood out for more than 20 years as one of the most studied 

Table 2  Potential applications 
of L. origanoides, P. peruviana, 
and L. alba plants

Plant species Potential uses References

Lippia origanoides
(‘Oregano cimarrón’)

Animal dietary supplement [89]
Antibacterial [90]
Anthelmintic [91]
Insecticidal [92]
Larvicidal [93]
Antiseptic, Antimicrobial antinociceptive activity [94]
Anti-inflammatory

Physalis peruviana
(Goldenberry, ‘Uchuva’)

Anti-adipogenic [95]
Anti-inflammatory [96]
Anti-cancerigen [97]
Antioxidant [98]
Anti-hepatotoxic; Anti-inflammatory, Anti-hepatoma [99]

Lippia alba
(Bushy matgrass, ‘Prontoalivio’)

Insect repellent [100]
Deep anesthesia in fish [101]
Antiviral [102]
Antibacterial [103]
Anthelmintic [104]
Antifungal [105]
Anticonvulsant, sedative, analgesic, bronchodilator [94]
Antioxidant, anti-inflammatory
Bactericide and fungicide [106]
Antibacterial and antifungal [107]
Antioxidant, antimicrobial insecticide, acaricide, [108]
Neurosedative, analgesic
Therapeutic potential for treatment of non-communica-

ble diseases (NCD) and cardiovascular conditions
[109]
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plant species in Colombia [37]. Physalis peruviana and Lippia alba occupy the second and third places with 15 and 14 
publications, respectively. Theobroma cacao and Passiflora edulis showed 7 publications, followed by a set of plant 
species with the lower number of publications. Potential applications of L. origanoides, P. peruviana, and L. alba plants 
include medicinal, cosmetic, and nutraceutical uses (Table 2). With the aim of assessing the knowledge base of NIVCs 
from plant biodiversity in Colombia, we selected L. origanoides as a case study because it was the most reported plant 
in our study, which indicates its potential for NIs.

3.3  Knowledge base of VCs from L. origanoides in Colombia

The genus Lippia (Verbenaceae) includes around 200 species, mainly distributed in the Neotropics [110–112]. Lippia origa-
noides Kunth, first described in 1818 and popularly known as ‘orégano cimarrón’, ‘orégano criollo," or ‘orégano de cerro’ 
in Colombia, is a native plant to the neotropics [113], distributed from Texas to Northern Argentina [114] (Fig. 5a). Most 
of L. origanoides is concentrated in semiarid areas of Mexico, Brazil, Venezuela, Trinidad and The Guianas [32, 115–118]. 
The use of L. origanoides, as for other plants from local biodiversity, contributes to satisfy human needs, diversify farming, 
promote natural products, and strengthen regional and national biodiversity-based bioeconomies in these countries [3, 
5, 115, 117–119]. Efforts to consolidate the available information on the genetic variability of L. origanoides that enables 
the design of conservation strategies are being carried out recently [120]. Agricultural management of L. origanoides 
varies depending on cultural, socioeconomic, ecological, and technological factors in each country [121]. In Colombia, L. 
origanoides is highly abundant in large semiarid areas in seasonally dry tropical biomes of the biogeographic regions of 
the Andes, Llanura del Caribe, Valle del Cauca, and Valle del Magdalena [122, 123]. (Fig. 5-b). In particular, L. origanoides 
is widely and abundantly distributed along Chicamocha Canyon because of its ability to tolerate water stress and its 
phenotypic plasticity [124, 125]. It is naturally found at altitudes ranging from 500 to 800 m [126]. The morphology of L. 
origanoides is characterized by being a highly branched shrub up to 3.5 m tall with a strigose stem, elliptic and glandular 
leaves, and a flower with a tubular calyx. (Fig. 5c, d) [114, 127]. Given its natural abundance and potential for various 
applications, research on this species has increased in Colombia.

We identified 57 publications retrieved from Scopus and 9 reports as grey literature that represent the knowledge base 
of L. origanoides in Colombia. The approaches and objectives between the academic literature and the grey literature 
showed notable differences. While the academic literature displays in-depth species-specific knowledge, the grey litera-
ture mainly provides an overview of the species together with other prioritized species in specific regions of Colombia. 
As illustrated in Fig. 6, there is an unequal distribution of research across the four VC building blocks (i.e. biomass produc-
tion, biomass processing, product development, and transversal aspects). The majority of published articles focus on the 

Fig. 5  Geographic distribu-
tion and phenotype of Lippia 
origanoides. Distribution in 
America (a) and in Colombia 
(b). Morphology of the stem 
and leaf (c), and the flower (d). 
Modified from: a, b ColPlantA 
(2023) [128], c © copyright 
of the Board of Trustees of 
the Royal Botanic Gardens, 
(d) KewInaturalist.lu/pho-
tos/32470319 CC BY-NC 4.0, 
©Sam Flake
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product development phase, with studies dealing with exploring plant properties and potential applications. Biomass 
production topics are reported to a lesser extent, while the biomass processing phase presents a smaller number of 
publications. Lastly, the least addressed phase corresponds to transversal aspects. These findings show that the study 
of potential plants’ applications and products (the third VC building block) drives the introduction of novel plants in the 
BE. However, the absence of a VC approach to research that integrates biomass production, processing, products, use, 
and involved actors can limit the advance of production systems from promising plants for NIs such as L. origanoides 
[37]. For instance, research on the palm genus Acrocomia has shown a predominant focus on multiple applications in 
comparison to other VC phases [34]. In order to provide an in-depth overview of the L. origanoides literature, the results 
are presented and discussed below according to VC phases.

3.3.1  Biomass production

Fundamental knowledge on this species, especially at the biological and botanical levels, has been described through 
studies on genetic diversity, physiology, and phenotypic plasticity [124]. A close genetic relationship between L. origa-
noides and L. graveolens may indicate that they are synonyms [129]. The genetic structure of L. origanoides has been 
scarcely investigated in Colombia [123]. Existing studies focused on the Chicamocha River Canyon in the northeast of 
the country, revealing high levels of genetic variation within populations [123, 130, 131], contrary to the results from 
Suárez et al. [110].

Phytochemical studies on the composition of essential oil (EO) have predominated. High genetic diversity and phe-
notypic plasticity of this species result in heterogeneity in the composition of its oils and extracts [123]. Characterization 
of EO has allowed the identification of three predominant chemotypes of L. origanoides in wild populations in Colombia: 
A—characterized by α- and β-phellandrenes, p-cymene and limonene, and low carvachol and thymol; B—carvachol-rich 
(32.3–42.7%); and C—thymol-rich (26–69.2%) (Table S1 in the supplementary material) [17, 68, 126, 132–137]. Concen-
tration levels of thymol and carvacrol in EO up to 87.3% and 63.8% have been measured from different accessions [123, 
138]. The thymol-rich chemotype is considered the most widespread in Colombia, particularly in the region of Alto Patía 
(south-west of Colombia) [123, 138, 139], an important aspect for the agroindustry [140]. Other observed chemotypes 
present p-cymene (16–20%), trans β-Caryophyllene (11.3%), and eucalyptol (21.9%) as major constituents (Table S1). 
Further constituents of EO as well as extract composition vary among chemotypes [133]. A large variety of flavonoids with 

Fig. 6  Categorization of the knowledge base of L. origanoides in Colombia represented by the set of publications in each value chain build-
ing blocks  or phases. The knowledge base includes peer-reviewed journal publications retrieved from Scopus (not underlined) and grey 
literature reports (underlined). Some studies cover more than one value chain building block
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high concentrations have been reported, such as quercetin, naringenin, luteolin, and pinocembrin [137]. Chemotypes 
with a low content of phenolic compounds (i.e., chemotype A) may reduce antioxidant activity [126].

As for L. origanoides cultivation, information about plant propagation and cropping techniques is scarce. Asexual 
propagation with stem cutting is used [141], although it has shown relatively poor performance [142]. The relationship 
between fertilization and yields has been studied. Nitrogen and phosphorus are influential for the biomass production of 
L. origanoides, particularly above ground [143]. The effect of nitrogen fertilization has been assessed in three accessions 
of L. origanoides (Patía, Típica, and Cítrica). Average biomass and oil yields vary from 2.6 to 4.7 tons of dry matter (DM) and 
43.6 to 124.9 L of oil per hectare under different N application treatments (including both urea and organic fertilizer), as 
observed for the three accessions [144]. According to Delgado-Ospina (2015) [143], 55% of the total nutrient absorption 
occurs within the first four months, and these accumulate in the leaves, while the remaining localize in the stem and 
roots. Zambrano et al. (2013) [144] found that the highest essential oil concentration (4.0 ml/100 g) was obtained from 
the Pata accession treated with 100 kg of N (urea)/ha, while the Ctrica accession exhibited the highest biomass yield (5 
t DM/ha) under the same treatment. The highest reported oil yield (150 L per ha) was observed for the Pata and Ctrica 
accessions when applying 50 and 100 kg of N (urea) per ha, respectively [144]. Other studies found oil yields ranging 
from 2.6% to 3.3% on a DM basis [138]. Considering a plant density of 20.000/ha in an open-air cultivation system and 
3 harvests per year, a yield of 18 t/ha of L. origanoides (fresh biomass) and around 630 L of oil with a yield of 3.5% could 
be obtained [145]. The authors estimate that a yield of 24 t/ha of fresh biomass could be achieved through greenhouse 
farming with 4 harvests per year and 20.000 plants per hectare [145].

L. origanoides exhibits phenotypic plasticity with a high tolerance and specialization in habitats with low availability 
of water and poor soils [125]. An essay in Cauca (Colombia) found the influence of environmental factors in the biomass 
and composition of EOs, although the high variability can be inherent to the species ([146] cited in [113]) For instance, 
seasonal variation may influence the composition of EOs. Arango-Bedoya et al. (2012) [138] reported a higher content 
of thymol (80.3%) from leaves harvested in the Alto Patía region during the dry season in comparison to those collected 
in the rainy season (64.9% thymol). In contrast, EO from leaves collected in the rainy season in Mérida State (Venezuela) 
exhibited a higher concentration of thymol [147]. Oil yield and composition from three accessions in Colombia were not 
affected by seasonal variation or plant age [139, 140]. Similarly, oil yield, oil composition, and antimicrobial potential 
were not affected by seasonality, as found in samples from Santarém (Pará State, Brazil) [68, 140]. According to Hodson 
de Jaramillo and Stashenko [17], the cultivation of L. origanoides has been promoted through farmer training on good 
agricultural practices in some regions of Colombia [17].

3.3.2  Biomass processing

Some aspects and conditions have been assessed in the processing of L. origanoides. One condition evaluated is the 
biomass drying of fresh leaves (75% moisture content) under shading to 12% moisture content for a period ranging 
from 48 h to 10 days [138, 140, 148]. This pre-treatment can increase the concentration of less volatile compounds (i.e., 
thymol) and reduce the content of more volatile ones; therefore, depending on the targeted compound, drying can be 
a suitable strategy [140]. Chopping the biomass is recommended to increase the contact area during extraction [148]. 
Steam distillation, a common process for EO extraction, is used for L. origanoides. Yield values of 2,8% on a DM basis are 
reported, using not only leaves but also stems and flowers as raw materials [140, 145, 148, 149]. Other EO extraction 
methods based on hydrodistillation and supercritical fluids have been tested, with oil yields of 3% and up to 3,8% on a 
DM basis, respectively [148]. Extracts obtained through supercritical fluids under specific conditions (110 bar—60 °C) 
exhibited higher antioxidant activity [148].

Subsequent extraction as a valorization strategy using supercritical fluid techniques has been investigated to recover 
phenolic compounds such as flavonoids from residual biomass after steam distillation [150]. Approaches for processing 
suggest the possibility of integrating different technologies towards the development of biorefinery concepts from this 
plant and eventually from similar species. For instance, valorization of plant residues after oil extraction via steam distil-
lation can be realized through supercritical  CO2 techniques to obtain medicinal flavonoids [151]. The energy use of L. 
origanoides bagasse after oil extraction has been investigated, indicating the possibility of stem combustion, eventually 
as a strategy to self-supply the energy demand for the extraction of high-value-added compounds [152]. A patent for 
the integral processing of L. origanoides—patent of invention WO2018122654A1: method for making full use of Lippia 
origanoides—is reported [17, 153]. Processing pilot units for the production of EO from L. origanoides, among other plants, 
have been implemented in some regions of Colombia [17].
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3.3.3  Product development

L. origanoides EOs have a large potential in the poultry sector [139]. The use of EOs in broilers and laying hens represents 
a natural alternative to antibiotics [139, 154]. Antimicrobial and antiviral properties of EO have been reported to be 
effective against pathogenic bacteria (i.e., E. coli and Salmonella) in broilers and embryonated eggs [139, 155, 156]. An 
improvement in body weight and feed conversion ratio in broilers affected by coccidia (single-celled parasites) under sup-
plementation with EO has been evidenced [157, 158] EOs from L. origanoides are able to promote the growth of broilers 
and generate gains in production, quality, and egg mass. These compounds can contribute to enhancing meat quality 
by improving its fatty acid profile and preventing lipid peroxidation [139, 159]. Broilers fed with EO from thymol-rich L. 
origanoides chemotypes presented enhanced growth in comparison to basal diets and were similar to feed regimes with 
growth-promoting antibiotics [139, 160]. EO contributed to the improvement of intestinal morphology in laying hens 
and broilers, thus improving digestive function and nutrient absorption [160, 161]. Additionally, these would not affect 
the abundance and diversity of microbiota in broilers [158]. Further positive effects of EO feed supplements include the 
oxidative stability of eggs [148, 162], as well as the increase in antioxidant response and mitigation of harmful effects 
caused by periods of stress (e.g., heat stress) in chickens [163]. Additives based on L. origanoides have also been tested 
in dairy cows, indicating a positive response in productivity and a reduction in methane emissions [164].

EO from L. origanoides is potentially applicable in the agricultural sector as a biocide for the integrated control of pests 
and phytopathogens. Antifungal action against Phytophthora infestans, Alternaria solani, Botrytis cinerea, Moniliophthora 
roreri, Fusarium oxysporum, Trichophyton rubrum, T. mentagrophytes, Fusarium oxysporum, and Sitophilus zeamais in crops 
such as potatoes, strawberries, cocoa, and corn has been reported [134, 165–169]. Likewise, insecticidal repellent and 
antiprotozoal activity against Aedes aegypti, Ulomoides dermestoides, Tribolium castaneum, Sitophilus zeamais, and Trypa-
nosoma cruzi has been demonstrated [170–181]. This indicates the potential of EO against disease agents and vectors that 
affect human health. The impact of L. origanoides in the pharmaceutical industry includes its use for treating cutaneous 
leishmaniasis. dermatophytes infections and the potential of extracts from leaves, stems, and flowers against breast 
cancer cells [179–181]. The cytotoxic effects of EO from L. origanoides indicate its pharmacological potential, as observed 
in the brine shrimp (Artemia franciscana) lethality assay [137]. EOs also exhibit antibacterial properties against Staphylo-
coccus aureus and E. coli, anti-biofilm, and anti-quorum sensing activities [68, 134, 172, 182–184]. Likewise, antigenotoxic 
activity against UV and against bleomycin-induced genotoxicity has been reported [185–187].

3.3.4  Transversal aspects

The economic viability of L. origanoides EOS has been projected for open-air cultivation systems, indicating a positive 
profitability performance, whereas the economic profitability of greenhouse farming can be increased through a plant 
density higher than 20.000 plants per ha [145]. The authors estimated that 90% of the extraction costs are represented 
by biomass. High projected costs for the cultivation of L. origanoides, especially for greenhouse farming, can be a barrier 
for smallholder farmers [145]. On the other hand, the cultivation of L. origanoides could be a source of new jobs [145]. A 
market differentiation strategy towards high-added-value products can increase the economic viability and competi-
tiveness of L. origanoides [145]. Ensuring a biomass supply is key to the production of EO. Barrientos et al. (2012) [145] 
estimated that around 300 tons of biomass are required annually (between 7 and 16 ha) to operate an extraction plant 
with a capacity of 1200 kg/day. This can represent opportunities for smallholder farmer associations (horizontal integra-
tion) and vertical cooperation schemes with established EO agroindustries closely located [37, 145]. In fact, according 
to Hodson de Jaramillo and Stashenko (2022) [17], more than 200 family farmers are involved in the cultivation and pro-
duction of EO from aromatic plants in Colombia. Farmers could also benefit from using food supplements based on EO 
from L. origanoides. Although the use of EO as feed supplements in poultry, laying hens, and dairy cows could increase 
feeding costs, compensation through gains in productivity is expected [139, 164].

The actors currently involved in the production and use of L. origanoides include local communities through tradi-
tional and commercial use, research institutions, and processing companies. Main research institutions are the National 
Research Center for the Agro-industrialization of Aromatic Plant Species and Tropical Medicines (CENIVAM, Universidad 
Industrial de Santander) and the Plants Medicine Research Group of the Universidad Nacional de Colombia [37]. There 
are three companies dedicated to the production and supply of products from L. origanoides: Naturpiel, Aromas del Sol, 
and Magia Chicamocha, a CENIVAM spin-off. The products correspond to EOs, described as final goods for the cosmetic, 
personal care, and cleaning sectors [24, 149, 188].
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3.4  Challenges and future directions for L. origanoides VCs

The present review confirms the potential of L. origanoides as a novel resource for the development of NIVCs from biodi-
versity in Colombia, as pointed out in earlier reviews and prospective studies [17, Cluster Development 2020 cited in 24, 
37, 145]. Aspects such as positive market prospects and favourability with regard to its degree of domestication (currently 
from wild plants and orchards), abundance, natural distribution, usability, knowledge about bioactive compounds, and 
species-specific production capacity indicate the potentiality of L. origanoides [24]. The potential of L. origanoides as a 
source of natural antibiotics and its possibility to diversify farming while contributing to ecosystem services constitute 
sustainability advantages. However, in order to foster the development of NIVCs, it is necessary to assess the knowledge 
base, integrate it along the VC and intensify its use to advance the preparedness of L. origanoides, from biomass produc-
tion to high-added-value products [17, 34, 35, 189]. This review contributes to this endeavour adding a new and applied 
perspective—the value chain—and provides a diagnostic of the knowledge status and needs towards the development 
of NIVCs, building upon previous reports and results from diverse research studies (Fig. 7). For novel resources like L. 
origanoides, ensuring biomass supply is key [145]. In this regard, advances in plant material and biomass production are 
necessary for the cultivation of specific chemotypes of L. origanoides that fit site-specific ecophysiological conditions 
and applications. Biomass production is partially addressed in the retrieved literature. There is reported knowledge on 
species-specific biology, phytochemistry, botanical aspects, plant ecology, and the taxonomy of L. origanoides. However, 
there is limited documented knowledge on germination, plant propagation, the development of planting material, and 
the agro-ecological zoning of suitable cultivation areas. Genetic studies to understand the relationship between EO 

Fig. 7  Current panorama and prospects of L. origanoides value chains in Colombia based on the reported literature. Adapted from [197]



Vol:.(1234567890)

Review Discover Sustainability            (2023) 4:33  | https://doi.org/10.1007/s43621-023-00150-w

1 3

composition and genetic variation are needed to guide plant breeding strategies [123, 131]. Use and management pro-
tocols and cultivation technology packages are necessary for this species, including agronomic practices, plant density, 
harvesting, yield stability, and plantation (re)establishment  [24, 145]. Nevertheless, farmer training on cultivation and 
the initial production of L. origanoides in Colombia are reported [17]. Sourcing L. origanoides from natural stands (i.e., 
wild collection) can represent an alternative or complementary biomass supply strategy. In this regard, recent advances 
for the sustainable use of biodiversity include the Act 690 (2021), which regulates the use of wild plants [190, 191].

Knowledge transfer to farmers, appropriate business models, and linkages with processors are elemental aspects 
for advancing the VC. Moreover, labor availability in a context of rural migration must be ensured to promote the 
cultivation of L. origanoides [192]. VC governance processes and productive linkages related to L. origanoides are 
currently weak [24, 134]. The involvement of community-based organizations could foster the development of VCs. 
However, these types of actors are lacking in the case of L. origanoides in Colombia [24]. Economic viability for L. 
origanoides cultivation determines farmers’ decision-making to adopt a new crop over conventional farming activi-
ties [37]. Therefore, inclusive arrangements are required between primary producers (i.e. farmers) and processors of 
L. origanoides to create and distribute value, thus providing incentives to participate in the VC [37].

Standardization of biomass processing is key to responding with high quality standards to the national and 
international markets [24]. Process development and up-scaling at commercial level of (pre-) processing technolo-
gies requires the screening and evaluation of technological pathways (i.e., oil extraction methods and by-product 
valorisation), piloting, and process validation  to obtain targeted plant extracts, as well as process optimization [193]. 
Adapting available processing technologies used for EO extraction, such as steam distillation, offers a possibility for 
processing L. origanoides. Implemented pilot units for EO production in Santander, Arauca and Cundinamarca can 
contribute to this purpose [17].  The application of biorefining principles can result in L. origanoides value webs by 
using all biomass fractions and integrating different plants, processes, and products [194–196].

Accumulated knowledge about the properties and applications of L. origanoides extracts serves to consolidate 
a product portfolio, enabling further product development steps [17, 36]. Efforts on product development, for-
mulation, product functionality and safety testing, and intellectual property protection are needed [17, 139, 191]. 
Accomplishing the regulatory framework is key for the production and commercialization of NIs [191]. In addition, 
market introduction of novel NIs requires marketing efforts and knowledge dissemination to stimulate demand, 
which is low at the moment for L. origanoides products [145, 191]. One possibility for L. origanoides EOs is to enter 
existing markets for known chemotypes such as thymol [145]. The market for NIs from L. origanoides indicates posi-
tive prospects for natural products (cosmetics, pharma, and food sectors) based on a growing demand nationally 
and internationally and the possibility to participate in other markets such as the animal nutrition sector [Cluster 
Development 2020 cited in 24;37). For instance, the poultry industry is among the main agricultural activities in 
Colombia, thus representing a great potential for feed supplements based on L. origanoides [139]. Although already 
established, the EO sector in Colombia is integrated by few small companies, partly due to the lack of knowledge on 
extraction and refining technologies, the low supply of raw materials, and market uncertainty [198]. Many aromatic 
plants are marketed traditionally in Colombia with a low level of transformation and value added [145, 192]. It has 
been estimated that 90% of NIs in Colombia are imported [199]. Imports of EO for the food and personal care sectors 
in Colombia indicate the potential for local substitutes [24, 198]. Therefore, if the production and supply of NIs from 
plants like L. origanoides are encouraged, imports could be reduced and exports increased.

The current research on L. origanoides in Colombia does not substantially account for transversal aspects such as 
sustainability dimensions (mainly in terms of environmental and social aspects), VC governance, business models, 
and VC management. This pattern can be common for novel crops and VCs in the early stages of development [34]. 
The consideration of sustainability along the NIVC is key and requires the integration of criteria related to the envi-
ronmental, social, economic and their interplay with technical and regulatory dimensions for guiding the design of 
VCs [24, 35, 37, 199]. Related aspects of relevance for biobased business models around NI from native plants such 
as L. origanoides include sustainable practices for plant production, supply and processing implementing low-input 
systems and environmental-friendly processes, natural resource and biodiversity conservation strategies and social 
responsibility measures [24, 35, 37, 199, 200]. Corporate and VC strategies towards value creation and fair distribu-
tion of benefits, product functionality, quality and safety, social inclusion and acceptance and the accomplishment 
of regulatory frameworks are suggested specially in NI sectors [24, 35, 37, 199, 200]. In fact, the increasing focus on 
sustainable VC rises the need for emerging businesses in NI sectors to deliver products that fulfil sustainability criteria 
as prerequisite to participate in markets through e.g. certifications and standards [24, 37, 199].
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A holistic characterization and analysis of L. origanoides VCs can contribute to promoting linkages between stake-
holders and facilitating VC-integral actions for biomass production, processing, product  and market development 
[198]. For this, NIVC structures applied in Rugeles et al. (2012) [37], Gómez (2017) [199], Murcia-López et al. (2021) 
[189], and Rojas et al. (2022) [201] can serve as references. Mapping current and potential stakeholders (i.e., farmers, 
processors, NI industrial producers, national and international marketers, the public sector, research institutions, and 
consumers) can contribute to their involvement in the early stages of VC development by facilitating the identification 
of upgrade and innovation strategies, requirements, and knowledge transfer. Available guidelines for developing 
NIVCs in Colombia, such as the guide published by Rojas et al. (2021) [191], can contribute to accomplishing regula-
tions and requirements for the production and commercialization of NIs.

Strategic partnerships and multi-stakeholder approaches to R&D are necessary to address both technical and non-
technical challenges, co-create solutions, finance, and up-scale VCs [35, 191]. It is thus key to develop robust science, 
technology, and innovation instruments that articulate the VC based on the experience of research projects on aromatic 
plants led by public entities and research centers. These have contributed to the accumulation and transfer of knowl-
edge on cultivation, post-harvesting, and EO production [17]. Building partnerships between farmers, processors, and 
NIs companies with a high technological level and the implementation of inclusive VC models can contribute to both 
product differentiation and organizational innovation of VCs from L. origanoides [37].

Advancing L. origanoides VCs is favored by an enabling environment promoted by the National Plan of Green Busi-
nesses, the Green Growth Policy, and the National Bioeconomy Mission [24, 199, 201]. International cooperation pro-
grams and projects such as the ‘Useful Plants and Mushrooms from Colombia’ project (Kew Royal Botanic Gardens and 
the Institute Alexander von Humboldt) and the ‘Colombia más competitiva" program contribute to generating applied 
knowledge and tools for fostering the NIs sector [24]. The use of native plants as a promising source of new products 
can also offer possibilities for ecosystem restoration, thus making them multi-purpose plants [32, 34]. For instance, L. 
origanoides grows mainly in tropical dry forests [122, 189, 202], one of the most degraded ecosystems in the country. 
Thus, the sustainable use of this plant can contribute to the productive restoration of this ecosystem [189]. These benefits 
can be the source of new incentives in business models for ecosystem restoration. All aspects critically analyzed and 
consolidated represent the first review of NICVs in Colombia.

4  Conclusions

The global interest in the research and development of NIs is continuously growing. Leading countries in scientific pro-
duction in terms of publications on NIs have implemented either BE-related or BE-dedicated strategies in the last decade, 
becoming a driver for increasing research on biomass applications. Areas such as biochemistry and biopharmacy are 
among the most prominent, which can be explained by the promotion of research and development in line with the 
priorities of BE strategies in countries with robust R&D capacities and a focus on knowledge- and technology-intensive 
BE transformation paths.

In Colombia, NIs from plant biodiversity have gained importance in the policy and research agenda as a strategy for 
adding value to biomass and pursuing contributions to industrialization, rural development, and economic development. 
International cooperation with leading countries in research on NIs contributes to expanding the knowledge base for 
developing VCs. While cooperation with rich biodiverse countries and leaders in NI R&D such as Brazil can strengthen 
capacities for biomass production and processing, collaboration with countries such as Spain and the United States can 
contribute to product and market development. Increasing research activities have resulted in a large portfolio of plants 
that are promising sources of NIs in Colombia. Nevertheless, for the evolution into VCs and sustainable performance, 
advancing biomass production, processing methods, product development, business models, and governance arrange-
ments is key.

Understanding the prospects of VCs from L. origanoides, a prioritized plant species for NIs in Colombia, can serve as a 
blueprint for novel resources from local biodiversity to guide R&D for VCs. The current knowledge base of L. origanoides, 
represented by the set of reported publications, does not fully cover the VC. There is an imbalance in the amount of 
literature between the phases of the VC. The publications are concentrated on the identification of product potential 
related to the product development phase. In contrast, biomass production, a key enabler of VCs, is partially covered 
in the literature. The most commonly identified challenge is the need to promote an integrative VC approach in R&D. 
Particular issues are caused by the limited evidence on (i) plant propagation, agronomic management, and harvest prac-
tices; (ii) process optimization for specific NIs; (iii) advanced product development prioritizing specific applications; (iv) 
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VC actors’ relations, governance, and business models; and (v) environmental, social, and economic performance. Joint 
R&D and multi-stakeholder endeavors are needed for consolidating and advancing the knowledge base, while offering 
both technical and non-technical enabling conditions at the territorial level for developing sustainable VCs from plants 
such as L. origanoides. Regional NIs clusters integrated by active research institutions and networks, farmers, processors 
such as the EO industry, and market sectors can foster the upgrade of VCs from L. origanoides. This can facilitate the 
integration of interventions in each VC phase, reducing uncertainty, attracting investments, transferring knowledge, 
and guiding the development of novel NI value webs from  plant biodiversity in the territories.
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