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Abstract
Biochemical oxygen demand (BOD) is one of the most important parameters used for water quality assessment. Alternative 
methods are essential for accurately prediction of this parameter because the traditional method in predicting the BOD is time-
consuming and it is inaccurate due to inconstancies in microbial multiplicity. In this study, the applicability of four hybrid 
neuro-fuzzy (ANFIS) methods, ANFIS with genetic algorithm (GA), ANFIS with particle swarm optimization (PSO), ANFIS 
with sine cosine algorithm (SCA), and ANFIS with marine predators algorithm (MPA), was investigated in predicting BOD 
using distinct input combinations such as potential of hydrogen (pH), dissolved oxygen (DO), electrical conductivity (EC), 
water temperature (WT), suspended solids (SS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus 
(T-P) acquired from two river stations, Gongreung and Gyeongan, South Korea. The applicability of multi-variate adaptive 
regression spline (MARS) in determination of the best input combination was examined. The ANFIS-MPA was found to be 
the best model with the lowest root mean square error and mean absolute error and the highest determination coefficient. It 
improved the root mean square error of ANFIS-PSO, ANFIS-GA, and ANFIS-SCA models by 13.8%, 12.1%, and 6.3% for 
Gongreung Station and by 33%, 25%, and 6.3% for Gyeongan Station in the test stage, respectively.

Keywords Biochemical oxygen demand · Water quality · Prediction · Neuro-fuzzy · Marine predators algorithm

Introduction

Water bodies, as the most important component of all natural 
resources, are essential to human survival as well as the cre-
ation of food and economic growth. However, some of these 
natural resources (e.g., rivers, lakes, estuaries, reservoirs, 
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and wetlands) have recently become increasingly contami-
nated and polluted as a result of intensive household, agri-
cultural, and industrial human activities. An essential and, in 
some instances, even crucial part of ecological control is the 
proper estimation of organic compound pollution of aquatic 
ecosystems and environmental objects. In this respect, the 
biochemical oxygen demand (BOD), which expresses the 
quantity of dissolved oxygen (DO, mg) required for the oxi-
dation of all biodegradable organic compounds in a water 
sample, is known as a proper candidate for capturing the 
biological aspect of the biological component of water qual-
ity (Ponomareva et al. 2011).

BOD is calculated based on the difference in oxygen 
capacity between water samples that have been placed in 
special airtight flasks and the same sample after a predeter-
mined amount of time. Hence,  BOD5 determines the 5-day 
incubation of water samples saturated with oxygen and sup-
plemented with activated sludge. Normally, BOD is meas-
ured using laboratorial tests (Tegenaw et al. 2021). Despite 
its precise measuring advantages, direct laboratorial tests 
face some limitations such as the time required for analysis 
and substantial expenses. To deal with these shortcomings, 
some researchers have utilized biosensors, which are inte-
grated instrument that can offer analytical data that is both 
quantitative and semi-quantitative, for reaching a safe and 
rapid measurement (Wang et al. 2022). Nonetheless, the 
measured value of BOD using the biosensors is considered 
as the instantaneous value that does not necessarily correlate 
to the conventional  BOD5 values.

It is worth mentioning that in some specific cases, due 
to laboratorial restrictions, some common water quality 
parameters (e.g., potential of Hydrogen (pH) and electri-
cal conductivity (EC)) could be measured without difficul-
ties; but the same issue may not apply to BOD. Considering 
this fact and the abovementioned drawbacks in measuring 
direct values for BOD, application of indirect methods like 
mathematical (Sibil et al. 2014) and artificial intelligence 
machine learning (AI-ML) methodologies would be worthy 
of consideration. Having mentioned that, AI and ML tech-
niques have proven to be effective and efficient at simulating, 
optimizing, and predicting hydro-environmental applications 
(Zounemat-Kermani et al. 2022). In essence, AI-MLs are 
developed based on historical datasets, trained by simple to 
sophisticated optimization algorithms, and make inferences 
in complex systems. There are various types of AI-MLs that 
have been successfully employed in modeling hydro-sci-
ences and environmental applications, like artificial neural 
networks (ANN), extreme learning machines (ELM) support 
vector regression (SVR), random forest (RF), and adaptive 
neuro-fuzzy inference systems (ANFIS) (Yan et al. 2010; 
Kim et al. 2010; Dong et al. 2023).

ANFIS is categorized as a supervised network-based ML 
model that combines the advantages of feedforward ANNs 

and fuzzy inference systems (FIS). As a result, even for a 
highly nonlinear system, ANFIS is expected to generate very 
accurate predictions. It has been widely used in predicting 
water quality parameters in rivers (Kisi and Zounemat-
Kermani 2014; Kadkhodazadeh and Farzin 2022; Almadani 
and Kheimi 2023). In line with the objective of this study, 
specifically, Table 1 summarizes the applications of ANFIS 
models in modeling BOD in rivers.

The review of the studies illustrated in Table 1 clearly 
shows that, in some cases, the traditional ANFIS model can-
not keep up with other types of ML models such as ANNs 
and SVRs. Therefore, seeking out more efficient ANFIS 
models seems to be a worthy effort for researchers. In fact, 
recent studies have exemplified the superiority of integra-
tive (hybrid) ANFIS models embedded with meta-heuristic 
algorithms compared with other ML models for modeling 
complex environmental and hydrological problems (Zoune-
mat-Kermani et al. 2019). Several recent reviews have been 
reported on the superiority of integrative ANFIS models 
embedded with meta-heuristic algorithms in modeling water 
quality (Azad et al. 2019; Aghel et al. 2019). For instance, 
Azad et al. (2019) employed regular ANFIS, ANFIS embed-
ded with particle swarm optimization (ANFIS-PSO), and 
ANFIS embedded with ant colony optimization (ANFIS-
ACO) for modeling water quality at the Zayandehrood River, 
Iran. Based on the general evaluation of three stations, it 
was demonstrated that the ANFIS-PSO acted better than the 
other applied ANFISs and ANN.

Having mentioned the necessity for apprising integra-
tive (hybrid) ANFIS models in modeling complex water 
quality phenomena in rivers, this research aims to develop 
and assess the potency of four integrative ANFIS models in 
simulating BOD in rivers. The integrative models include 
two traditional meta-heuristic algorithms, namely (1) genetic 
algorithm (GA) (Holland 1992a), (2) particle swarm opti-
mization (PSO) (Kennedy and Eberhart 1995); a rather new 
algorithm, namely (3) sine cosine algorithm (SCA) (Mir-
jalili 2016); and a novel algorithm called (4) marine preda-
tors algorithm (MPA) (Faramarzi et al. 2020) to develop 
ANFIS-PSO, ANFIS-GA, ANFIS-SCA, and ANFIS-MPA. 
The fundamental rationale for using GA (as an evolutionary 
algorithm) and PSO (as a swarm intelligence-based algo-
rithm) is their widespread success in optimizing ML models 
in environmental sciences; therefore, these algorithms serve 
as a significant benchmark for evaluating the more current 
SCA and new MPA algorithms. The MPA algorithm is a 
simple and efficient nature-inspired algorithm that mim-
ics the predator-prey biological interaction in oceans using 
Brownian motion in the search domain. This algorithm has 
already been known as a high-performance optimizer and 
won the IEEE CEC competition (Faramarzi et al. 2020). 
Contrary to conventional algorithms such as GA and PSO, 
the SCA algorithm, which is classified as a stochastic 
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algorithm, generates more than one random solution in each 
step of optimization. This feature improves the potency of 
the algorithm in the field of optimization (Mirjalili 2016).

This matter also represents and highlights the novelty 
of the paper conveying the coupled application ANFIS and 
metaheuristic optimization methodologies. To the best of 
the authors’ knowledge, no study has previously used MPA 
with ML models to simulate water quality metrics. Accord-
ingly, the contribution of this study lies in the evaluation 
of various types of integrative ANFIS models in modeling 
BOD based on four distinct input combinations such as pH, 
EC, DO, COD, SS, water temperature (WT), total nitrogen 
(T-N), total phosphorus (T-P), and total organic carbon 
(TOC). In this essence, in order to achieve a comprehensive 
conclusion regarding the efficiency of the integrative ANFIS 
models, the multivariate adaptive regression spline (MARS) 
model — known as one of the most qualified adaptive and 
robust ML models — is applied to derive and determine the 
optimal input combinations.

Materials and methods

Utilized data and study area

This study used data from two water quality stations, Gongre-
ung and Gyeongan, South Korea, for predicting BOD param-
eter. Gongreung Stream (longitude 126°89′E and latitude 

37°67′N), which is one of first tributaries of Han River, 
includes Gongreung Station located at the Gongreungcheon 
bridge, whereas Gyeongan Stream (longitude 127°31′E and 
a latitude 37°44′N), which is designated and managed as a 
National River of South Korea since the pollution load for 
Gyeongan Stream on Paldang Lake reaches 16%, involves 
Gyeongan Station situated at Yongdam bridge, respectively.

The number of utilized data for this study reached N = 583 
records at Gongreung Station and N = 690 records at Gyeo-
ngan Station. The measurement period on both stations cov-
ers from January 1, 2008, to December 31, 2021. The data of 
water quality parameters were downloaded from the internet 
webpage (http:// water. nier. go. kr) of National Institute of Envi-
ronmental Research (NIER) managed by Ministry of Environ-
ment (ME), South Korea.

The data were divided into two parts, training and test. 
The training part involved 70% of total data in both stations 
and the testing part included the last 30% of whole data. 
Figure 1 illustrates the location of the stations used in this 
study. Under the addressed study, the fluctuation of BOD 
parameter was predicted based on diverse water quality 
parameters including pH, EC, DO, WT, COD, SS, T-N, T-P, 
and TOC. Table 2 presents the brief statistical features of 
water quality parameters. It is visible from the Table 2 that 
the standard deviation values of EC and SS parameters are 
considerably high compared to other parameters in both sta-
tions. SS has the highest skewed distribution and distribu-
tion of BOD is far from the normal (Gaussian) distribution.

Fig. 1  A schematic map of 
Gongreung and Gyeongan 
stations

http://water.nier.go.kr
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Multivariate adaptive regression splines
The MARS machine learning model was proposed by Fried-
man (1991). MARS can be considered as a tree based (TB) 
machine learning algorithm, and it uses the idea of divid-
ing the dataset space into several subspace and building a 
spline functions (i.e., basis functions) for each subspace. The 
output of the MARS model is calculated as follows (Chen 
et al. 2022):

In the above equation, Ŷ is the calculated value of the target 
variable, βm is the constant term, βm is the coefficient corre-
sponding to the mth spline function, and ∅m is the mth spline 
function. In MARS model, the breakpoint used for moving from 
one function to another is called the Knots, and it is important to 
note that one of the major advantages of the MARS model is its 
capability for searching the input variables (i.e., the independent 
variables) one by one which can help in avoiding any degree of 
interaction between the independent variables. MARS model 
can be developed in two different steps. First, an ensemble of 
basis functions (BFs) is constructed (i.e., the forward pass). 
During the second stage (i.e., the pruning pass), the generalized 
cross-validation (GCV) is adopted as a criteria for removing 
or deleting the BFs that have a poor contribution, and the vari-
able importance is calculated by measuring the degree of reduc-
tion in the calculated GCV when removing each one from the 

(1)Ŷ = 𝛽0 +

M∑
m=1

𝛽m∅m[x]

independent variables of the model (Wang et al. 2023; Jin et al. 
2023). Figure 2 illustrates the structure of MARS.

Adaptive neuro‑fuzzy inference system

The ANFIS was first introduced by Jang (1993). The ANFIS 
model can be viewed as a multilayer feed-forward artificial 
neural network for which two techniques were combined for 
building a single model: the ANN and the fuzzy inference 
reasoning. ANFIS model is used for relating an ensemble 
of input variables xi to one output variable y based on a 
nonlinear mathematical formulation. The input variables 
are expressed using linguistic descriptions (i.e., low, middle, 
high, very high, respectively), and for each linguistic terms, 
a membership function (MF) is adopted, i.e., the μi(xi). The 
ANFIS model uses an ensemble of input/output dataset for 
building a fuzzy inference system (FIS), and similar to all 
machine learning models, there are an ensemble of updated 
parameters, i.e., the nonlinear MF parameters and the linear 
parameters of the fuzzy rules. ANFIS model has five layers, 
which can be briefly described as follows (Fig. 3) (Kumar 
et al. 2023; Sarkar et al. 2023).

Layer 01 (fuzzification layer) Each node here is a square 
node with the following function:

(2)O1,i = �Ai

(
x1
)
, i = 1, 2

Table 2  Statistical properties 
of the water quality parameters 
used in the study

Station Dataset pH EC DO WT COD SS T-N T-P BOD

Gongreung Training Mean 7.94 514.91 10.98 16.86 9.53 23.88 6.28 0.22 6.26
Min. 7.00 127.00 1.80 0.40 3.40 4.00 2.32 0.05 0.90
Max. 9.60 2203.00 20.20 34.00 39.20 402.90 13.36 1.42 30.60
Skewness 0.99 2.85 0.50 −0.23 2.57 8.15 0.78 3.92 1.78
Std.dev. 0.58 247.56 2.95 8.61 3.56 29.57 2.54 0.12 3.54

Testing Mean 8.09 413.23 10.59 17.57 5.75 13.72 4.53 0.12 2.94
Min. 7.10 175.00 5.30 1.30 2.00 0.80 0.46 0.03 0.50
Max. 9.30 1594.00 17.60 32.30 19.60 381.00 14.78 0.94 15.50
Skewness 0.58 3.28 0.03 −0.14 1.88 10.59 1.44 4.85 2.49
Std.dev. 0.46 162.84 2.35 8.02 2.97 30.90 2.39 0.09 2.39

Gyeongan Training Mean 8.12 376.30 11.12 14.66 5.90 11.40 4.95 0.09 2.55
Min. 6.90 110.00 5.30 0.00 2.80 0.70 1.68 0.01 0.60
Max. 9.50 642.00 17.50 29.70 13.50 168.70 12.27 0.43 10.60
Skewness 0.86 −0.31 0.10 −0.15 1.19 5.67 0.81 1.99 1.37
Std.dev. 0.44 103.74 2.42 8.66 1.98 15.50 2.06 0.07 1.74

Testing Mean 8.05 383.27 10.99 15.59 5.13 11.66 4.19 0.07 1.82
Min. 7.50 132.00 7.20 0.60 3.20 1.00 1.77 0.02 0.50
Max. 9.10 549.00 16.20 30.70 13.00 207.00 7.81 0.58 6.70
Skewness 1.06 −0.61 0.36 −0.12 1.68 6.05 0.34 4.86 1.67
Std.dev. 0.29 74.86 2.30 8.46 1.68 22.73 1.34 0.06 1.20
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where x1 and x2 are the input variables and A1 and B2 cor-
respond to the linguistic label. The O1,i can be viewed as 
the MF of Ai and Bi. In this first layer, the parameters of the 
MF correspond to the premises parameters or the nonlinear 
parameters of the ANFIS model.

Layer 02 (product layer) Each node here is a circle node 
labeled Π. Its output can be calculated as follows:

Layer 03 (normalization layer) Each node here is a circle 
node labeled N. Its output can be calculated as follows:

(3)O1,i = �Bi

(
x2
)
, i = 3, 4

(4)
O2,i = wi = �Ai

(
x1
)
∙ �Bi

(
x2
)
, i = 1, 2, 3, 4

Layer 04 (defuzzification layer) Each node here is a square 
node with following function:

where wi corresponds to the output of layer 3 and {pi, qi, 
ri} are the parameter of the fuzzy rules. These parameters 
are the consequent parameters (i.e., the linear parameters).

Layer 05 (output layer) Only one node is available in this 
layer, and it computes the overall response of the model as 

(5)O3,i = wi =
wi

w1 + w2 +…wi

i = 1, 2, 3, 4

(6)
O4,i = wif = wi

(
pix1 + qix2 + ri

)
i = 1, 2, 3, 4

Fig. 3  Structure of ANFIS

Fig. 2  Structure of MARS



Environmental Science and Pollution Research 

1 3

the summation of all incoming signals from the previous 
layers as follows:

Genetic algorithm

GA is a global optimization method (Holland 1992b) broadly 
reported in the literature as an efficient tool for improving the 
performances of machine learning models. The GA is mainly 
inspired from the reproduction behavior and it can be achieved 
in four steps: reproduction, selection, crossover, and mutation 
(Fig. 4). The algorithm starts by randomly generating a popu-
lation of individuals (i.e., chromosomes). The population is 
evaluated using a fitness function. Thus, the GA updates the 
initial population using selection, crossover, and mutation until 
the best solution is obtained which determines the stopping cri-
teria (Jamali et al. 2019; Salim et al. 2019; Satrio et al. 2019).

Particle swarm optimization

PSO is a metaheuristic algorithm based on swarm intelli-
gence mainly inspired from the behavior of the swarm move-
ment, i.e., bees, fish schools, and insects while searching the 
prey; it was developed by Kennedy and Eberhart (1995). The 
overall PSO algorithm can be described as follows. The indi-
viduals are called particles, and they play the role of agents, 
and there is a communication between the agents. 

They form an extremely dense swarm, which cannot be 
dissociated. The PSO is composed from three parts (Alam 

(7)O5,i = final response = wif =

∑
i wifi∑
i wi

et al. 2014): (i) particles, (ii) social and cognitive compo-
nents of the particles, and (iii) velocity of the particles. The 
PSO is an iterative algorithm, and at each iteration, each 
individual (i.e., particle) is localized in a specific point (i.e., 
position) with a particular velocity vector; thus, each particle 
has both a velocity and a position. More precisely, during 
the training process, the velocity is updated continuously 
taking into account the same velocity in the previous itera-
tion, the direction of the best position of the particle, and 
the best position of any other particle (Regis 2014). Each 
position can be considered as a probable solution; therefore, 
the particle is evaluated based on fitness function until the 
convergence condition was obtained (Fig. 5). Finally, the 
particle having the best fitness is then selected as the global 
and best solution (Ghorbani et al. 2014).

Sine cosine algorithm

SCA developed by Mirjalili (2016) belongs to the category 
of population-based optimization algorithms. The SCA algo-
rithm starts by presenting an ensemble of possible solution, 
and using an objective function, the set of solution is repeat-
edly evaluated, and the chance for finding the best solution 
increases by the increase of the number of iterations. Similar 
to the majority of optimization algorithms, the SCA has two 
phases: the exploration and exploitation phases (Mirjalili 
2016). The two equations presented hereafter are used for 
both exploration and exploitation phases (Fig. 6):

(8)Zt+1
i

= Zt
i
+ �1 × sin

(
�2
)
× ||�3Lti − Zt

i
||,

Start 
Random Generation of 

Initial Population  
Fitness function 

Evaluation 

StopEnd Yes No 

Crossover Mutation  Replace the 
New Generation

Fig. 4  Flowchart of GA

Start Population        
Initialization

Location and Velocities
initialization

StopEnd Yes 
No 

Update the velocity and 
position 

Individual and Global 
Best Updating  

Fitness function 
Evaluation 

Fig. 5  Flowchart of PSO
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where Zt
i
 corresponds to the actual position of the existing 

solution in ith dimension at tth, iteration; δ1, δ2, and δ3 are 
random numbers; Li corresponds to the destination point’s 
position in ith dimension; and || indicates the absolute value 
(Mirjalili 2016). By combining the two previous equations, 
we can obtain the following equation:

where δ4 is a random number in [0, 1].
From the above equation, it is clear that the SCA needs 

four parameters, namely, δ1, δ2, δ3, and δ4. The δ1 is respon-
sible for determining the exact movement direction. The δ2 
is responsible for determining yet whether the movement 
ought to be towards or outwards the destination. The δ3 can 
be whether an emphasize (δ3 > 1) or deemphasize (δ3 < 1). 
Finally, the δ4 equally switches between the components of 
sine and cosine (Mirjalili 2016). The δ1 can be calculated 
as follows:

(9)Zt+1
i

= Zt
i
+ �1 × cos

(
�2
)
× ||�3Lti − Zt

i
||,

(10)

Zt+1
i

=

{
Zt
i
+ 𝛿1 × sin

(
𝛿2
)
×
|||𝛿3Lti − Zt

i

|||, 𝛿4 < 0.5

Zt
i
+ 𝛿1 × sin

(
𝛿2
)
×
|||𝛿3Lti − Zt

i

|||, 𝛿4 ≥ 0.5

(11)�1 = a − t
a

T

Marine predator’s algorithm

The MPA was introduced by Faramarzi et al. (2020), and 
it is based on the idea of simulating the behavior of ocean 
predators foraging strategy using the Lévy and Brownian 
movements (Fig. 7). Similar to several other population, the 
MPA initial candidate’s solutions should be proposed for the 
first iteration as follows (Fig. 8):

where Xmin and Xmax correspond to the lower and upper 
bounds and rand is a uniform random vector having the 
scale from 0 to 1. Using the so-called survival of the fittest 
theory, an initial matrix called the Elite (EL) is constructed 
as follows:

The ���⃗XI  is considered the top predator vector, n is the num-
ber of search agent, and d is the number of dimensions. It 

(12)X0 = Xmin + rand
(
Xmax − Xmin

)

(13)EL =

⎡⎢⎢⎢⎢⎢⎢⎣
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⋮

⋮

⋮
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Fig. 6  Flowchart of SCA (Mir-
jalili 2016)
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Fig. 7  Flowchart of MPA algo-
rithm (Faramarzi et al. 2020)
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Fig. 8  ANFIS-MPA flowchart
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is important to note that the search agent terms should be 
attributed for both predator and prey. A second matrix called 
Prey (PR) having the same dimension as the Elite was used 
as a reference for updating the position of the Elite, and it is 
expressed as follows:

More importantly, it is worth to note that the MPA opti-
mization procedure is completely governed by these two 
matrices. The MPA algorithm can be achieved in three 
phases depending on the velocity ratios and simultaneously 
the nature life of both the prey and predator: (i) the high 
velocity ratio (the prey faster than the predator), (ii) the 
unit velocity ratio, and (iii) low velocity ratio (the preda-
tor faster than the prey) (Faramarzi et al. 2020). All three 
steps are achieved using an important number of iterations.

The high velocity ratio (phase 1: v ≥ 10). This phase 1 
is available during the starting of the iteration process (i.e., 
during the exploration), and it is characterized by the fact 
that the prey moves faster than the predator. The mathemati-
cal formulation is as follows:

where IT is the actual iteration, MAX_IT corresponds to 
the maximal number of iterations, RB is a random number 
for the expression of the Brownian motion, STZ is the 
stepsize, PR is the prey, R is an uniform number between 
[0,1], and ⊗ is the entry wise multiplication (Faramarzi 
et al. 2020).

The unit velocity ratio (phase 2: v ≈ 1). The prey and 
the predator move at the same pace. This is a transition 
phase for which the exploration prepares to pass into 
the exploitation phase: the two were matters. We can 

(14)PR =

⎡
⎢⎢⎢⎢⎢⎢⎣
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⋮

⋮
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⋮

⋮

⋮
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⋮
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⎤
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(15)While IT <
1

3
MAX_IT

(16)������⃗STZi =
�⃗RB ⊕

(
����⃗ELi − �⃗RB ⊕ ����⃗PRi

)
;i = 1, 2, 3,… , n.

(17)����⃗PRi =
����⃗PRi + 0.5 �⃗R⊕ ������⃗STZi

see during this phase that the population is split in two 
equal parts: one for the exploitation (i.e., the prey) and 
the second half for the exploration (i.e., the predator). 
More precisely, if prey moves in Lévy, the best strategy 
for predator is Brownian. This phase can be formulated 
as follows:

For the 1st half of the population

For the second half of the populations,

RL is a vector involving random numbers which repre-
sent Lévy movement. The multiplication of �⃗RL and Prey 
maps the prey movement in Lévy manner, and the multipli-
cation of �⃗RBand Elite simulates the movement of predator 
in Brownian manner (Faramarzi et al. 2020).

The low velocity ratio (phase 3: v ≈ 0.1). This is the last 
phase of the optimization process having as a particularity the 
elevated exploitation capability (i.e., the predator is moving 
faster than the prey). This phase can be formulated as follows:

It was reported that the fish aggregating device (FAD) effects 
should be taken into account as it corresponds to the local 
optima, and it is expressed as follows (Faramarzi et al. 2020):

(18)While
1

3
MAXIT < IT <

2

3
MAXIT

(19)������⃗STZi =
�⃗RL ⊕

(
����⃗ELi − �⃗RL ⊕ ����⃗PRi

)
;i = 1,… , n∕2 .

(20)����⃗PRi =
����⃗PRi + 0.5 �⃗R⊕ ������⃗STZi

(21)������⃗STZi =
�⃗RB ⊕

(
�⃗RB ⊕ ����⃗ELi − ����⃗PRi

)
;i =

n

2
,… , n.

(22)����⃗PRi =
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2
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)
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Table 3  Training and test 
statistics of the models for 
BOD prediction — MARS for 
Gongreung Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 2.727 1.919 0.407 3.350 2.488 0.204
pH, EC, DO, WT, COD 1.902 1.316 0.742 2.072 1.357 0.715
pH, EC, DO, WT, COD, SS, 1.897 1.318 0.785 2.046 1.337 0.752
pH, EC, DO, WT, COD, SS, T-N 1.869 1.307 0.803 1.950 1.322 0.775
pH, EC, DO, WT, COD, SS, T-N, T-P 1.883 1.316 0.796 2.018 1.330 0.763
Mean 2.056 1.435 0.707 2.287 1.567 0.642

Proposed ANFIS‑MPA

In this section, the description of the developed hybrid 
ANFIS-MPA is briefly presented. Similar to all optimi-
zation algorithms, the MPA is used for optimizing the 
ANFIS model using a fitness function (Fig. 8). ANFIS 
has two kind of parameters, linear and nonlinear. The 
nonlinear parameters, i.e., the premise parameters are 
available in the first layer and they correspond to the 
membership function parameters. The second kind of 
parameters are the linear parameters of the fuzzy rules 
available in the fourth layer. The ANFIS-MPA starts by 
generating a set of random population (i.e., solution) for 
an ensemble of N agents. More precisely, one ANFIS 
model is constructed and evaluated tacking into account 
its value presented for the training subset. In the next 
step, the fitness functions, i.e., the mean squared error 
(MSE) and the root mean square error (RMSE) are used 
for evaluating the performances of the ANFIS-MPA 
model. The best-obtained solution having the best fit-
ness values is finally retained, and the testing subset 
is presented for the ANFIS-MPA model for the final 
evaluation.

Results

In this study, the potential of four different hybrid ANFIS mod-
els was investigated in predicting BOD using different water 
quality parameters involving pH, EC, DO, WT, COD, SS, T-N, 
and T-P. Models were assessed using monthly data obtained 
from two stations, Gonfreung and Gyeongan, South Korea, and 
three commonly used statistics, RMSE, mean absolute error 
(MAE), and determination coefficient (R2). The formulation of 
these statistics is given below:

(27)RMSE =

√√√√ 1

N

N∑
i=1

((
Yo
)
i
−
(
Yc
)
i

)2

(28)MAE =
1

N

∑N

i=1
∣
(
Yo
)
i
−
(
Yc
)
i
∣

where Yo, Yc, Yc, and N  refer to the observed, computed, 
mean of the observed BOD, and data length, respectively.

Table 3 reports the input combinations considered for 
BOD prediction. In the table, the training and testing 
results of MARS method for the Gongreung Station can 
be observed. Here, the purpose of using MARS method is 
to determine the best input combination. In other words, 
we wanted to investigate if this method can be applicable 
for deciding the best scenario in modeling BOD. This 
was checked by applying hybrid ANFIS methods to all 
input scenarios. First, we started with pH, EC, DO, and 
WT data as input because these are basic parameters in 
all rivers. Then, other parameters were added into the 
first combination so as to observe the most effective 
inputs to the BOD (output) parameter. From Table 3, it 
is seen that the accuracy of MARS generally improves 
by involving additional parameter except T-P input. COD 
seems highly effective on BOD since by involving it in 
the input scenarios (see 2nd input combination), the 
RMSE and MAE decrease from 3.350 mg/l and 2.488 
mg/l to 2.072 mg/l and 1.357 mg/l and R2 increases from 
0.204 to 0.715 in the test stage. However, adding T-P 
slightly decreases the accuracy of MARS model in BOD 
prediction. Among the input scenarios, the model with 
pH, EC, DO, WT, COD, SS, and T-N inputs offers the 
best performance with the lowest RMSE (1.950 mg/l) and 
MAE (1.322 mg/l) and the highest R2 (0.775). Among 
the input scenarios considered, the best statistics were 
underlined in the tables.

The training and test outcomes of the hybrid ANFIS 
methods, ANFIS-PSO, ANFIS-GA, ANFIS-SCA, and 
ANFIS-MPA, are respectively provided in Tables 4, 5, 
6 and 7 in predicting BOD of Gongreung Station. In all 
hybrid methods, the variation of error statistics is con-
sistent and the input scenario comprising pH, EC, DO, 
WT, COD, SS, and T-N input parameters produces the 

(29)R2 =
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∑N
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Yo − Yo

��
Yc − Yc
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Table 5  Training and test 
statistics of the models for BOD 
prediction — ANFIS-GA for 
Gongreung Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 2.503 1.737 0.501 2.835 2.266 0.333
pH, EC, DO, WT, COD 1.445 1.182 0.799 1.703 1.236 0.769
pH, EC, DO, WT, COD, SS, 1.392 1.024 0.813 1.642 1.215 0.785
pH, EC, DO, WT, COD, SS, T-N 1.221 0.939 0.823 1.596 1.113 0.803
pH, EC, DO, WT, COD, SS, T-N, T-P 1.261 0.970 0.817 1.614 1.155 0.792
Mean 1.564 1.170 0.751 1.878 1.397 0.696

Table 6  Training and test 
statistics of the models for BOD 
prediction — ANFIS-SCA for 
Gongreung Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 2.008 1.282 0.664 2.616 2.130 0.367
pH, EC, DO, WT, COD 1.332 0.989 0.808 1.587 1.146 0.799
pH, EC, DO, WT, COD, SS, 1.247 0.969 0.824 1.549 1.139 0.804
pH, EC, DO, WT, COD, SS, T-N 1.198 0.903 0.840 1.497 1.020 0.828
pH, EC, DO, WT, COD, SS, T-N, T-P 1.236 0.927 0.809 1.523 1.049 0.817
Mean 1.404 1.014 0.789 1.754 1.297 0.723

Table 7  Training and test 
statistics of the models for BOD 
prediction — ANFIS-MPA for 
Gongreung Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 1.994 1.245 0.683 2.457 2.064 0.411
pH, EC, DO, WT, COD 1.243 0.940 0.825 1.494 0.941 0.814
pH, EC, DO, WT, COD, SS, 1.054 0.918 0.835 1.453 0.894 0.826
pH, EC, DO, WT, COD, SS, T-N 1.028 0.881 0.848 1.403 0.844 0.843
pH, EC, DO, WT, COD, SS, T-N, T-P 1.037 0.896 0.839 1.437 0.872 0.834
Mean 1.271 0.976 0.806 1.649 1.123 0.746

Table 4  Training and test 
statistics of the models for BOD 
prediction — ANFIS-PSO for 
Gongreung Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 2.519 1.778 0.494 2.901 2.410 0.268
pH, EC, DO, WT, COD 1.483 1.209 0.782 1.710 1.472 0.755
pH, EC, DO, WT, COD, SS, 1.404 1.126 0.802 1.663 1.250 0.766
pH, EC, DO, WT, COD, SS, T-N 1.302 1.025 0.817 1.628 1.148 0.799
pH, EC, DO, WT, COD, SS, T-N, T-P 1.334 1.041 0.806 1.642 1.170 0.785
Mean 1.608 1.236 0.740 1.909 1.490 0.673
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Table 8  Training and test 
statistics of the models for 
BOD prediction — MARS for 
Gyeongan Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 1.417 1.072 0.339 1.512 1.382 0.173
pH, EC, DO, WT, COD 0.846 0.633 0.756 1.402 1.245 0.714
pH, EC, DO, WT, COD, SS, 0.834 0.619 0.767 1.389 1.237 0.730
pH, EC, DO, WT, COD, SS, T-N 0.823 0.604 0.777 1.381 1.120 0.786
pH, EC, DO, WT, COD, SS, T-N, T-P 0.827 0.615 0.772 1.384 1.226 0.738
Mean 0.949 0.709 0.682 1.414 1.262 0.622

best accuracy in training and test stages; the lowest RMSE 
and MAE values are 1.628 mg/l and 1.148 mg/l for the 
ANFIS-PSO, 1.596 mg/l and 1.113 mg/l for the ANFIS-
GA, 1.497 mg/l and 1.020 mg/l for the ANFIS-SCA, and 
1.403 mg/l and 0.844 mg/l for the ANFIS-MPA in the test 
stage. Involving COD in the inputs of the hybrid models 
considerably improves their accuracy in BOD prediction, 
for example, RMSE decreases from 2.901 to 1.710 mg/l for 
the ANFIS-PSO, from 2.835 to 1.703 mg/l for the ANFIS-
GA, from 2.616 to 1.587 mg/l for the ANFIS-SCA, and 
from 2.457 to 1.494 mg/l for the ANFIS-MPA in the test 
stage. Considering all input scenarios, the RMSE, MAE, 
and R2 range from 2.901 mg/l, 2.410 mg/l, and 0.268 to 
1.628 mg/l, 1.148 mg/l, and 0.799 for the ANFIS-PSO; 
from 2.835 mg/l, 2.266 mg/l, and 0.333 to 1.596 mg/l, 
1.113 mg/l, and 0.803 for the ANFIS-GA; from 2.616 
mg/l, 2.130 mg/l, and 0.367 to 1.497 mg/l, 1.020 mg/l, 
and 0.828 for the ANFIS-SCA; and from 2.457 mg/l, 2.064 
mg/l, and 0.411 to 1.403 mg/l, 0.844 mg/l, and 0.843 for 
the ANFIS-MPA, respectively. Comparison of the best 
input scenarios indicates that the ANFIS-MPA model out-
performs the other models in predicting BOD of Gongre-
ung Station by respectively improving the RMSE accura-
cies by 13.8%, 12.1%, and 6.3% in the test stage compared 
to the ANFIS-PSO, ANFIS-GA, and ANFIS-SCA mod-
els. Average statistics also justify the superiority of the 
ANFIS-MPA which has the lowest RMSE (1.649 mg/l) and 
MAE (1.123 mg/l) and the highest R2 (0.746) followed by 
the ANFIS-SCA (RMSE 1.754 mg/l, MAE 1.297 mg/l, R2 
0.723), ANFIS-GA (RMSE 1.878 mg/l, MAE 1.397 mg/l, 
R2 0.696) ,and ANFIS-PSO (RMSE 1.909 mg/l, MAE 
1.490 mg/l, R2 0.673) in the test stage.

Table 8 sums up the training and testing results of the 
MARS method for the Gyeongan Station. Like the Gongre-
ung Sation, here, also the COD has the highest effect on 
BOD. Considering COD in the model inputs respectively 
improves the RMSE, MAE, and R2 by 7.3%, 9.9%, and 313% 
in the test stage, while the accuracy of MARS model slightly 
decreases in BOD prediction by adding T-P. The best accu-
racy was obtained from the model with pH, EC, DO, WT, 
COD, SS, and T-N inputs with the lowest RMSE (1.381 

mg/l) and MAE (1.120 mg/l) and the highest R2 (0.786) in 
the test stage.

Tables 9, 10, 11 and 12 report the training and test results 
of the ANFIS-PSO, ANFIS-GA, ANFIS-SCA, and ANFIS-
MPA in predicting BOD of Gyeongan Station, respectively. 
Similar to the Gongreung Station, the 4th input scenario (pH, 
EC, DO, WT, COD, SS, T-N) has the best accuracy in training 
and test stages; the lowest RMSE and MAE values are 0.730 
mg/l and 0.464 mg/l for the ANFIS-PSO, 0.657 mg/l and 0.466 
mg/l for the ANFIS-GA, 0.523 mg/l and 0.402 mg/l for the 
ANFIS-SCA, and 0.490 mg/l and 0.374 mg/l for the ANFIS-
MPA in the test stage. Considering COD in the model inputs 
considerably improves the accuracy of hybrid ANFIS methods 
in BOD prediction, for example, RMSE decreases from 1.449 
to 0.775 mg/l for the ANFIS-PSO, from 1.352 to 0.657 mg/l 
for the ANFIS-GA, from 1.119 to 0.523 mg/l for the ANFIS-
SCA, and from 1.094 to 0.490 mg/l for the ANFIS-MPA in 
the test stage. Considering all input scenarios, the ranges of 
the RMSE, MAE, and R2 are from 1.449 mg/l, 1.184 mg/l, and 
0.205 to 0.730 mg/l, 0.464 mg/l, and 0.809 for the ANFIS-
PSO; from 1.352 mg/l, 1.090 mg/l, and 0.243 to 0.657 mg/l, 
0.466 mg/l, and 0.834 for the ANFIS-GA; from 1.119 mg/l, 
1.033 mg/l, and 0.387 to 0.523 mg/l, 0.402 mg/l, and 0.858 for 
the ANFIS-SCA; and from 1.094 mg/l, 0.945 mg/l, and 0.434 
to 0.490 mg/l, 0.374 mg/l, and 0.874 for the ANFIS-MPA, 
respectively. It is clear from Tables 7, 8, 9, 10 and 11 that the 
best ANFIS-MPA model comprising 4th input scenario (pH, 
EC, DO, WT, COD, SS, T-N) outperforms the other hybrid 
models in predicting BOD of Gyeongan Station in the test 
stage; improvement in RMSE accuracy is by 33%, 25%, and 
6.3% compared to the ANFIS-PSO, ANFIS-GA, and ANFIS-
SCA models, respectively. Furthermore, according to the aver-
age statistics, the ANFIS-MPA has the lowest RMSE (0.620 
mg/l) and MAE (0.497 mg/l) and the highest R2 (0.780) and its 
accuracy is followed by the ANFIS-SCA (RMSE 0.649 mg/l, 
MAE 0.533 mg/l, R2 0.757), ANFIS-GA (RMSE 0.812 mg/l, 
MAE 0.611 mg/l, R2 0.705), and ANFIS-PSO (RMSE 0.900 
mg/l, MAE 0.624 mg/l, R2 0.664) in the test stage.

Table 13 gives the t-test outcomes of the best hybrid 
ANFIS models in BOD prediction for both stations. The 
statistics were computed considering significance level of 
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Table 9  Training and test 
statistics of the models for BOD 
prediction — ANFIS-PSO for 
Gyeongan Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 1.295 0.972 0.447 1.449 1.184 0.205
pH, EC, DO, WT, COD 0.725 0.535 0.827 0.775 0.487 0.767
pH, EC, DO, WT, COD, SS, 0.704 0.513 0.838 0.779 0.496 0.766
pH, EC, DO, WT, COD, SS, T-N 0.687 0.509 0.844 0.730 0.464 0.809
pH, EC, DO, WT, COD, SS, T-N, T-P 0.700 0.509 0.838 0.765 0.487 0.783
Mean 0.822 0.608 0.759 0.900 0.624 0.664

Table 10  Training and test 
statistics of the models for BOD 
prediction — ANFIS-GA for 
Gyeongan Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 1.274 0.945 0.465 1.352 1.090 0.243
pH, EC, DO, WT, COD 0.627 0.506 0.840 0.696 0.492 0.804
pH, EC, DO, WT, COD, SS, 0.599 0.501 0.846 0.685 0.516 0.825
pH, EC, DO, WT, COD, SS, T-N 0.570 0.445 0.855 0.657 0.466 0.834
pH, EC, DO, WT, COD, SS, T-N, T-P 0.582 0.497 0.847 0.672 0.493 0.817
Mean 0.730 0.579 0.771 0.812 0.611 0.705

Table 11  Training and test 
statistics of the models for BOD 
prediction — ANFIS-SCA for 
Gyeongan Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 0.995 0.715 0.691 1.119 1.033 0.387
pH, EC, DO, WT, COD 0.588 0.402 0.888 0.540 0.414 0.838
pH, EC, DO, WT, COD, SS, 0.566 0.369 0.897 0.530 0.407 0.849
pH, EC, DO, WT, COD, SS, T-N 0.509 0.338 0.917 0.523 0.402 0.858
pH, EC, DO, WT, COD, SS, T-N, T-P 0.529 0.347 0.910 0.533 0.410 0.852
Mean 0.637 0.434 0.861 0.649 0.533 0.757

Table 12  Training and test 
statistics of the models for BOD 
prediction — ANFIS-MPA for 
Gyeongan Station

Model inputs Training period Test period

RMSE MAE R2 RMSE MAE R2

pH, EC, DO, WT 0.963 0.634 0.694 1.094 0.945 0.434
pH, EC, DO, WT, COD 0.499 0.324 0.918 0.516 0.397 0.859
pH, EC, DO, WT, COD, SS, 0.464 0.298 0.927 0.505 0.389 0.865
pH, EC, DO, WT, COD, SS, T-N 0.435 0.279 0.935 0.490 0.374 0.874
pH, EC, DO, WT, COD, SS, T-N, T-P 0.449 0.282 0.933 0.494 0.381 0.869
Mean 0.562 0.363 0.881 0.620 0.497 0.780
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Table 13  t-test of the models 
applied for BOD prediction

MARS ANFIS-PSO ANFIS-GA ANFIS-SCA ANFIS-MPA

Gongreung Station
 t-stat −6.277 −7.565 −8.101 −9.422 −10.716
 p-value 3.067E−09 2.800E−12 1.279E−13 4.598E−17 1.446E−20
 t-critical 1.975 1.975 1.975 1.975 1.975
Gyeongan Station
 t-stat −2.095 −4.079 −4.244 −4.237 −8.114
 p-value 3.749 E−03 3.155E−05 3.432E−05 3.548E−05 6.216E−14
 t-critical 1.973 1.973 1.973 1.973 1.973

Table 14  Computational time of the reported models (in minutes)

Models pH, EC, DO, WT pH, EC, DO, 
WT, COD

pH, EC, DO, WT, 
COD, SS,

pH, EC, DO, WT, 
COD, SS, T-N

pH, EC, DO, WT, 
COD, SS, T-N, T-P

Mean time

MARS 0.1038 0.1085 0.1118 0.1185 0.01227 0.0910
ANFIS-PSO 0.1786 0.1826 0.1935 0.1956 0.1984 0.1897
ANFIS-GA 0.1673 0.1721 0.1758 0.1825 0.1877 0.1771
ANFIS-SCA 0.1609 0.1647 0.1683 0.1728 0.1754 0.1684
ANFIS-MPA 0.1531 0.1576 0.1598 0.1635 0.1676 0.1603

5% (two-tailed test). Higher absolute t-statistics (t-stat) 
than the critical one means that there is no significant 
difference between the means of computed and observed 
data. The model with the highest t-stat has the best robust-
ness. It is apparent from Table 12 that the ANFIS-MPA 
has higher statistics (10.716 and 8.114) compared to the 
other models in Gongreung and Gyeongan stations, while 
the ANFIS-PSO has the lowest statistics among the hybrid 
ANFIS models.

The models were further compared with respect to their 
computational speed in training, and times in minutes were 
provided in Table 14. The models’ simulations were per-
formed in the MATLAB environment (MATLAB R2017b) 
using a computer having Windows 10 (64 bit) with an 
Intel(R) Core(TM) i5-10500 CPU @ 3.10 GHz processor 
with 16 GB RAM. All input combinations were considered 
in this comparison. Table 14 clearly reports that the ANFIS-
MPA has the fast speed and followed by the ANFIS-SCA, 
ANFIS, GA, and ANFIS-PSO among the hybrid ANFIS 
models. As expected, MARS model is faster than the hybrid 
ANFIS models because of having less complex structure. 
Figures 9–11

Figures 9 and 12 illustrate the scatterplots of observed 
and predicted BOD by the best MARS and hybrid ANFIS 
models in the test stage of Gongreung and Gyeongan sta-
tions. It is clear that the ANFIS-MPA has the least scattered 
predictions with the highest R2 followed by the ANFIS-
SCA model in both stations. The best models are visually 
compared via Taylor diagrams in Figs. 10 and 13 based 
on RMSE, standard deviation, and correlation criteria. It is 

apparent from the diagrams that the ANFIS-MPA has the 
highest correlation and lowest square error in predicting 
the BOD of both stations. Figures 11 and 14 compare the 
distributions of the BOD predictions by the implemented 
models using violin charts. It is clearly observed from the 
charts that the mean and median and distribution shape of 
the ANFIS-MPA are more resembling those of the observed 
one (Figs. 11 and 14). The stability of the models was inves-
tigated by considering variation of RMSE and MAE sta-
tistics vs. different trials. Figures 15 and 16 respectively 
illustrate the variation of RMSE and MAE statistics for the 
Gongreung and Gyeongan stations in the test stage. It is 
clear from the both figures that the ANFIS-MPA has more 
stability compared to other hybrid models. For example, 
the RMSE of ANFIS-MPA ranges 1.4–1.6 while the ranges 
of the other models are about 1.5–2 for the Gongreung Sta-
tion. MARS also has a high stability because of having less 
parameters, but it has the least accuracy.

Discussion

By the presented study, the viabilities of four different hybrid 
ANFIS models were investigated to determine the best 
prediction model for BOD water quality parameter. First, 
MARS method was applied to investigate the best input sce-
nario. Then, hybrid ANFIS methods were also applied to 
the same scenarios to see if MARS model is applicable for 
deciding the best scenario in predicting BOD. The outcomes 
of the hybrid ANFIS methods were found to be consistent 
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Fig. 10  Taylor diagrams of the 
predicted BOD by different 
models in the test period using 
the best input combination — 
Gongreung Station

Fig. 9  Scatterplots of the 
observed and predicted BOD 
by different models in the test 
period using the best input com-
bination — Gongreung Station
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Fig. 11  Violin charts of the predicted BOD by different models in the test period using the best input combination — Gongreung Station

with the trend of MARS results (e.g., the best accuracy was 
obtained from the 4th input scenario, while the 1st was the 
worst one). This implies that the MARS can be successfully 
applied in determination of the best input combination.

The outcomes of the MARS and hybrid ANFIS methods 
indicated that the COD input parameter has a considerable effect 
on BOD; improvement in RMSE, MAE, and R2 of ANFIS-MPA 
is by 39%, 54%, and 98% for Gongreung Station and by 52%, 

58%, and 98% for Gyeongan Station, respectively. These results 
have direct dial with the study of Kim et al. (2020) in which 
same datasets were applied, and they found that the consider-
ing COD as input improves the accuracy of Deep Echo State 
Network (Deep ESN) by 38% and 80% for Gongreung and by 
45% and 49% with respect to RMSE and R2 in BOD prediction in 
the test stage, respectively. Han and Qiao (2012) also previously 
reported the considerable influence of COD on BOD parameter. 

Fig. 12  Scatterplots of the 
observed and predicted BOD 
by different models in the test 
period using the best input com-
bination — Gyeongan Station
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Comparison of the hybrid ANFIS methods indicated that the 
ANFIS-MPA offered superior performance in BOD prediction 
in all input scenarios. It improved the RMSE accuracy of the 
ANFIS-PSO, ANFIS-GA, and ANFIS-SCA models in BOD 
prediction by 13.8%, 12.1%, and 6.3% for the Gongreung Sta-
tion and by 33%, 25%, and 6.3% for Gyeongan Station in the test 
stage, respectively. The hybrid ANFIS methods seem to be more 
successful in mapping BOD in Gongreung compared to Gyeo-
ngan (e.g., the R2 of the best ANFIS-MPA models respectively 
are 0.843 and 0.874). One reason for this can be higher skew-
ness of the EC, SS, and BOD in both training and test datasets 

of Gongreung Station compared to those of the Gyeongan. SS 
as an important water quality parameter has a very high skewed 
distribution implying the chaotic structure of this data which was 
also previously reported by Adnan et al. (2021, 2022).

The outcomes were compared with the existing literature 
for the validation of the presented study. Khatri et al. (2019) 
applied ANN for predicting the effluent parameters of Jam-
nagar treatment plant in India, and they obtained correlation 
coefficient of 0.74 for BOD parameter. Sharafati et al. (2020) 
used AdaBoost regression, gradient boost regression, and ran-
dom forest regression to predict the effluent quality parameters 

Fig. 13  Taylor diagrams of the predicted BOD by different models in the test period using the best input combination — Gyeongan Station
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Fig. 14  Violin charts of the predicted BOD by different models in the test period using the best input combination — Gyeongan Station

Fig. 15  Stability of different 
models using 10 trials and 
RMSE and MAE metrics for 
Gongreung Station

including  BOD5, and they obtained correlation coefficient of 
0.9 for BOD parameter. Kim et al. (2020) used deep ESN, 
gradient boosting regression tree (GBRT), extreme learning 
machine (ELM), and random forest (RF) for BOD prediction, 
and they obtained correlation coefficient of 0.892–0.924, 

0.854–0.911, 0.890–0.915, and 0.868–0.918 for the best deep 
ESN, ELM, GBRT, and RF in the test stage, respectively. In 
the presented study, the correlation coefficients of 0.918 and 
0.935 were obtained from the best ANFIS-MPA in BOD pre-
diction for Gongreung and Gyeongan stations, respectively.
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Fig. 16  Stability of different 
models using 10 trials and 
RMSE and MAE metrics for 
Gyeongan Station

Conclusions

In this study, the ability of four hybrid neuro-fuzzy models 
were investigated in predicting BOD using various input 
combinations composed of pH, EC, DO, WT, COD, SS, 
T-N, and T-P obtained from two stations, South Korea. 
MARS method was implemented in order to determine the 
optimal input combination and observed that this method 
can be successfully used for this purpose in predicting 
BOD as an important water quality parameter. The out-
comes of the MARS and hybrid ANFIS methods indicated 
that the models with pH, EC, DO, WT, COD, SS, and 
T-N inputs offer the best accuracy, while the pH, EC, DO, 
and WT inputs provide the least performance in both sta-
tions. Comparison of the hybrid methods revealed that the 
ANFIS-MPA model performs superior to the other hybrid 
models in predicting BOD in both stations. The accuracy 
ranks of the compared methods were found as ANFIS-
MPA > ANFIS-SCA > ANFIS-GA > ANFIS-PSO. The 
ANFIS-MPA improved the RMSE accuracy of ANFIS-
PSO, ANFIS-GA, and ANFIS-SCA models by 13.8%, 
12.1%, and 6.3% for Gongreung Station and by 33%, 25%, 
and 6.3% for Gyeongan Station in the test stage, respec-
tively. Comparison with the previous literature showed the 
applicability of ANFIS-MPA model in BOD prediction.

The input parameters used in this study can be directly meas-
ured in the field using small equipment. However, biochemical 
oxygen demand cannot be directly measured but it can be indi-
rectly determined by incubating at 20 °C during 5 days. There-
fore, the hybrid ANFIS-MPA model can be used as a useful tool 
in predicting BOD using easily measured parameters and this is 
more economical and time-saving procedure.
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