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Abstract
Skilful and localised daily weather forecasts for upcoming seasons are desired by climate-sensitive sectors. Various

General circulation models routinely provide such long lead time ensemble forecasts, also known as seasonal climate

forecasts (SCF), but require downscaling techniques to enhance their skills from historical observations. Traditional

downscaling techniques, like quantile mapping (QM), learn empirical relationships from pre-engineered predictors. Deep-

learning-based downscaling techniques automatically generate and select predictors but almost all of them focus on

simplified situations where low-resolution images match well with high-resolution ones, which is not the case in ensemble

forecasts. To downscale ensemble rainfall forecasts, we take a two-step procedure. We first choose a suitable deep learning

model, very deep super-resolution (VDSR), from several outstanding candidates, based on an ensemble forecast skill

metric, continuous ranked probability score (CRPS). Secondly, via incorporating other climate variables as extra input, we

develop and finalise a very deep statistical downscaling (VDSD) model based on CRPS. Both VDSR and VDSD are tested

on downscaling 60 km rainfall forecasts from the Australian Community Climate and Earth-System Simulator Seasonal

model version 1 (ACCESS-S1) to 12 km with lead times up to 217 days. Leave-one-year-out testing results illustrate that

VDSD has normally higher forecast accuracy and skill, measured by mean absolute error and CRPS respectively, than

VDSR and QM. VDSD substantially improves ACCESS-S1 raw forecasts but does not always outperform climatology, a

benchmark for SCFs. Many more research efforts are required on downscaling and climate modelling for skilful SCFs.

Keywords Statistical downscaling � Ensemble forecast � Seasonal climate forecast � Deep learning � Convolutional neural
network

Abbreviations
ACCESS Australian Community Climate and Earth-

System Simulator

ACCESS-S1 ACCESS Seasonal Model 1

ACCESS-R ACCESS Regional

BI Bicubic interpolation

BARRA Bureau’s Atmospheric High-Resolution

Regional Reanalysis for Australia

CCAM Conformal cubic atmospheric model

CNN Convolutional neural networks

CRPS Continuous ranked probability score

ECPP Enhanced copula post-processing

ESRGAN Enhanced super-resolution generative

adversarial network

GCM Global circulation model

KNN K-nearest neighbours

QM Quantile mapping

RCAN Residual channel attention networks

SISR Single image super-resolution

SCF Seasonal climate forecast

VDSR Very deep super-resolution

VDSD Very deep statistical downscaling

ZG Geopotential height

1 Introduction

Seasonal climate forecasts (SCF) can provide great value to

many socioeconomic sectors such as agriculture, con-

struction, mining, tourism, energy, and health (Merryfield

et al. 2020; Manzanas 2020). As in the driest inhabited

continent, e.g., Australia’s agricultural system is heavily

dependent on rainfall. The potential annual value added

from skilful SCFs for the whole of Australia could be

around A$1.6 billion for the agricultural sector and A$192
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million for the construction sector (The Centre for Inter-

national Economics 2014). Thus, various ensemble SCFs

based on General Circulation Models (GCMs) are routinely

produced around the world (Hudson et al. 2017; Merryfield

et al. 2020; Saha et al. 2014; Johnson et al. 2019). Despite

ongoing development in GCMs, their typical grid resolu-

tions (� 100 km) still limit their direct application to

weather-sensitive sectors (Baño-Medina et al. 2020;

Schepen et al. 2020; Kusunose and Mahmood 2016; Luo

2016). The barriers could be overcome via downscaling

techniques which generate more skilful and localised

forecasts by making use of local observations (Maraun and

Widmann 2018; Bettolli et al. 2021).

Due to the challenges caused by spatial-temporal vari-

abilities of climate variables, especially precipitation, a

large number of downscaling techniques have been

developed, including dynamical downscaling (Ratnam

et al. 2017; Thatcher and McGregor 2009; Luo 2016),

statistical downscaling (Maraun and Widmann 2018), and

the recent development of deep-learning-based downscal-

ing. Dynamical downscaling uses a physics-based climate

model, such as the conformal cubic atmospheric model

(CCAM) (Thatcher and McGregor 2009), forced by

boundary conditions from a GCM, to simulate atmospheric

conditions at a finer resolution. Statistical downscaling

builds empirical relationships between GCM raw hindcasts

and historical observations and then uses them to remove

systematic biases, adjust the uncertainty spread, and restore

local daily variability of raw forecasts (Ahmadalipour et al.

2018; Maraun and Widmann 2018; Şan et al. 2022; Shao

and Li 2013; Crimp et al. 2019). A typical example is

quantile mapping (QM) which assumes that the distribution

of model-simulated data at a given location should preserve

the distribution of observed data (Michelangeli et al. 2009;

Li and Jin 2020). Comparisons between traditional statis-

tical and dynamical downscaling suggest that neither group

of methods are superior, however, in practice, computa-

tionally cheaper statistical methods are widely used (Baño-

Medina et al. 2020). Pre-engineered predictors and rela-

tionships limit these statistical downscaling techniques to

exploit various spatio-temporal dependencies, and then

their abilities to capture information beyond prior knowl-

edge (Baño-Medina et al. 2020; Liu et al. 2020). Auto-

matic feature extraction and selection integrated into the

modelling process with deep learning, especially convo-

lutional neural networks (CNNs), have achieved

notable success in modelling data with spatial context,

recently in climate science (Reichstein et al. 2019). Deep

learning has been successfully used in precipitation now-

casting (Shi et al. 2015; Espeholt et al. 2022), which pre-

dicts rainfall intensity in a region over 3–6 h, and

precipitation parameterisations from GCMs (Pan et al.

2019). More related to this study, several downscaling

techniques have been developed based on single image

super-resolution (SISR) techniques. For example, DeepSD

was proposed by augmenting multi-scale topography into

stacked super-resolution convolutional neural networks

(SRCNN) (Vandal et al. 2017). DeepSD succeeded in

downscaling daily rainfall data to 12.5 km. For long-term

climate projection, Rodrigues et al. (2018) proposed a very

deep CNN-based SISR strategy to interpolate low-resolu-

tion 125 km weather data to 25 km output for weather

forecasts. Baño-Medina et al. (2020) assessed CNN

methods with three convolutional layers followed by dif-

ferent connection layers for downscaling 200 km reanaly-

sis precipitation to 50 km observational grids over Europe.

Super-resolution deep residual network (SRDRN) was

proposed based on a deep CNN with residual blocks and

batch normalisation for downscaling daily precipitation

and temperature (Wang et al. 2021). It leaves behind bias-

correction. Liu et al. (2020) presented YNet which consists

of an encoder–decoder-like architecture with residual

learning through skip connections and fusion layers to

enable the incorporation of topological and climatological

data as auxiliary inputs for downscaling. It was tested on

monthly precipitation means that have different charac-

teristics from daily data.

Downscaling SCFs looks similar to SISR as both aim at

getting high-resolution images from low-resolution ones if

climate variable data are treated as images (Liu et al.

2020). However, there are several differences.

1. Inputs and outputs in downscaling SCFs are from

different sources, such as low-resolution forecasts from

GCM vs historical weather data (Liu et al. 2020). In

SISR, the low-resolution images and high-resolution

target ones are arguably from the same source, e.g., the

high-resolution images are often aggregated to form

low-resolution images as the training inputs (Wang

et al. 2020). As far as we know, almost all the deep-

learning-based downscaling techniques focused on

such a simplified situation (Vandal et al. 2017;

Rodrigues et al. 2018; Liu et al. 2020; Wang et al.

2021).

2. Bias and displacement in space or time are common in

SCFs, especially for precipitation, due to the inherent

complexity of our climate system. To mitigate these

mismatch issues, multiple possible forecast trajectories

are provided as a practical standard for short or long

lead time forecasts (Hudson et al. 2017; Merryfield

et al. 2020; Johnson et al. 2019). Therefore, downscal-

ing performance should be evaluated in terms of both

forecast accuracy and overall ensemble forecast skill

by considering forecast uncertainty (Grimit et al. 2006;

Li and Jin 2020; Kusunose and Mahmood 2016). The

latter is predominant in the literature (Grimit et al.
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2006; Ferro et al. 2008; Schepen et al. 2020) but, as far

as we know, has never been used in deep-learning-

based downscaling.

3. Downscaling precipitation can use auxiliary variables

(Maraun and Widmann 2018; Bettolli et al. 2021).

Rainfall events are often associated with other climate

variables, e.g., intense low-pressure systems (Pan et al.

2019; Baño-Medina et al. 2020; Liu et al. 2020), which

are found often beneficial for downscaling (Baño-

Medina et al. 2020; Liu et al. 2020).

To address these differences, we model downscaling

ensemble forecasts as a SISR problem with an additional

target on maximising ensemble forecast skills. To leverage

advanced deep learning techniques, for downscaling long

lead time daily precipitation forecasts for the whole of

Australia (Sect. 2), we choose very deep super-resolution

(VDSR) (Kim et al. 2016) from outstanding SISR tech-

niques as a suitable candidate for downscaling based on the

continuous ranked probability score (CRPS), a widely used

ensemble forecast skill metric (Grimit et al. 2006; Li and

Jin 2020; Ferro et al. 2008; Schepen et al. 2020). Raw

precipitation forecasts from GCMs are partially parame-

terised and are usually considered less reliable compared to

directly resolved variables, such as pressure and tempera-

ture (Pan et al. 2019). To improve its downscaling per-

formance, we incorporate other resolved climate variables

into VDSR and propose a very deep statistical downscaling

(VDSD) model. The VDSD structure is again finalised

based on CRPS (Sect. 3). It is tested on real-world appli-

cation scenarios for downscaling 60 km SCFs to 12 km.

Leave-one-year-out cross-validation results illustrate its

better performance than VDSR and two classical down-

scaling techniques in terms of both forecast accuracy and

ensemble forecast skills. In addition, its performance is

better than or comparable with climatology, a benchmark

for long lead time climate forecasts. VDSD does not

always outperform climatology (Sect. 4). Many more

research efforts are required on downscaling and climate

modelling for skilful SCFs.

2 Data and pre-processing

2.1 ACCESS-S1 forecast and calibrated data

This work focuses on downscaling daily rainfall forecasts

for the whole of Australia. We use daily rainfall retro-

spective forecasts from Australia’s operational seasonal

climate forecast system, the Australian Community Cli-

mate and Earth-System Simulator Seasonal model version

1 (ACCESS-S1) (Hudson et al. 2017; Bureau National

Operations Centre 2019), which is used for climate

outlooks on multi-week through to seasonal timescales. Its

atmospheric model has enhancements to the ensemble

generation strategy to make it appropriate for sub-seasonal

forecasting and large ensembles. The resolution of the

atmospheric model is raised to 0.6�, nearly 60 km in the

mid-latitudes. The hindcast data1 of ACCESS-S1, from

1990 to 2012, are publicly available.2 Within each year, it

has forecasts on 48 different initialisation dates (i.e. 1st,

9th, 17th, and 25th of each calendar month). Its forecasts

have 11 ensemble members, each of which provides a full

description of the evolution of weather for the upcoming

217 days. Daily precipitation data from ACCESS-S1 are

based on the BoM’s day definition of 9 am to 9 am (local

time). Three precipitation forecasts for 7 Jan 2012 made on

1 Jan 2012 with a lead time of 6 days are illustrated in the

second column of Fig. 1.

ACCESS-S1 data also provides a calibrated version. For

each forecast initialisation date, lead time, and grid point

location, it has a calibrated function to downscale to a 5 km

resolution (Bureau National Operations Centre 2019). For a

given forecast day, the calibration functions first carry out

spatial interpolation using bilinear interpolation to high

spatial resolution and then apply QM to adjust the bias and

spread between observations and forecasts in the other

22 years. Bilinear interpolation is to interpolate an image

using repeated linear interpolation. It first linearly inter-

polates a low-resolution image in one direction, and then in

the second direction. QM downscaling for a location can be

formulated as xðQMÞ ¼ F�1
o Ff xf

� �� �
where F�1

o is the

inverse function of Fo, and Ff and Fo indicate the cumu-

lative distribution functions (CDFs, aka quantile functions)

of raw forecasts xf and observations xo respectively

(Maraun and Widmann 2018). The empirical distributions

of raw forecasts and observations over a 15-days reference

period are used as the estimates of Ff and Fo (Li and Jin

2020; Bureau National Operations Centre 2019). We use

the calibrated data for forecast skill comparison, denoted as

QM hereafter.

2.2 BARRA reanalysis data

Bureau’s Atmospheric High-Resolution Regional Reanal-

ysis for Australia (BARRA),3 is a regional numerical cli-

mate forecast model using the Australian Community

Climate and Earth-System Simulator-Regional (ACCESS-

R), Australia’s first reanalysis model of the atmosphere (Su

et al. 2019). Through assimilating local surface observa-

tions and locally derived wind vectors that are not available

1 We call these ‘forecast’ hereafter in the paper for simplicity.
2 http://www.bom.gov.au/research/projects/ACCESS-S/.
3 BARRA data are available from http://www.bom.gov.au/research/

projects/reanalysis/.
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to global reanalysis models, BARRA reaches a good trade-

off between the spatial resolution and consistency with

precipitation observations (Acharya et al. 2019). Its spatial

resolution of 0.12�, is realised in the whole region of

Australia and New Zealand. Six-hour accumulated pre-

cipitation, obtained from BARRA from 1 Jan 1990 to 31

Dec 2013, is aggregated to daily frequency by taking the

sum of the four 6-h grid point values within each 9 am to 9

am 24-h window.

2.3 Pre-processing

We choose a region from 9� S to 43.7425� S and 112.9� E
to 154.25� E as our study region, covering all the Aus-

tralian landmass (see, Fig. 1). As pre-processing, we crop

all the climate variable surfaces to the same area defined in

the case study region. These climate variables have

different value ranges. For example, precipitation ranges

from 0 to 900 mm per day, and geopotential height at

850 hPa ranges from 1200 to 1600 m. To bring climate

variables to have the same value range of [0, 1] during

learning, we carry out simple linear normalisation.

To facilitate 4-time image super-resolution, we generate

two versions of ACCESS-S1 forecasts via bicubic inter-

polation (BI). One is 12 km, used as inputs for VDSR and

our proposed VDSD, and the second is 48 km, used as

inputs for other deep learning models. We pair the

ACCESS-S1 forecasts made on date i with forecast lead

time l day with the BARRA reanalysis data on date dð¼
iþ lÞ together for training/validation/test. There are about

2.62 million image pairs for each spatial resolution. To

save training time, we only use the first seven lead time

forecast pairs for each initialisation date in the training

period.

Fig. 1 Reanalysis data and daily rainfall ensemble forecasts for 7 Jan

2012 with a lead time of 6 days for the forecasts made on 1 Jan 2012.

Images in the four columns are the high-resolution image from

BARRA reanalysis data, ensemble member forecasts from ACCESS-

S1 after bicubic interpolation, and downscaled results from VDSR

and VDSD respectively. Only the 1st, 2nd, and 11th members are

illustrated in the figure
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3 Methodology

By treating ACCESS-S1 raw forecast and BARRA

reanalysis daily data as low- and high-resolution images

respectively, we model our SCF downscaling problem as a

single image super-resolution (SISR) problem with an

additional target on maximising ensemble forecast skill to

leverage advanced deep learning techniques and mitigate

the mismatch issues. We first briefly describe and review

SISR techniques.

3.1 Image super-resolution and deep learning

SISR is to recover a high-resolution image Ha from a low-

resolution one La. La is often regarded as the result of a

degradation function La ¼ D Ha; cð Þ with parameter

c (Wang et al. 2020). Most super-resolution data sets are

obtained by aggregation or degradation mapping from

high-resolution images (Wang et al. 2020). Given low- and

high-resolution image pairs fLa;Haga¼1;...;p, SISR is to find

a super-resolution mapping function F with parameters h
to generate, from low-resolution ones La, high solution

images Sa as close as possible to Ha

Sa ¼ F La; hð Þ: ð1Þ

The simplest SISR techniques are spatial interpolation,

such as nearest neighbour interpolation, bilinear interpo-

lation, and BI. BI uses cubic splines or other polynomial

techniques to interpolate data on a two-dimensional regular

grid, which could sharpen or enlarge images. BI can con-

sider more neighbouring grid points, and get smoother

images with fewer interpolation artefacts than bilinear

interpolation. BI is often considered to be the baseline for

spatial downscaling of precipitation fields (Vandal et al.

2017).

Since Dong et al. (2014) first introduced super-resolu-

tion CNN (SRCNN), deep-learning-based SISR techniques

have been widely developed and achieved marvellous

improvements in terms of image or perceptual quality

(Wang et al. 2020). Most of them are based on CNNs (Liu

et al. 2020). As one of the most popular deep learning

neural networks, a CNN is mainly used in processing grid-

like data such as images. Besides an input and an output

layer, a CNN has one or more hidden layers. The hidden

layers could be of several different types: convolution,

activation, pooling, normalisation, and fully-connected

one. Its core building block, a convolution layer, uses

multiple filters to slide across the height and width of a

matrix or matrices, which is input for this layer, to generate

a spatial representation of the receptive region of these

filters. The spatial representation forms feature maps,

which are output to feed the next layer. Multiple

convolution layers allow us to study features in quite dif-

ferent local areas, and re-using filters reduces the number

of model parameters for training (Dong et al. 2014; Wang

et al. 2020). These SISR models use several additional

network design techniques, such as gradient clipping and

residual learning in very deep super-resolution (Kim et al.

2016), residual dense block in Dense feature fusion (DFF)

(Zhang et al. 2018b), and attention mechanism in residual

channel attention network (RCAN) (Zhang et al. 2018a).

RCAN achieve state-of-the-art in terms of image quality

measured by peak signal-to-noise ratio (PSNR) (Wang

et al. 2020). To generate more realistic images, encoder–

decoder networks and generative adversarial networks

(GAN), are later employed in super-resolution GAN

(SRGAN) (Ledig et al. 2017) and enhanced SRGAN

(ESRGAN) (Wang et al. 2018), and multiple semantic

information used in (Rad et al. 2019). ESRGAN outper-

forms various models in terms of image perceptual quality

(Wang et al. 2018).

By leveraging these SISR models for maximising

ensemble forecast skills, we develop our SCF downscaling

techniques in two steps. First, we select representative deep

learning techniques based on their outstanding SISR per-

formance, and train them to generate a high-resolution

precipitation image from each low-resolution forecast

ensemble member and then choose the one with the highest

ensemble forecast skill for the whole of Australia on a

separate validation data set (Sect. 3.2). Secondly, based on

the selected deep learning structure, we incorporate other

resolved climate variables and propose VDSD to enhance

downscaling (Sect. 3.3).

3.2 Model selection for downscaling ensemble
forecasts

SCFs, covering long lead times from weeks to multiple

months, are located at the transition between weather

forecasting and climate projection, and have been a big

challenge in the weather and climate communities for years

(Merryfield et al. 2020). To remedy the simplification

nature of GCMs (Maraun and Widmann 2018), ensemble

SCFs become an operational standard where multiple tra-

jectories are provided on a forecast initialisation date i. For

these forecasts, let Xði;l;eÞ � x
ði;l;eÞ
j;k

n o

m0�n0
2 Rm0�n0 and

Ŷ ði;l;eÞ � ŷ
ði;l;eÞ
j;k

n o

m�n
be precipitation raw forecast and its

associated downscaled forecast, respectively, with lead

time l day, ensemble number e (e ¼ 1; 2; . . .;E) for grid

point (j, k). Their associated precipitation observation for

target-date dð¼ iþ lÞ; is y
ðdÞ
j;k

n o

m�n
. Thus, there are E

different forecasts made on date i for date d for each
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location (j, k). For our downscaling application, E ¼ 11,

m0 ¼ 79, n0 ¼ 94, m ¼ 316, n ¼ 376, l ¼ 0; . . .; 216 days.

All the ensemble members target at the same date, say Jan

7 Dec 2012 in Fig. 1, and have the same target images. The

forecast accuracy metrics for Ŷ ði;l;eÞ such as mean absolute

error (MAE)

P
j;k

ŷ
ði;l;eÞ
j;k

�y
ðdÞ
j;k

�� ��
P

j;k
1

,4 Root mean square error

(RMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j;k

ŷ
ði;l;eÞ
j;k

�y
ðdÞ
j;kð Þ2P

j;k
1

s

; and PSNR are not enough,

especially for considering possible bias and displacement

within each ensemble forecast member. The continuous

ranked probability score (CRPS), which generalises the

MAE, is one of the most widely used overall forecast skill

metrics where probabilistic or ensemble forecasts are

involved. It is a surrogate measure of forecast reliability,

sharpness and efficiency (Hersbach 2000). It is defined as

CRPS ŷ
ði;l;eÞ
j;k

n o

e¼1;...;E
; y

ðdÞ
j;k

� �
¼

Z 1

s¼0

F̂
ði;lÞ
j;k ðsÞ � I s� y

ðdÞ
j;k

� 	� 	2

ds;

ð2Þ

where F̂
ði;lÞ
j;k ðsÞ is an (often empirical) cumulative distribu-

tion function derived from an ensemble forecast

ŷ
ði;l;eÞ
j;k

n o

e¼1;...;E
and I is an indicator function, which rep-

resents the exceedance of the forecast compared to the

actual observation y
ðdÞ
j;k . It is denoted as CRPS F̂

ði;lÞ
j;k ; y

ðdÞ
j;k

� 	

hereafter for simplicity. CRPS considers both forecast bias

and forecast uncertainty of ensemble members. It reaches

its minimum 0 when all the forecasts are identical with the

observation, and increases with forecast bias and spread of

the ensemble forecast.

As the initialisation conditions in SCFs vary from one

initialisation date to another, these ensemble members do

not correlate across initialisation dates. Instead of gener-

ating an aggregated forecast from an ensemble of forecasts

e.g., in Liu et al. (2020), we need to generate one high-

resolution forecast precipitation image from each low-res-

olution forecast image, such that these high-resolution

forecasts can be used directly by applications, such as

feeding into biophysical models (Schepen et al. 2020;

Basso and Liu 2019; Luo 2016; Jin et al. 2022). Thus, our

downscaling problem can be defined as follows. For low-

resolution output images from GCMs, precipitation image

Xði;l;eÞ 2 Rm0�n0 and other climate variable images Zði;l;eÞ 2
Rm0�n0�p concerning a target high-resolution image Y ðdÞ 2
Rm�n; we would like to find such a function G, which

generates high-resolution precipitation image as the same

resolution as Y ðdÞ,

Ŷ ði;l;eÞ ¼ ŷ
ði;l;eÞ
j;k

n o

m�n
¼ G Xði;l;eÞ; Zði;l;eÞ; h

� 	
; ð3Þ

that can minimise the average CRPS across all the vali-

dation image pairs:

CRPS ¼

P
i;l;j;k nw

ði;lÞ
j;k CRPS ŷ

ði;l;eÞ
j;k

n o

e¼1;...;E
; y

ðdÞ
j;k

� �

P
i;l;j;k w

ði;lÞ
j;k

ð4Þ

where w
ði;lÞ
j;k is the weight for the ensemble forecast made on

date i, lead time l at location (j, k), and d ¼ iþ l. We use

w
ði;lÞ
j;k � 1 for this study for simplicity. The downscaling

problem is modelled as a SISR problem (Eq. 3) but opti-

mising the average ensemble forecast skill CRPS (Eq. 4).

Our deep learning downscaling solution is to provide a

SISR model, i.e., the function G, to generate a high-reso-

lution precipitation image Ŷði;l;eÞ from each low-resolution

precipitation forecast image Xði;l;eÞ, as well as other low-

resolution climate variable Zði;l;eÞ from a climate model.

Thus, E high-resolution forecasts Ŷ ði;l;eÞ
 �
e¼1;...;E

, corre-

sponding to an ensemble of E low-resolution forecasts

Xði;l;eÞ
 �
e¼1;...;E

, can form a high-resolution ensemble

forecast for a forecast target day dð¼ iþ lÞ. Averaging

over the CRPS of these ensemble forecasts on the valida-

tion days is used as an optimisation objective to finalise the

deep learning network architecture.

To determine such a good function G and its parameter

h, as illustrated in Fig. 2, we take a relatively simple two-

step procedure: the first step is to find a suitable deep

learning model as F in Eq. 1 according to the average

CRPS, and then incorporate extra variables Zði;l;eÞ to

enhance its downscaling performance. Before that, as

illustrated in Fig. 2, we split the forecast data into two

groups according to their initialisation dates. In the model

selection and development steps in this and next subsec-

tions, we partition all the initialisation dates in the 23 years

of ACCESS-S1 randomly into two groups. The first group

has 1056 initialisation dates and image pairs from this

group are used for the model training. The image pairs

from the remaining 48 initialisation dates are left for

forecast skill validation. The forecast skill CRPS is aver-

aged over the forecasts with lead times up to 30 days. For

the performance test in the next section, we put initialisa-

tion dates in 1 year out for testing and the other year data

for model parameter training to facilitate a fair comparison

with Climatology and QM. In the first stage of SISR model

selection, we treat our downscaling problem as image

super-resolution and employ three SISR models, VDSR

(Kim et al. 2016), RCAN (Zhang et al. 2018a), and

4 As the LaTeX class sn-jnl.cls recommended by the journal does not

support j, k � k is used to indicate absolution value like j � j in this

manuscript.
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ESRGAN (Wang et al. 2018). They are chosen because of

their outstanding performance on SISR (Wang et al.

2020, 2018). The parameter learning is based on image

super-resolution, and our deep learning-based problem

becomes:

ĥ ¼ argmin
h

L Ŷ ði;l;eÞ; Y ðdÞ
� 	

þ kLh

h i
; ð5Þ

where L is the pixel-level loss function, such as L1,

L Ŷ ði;l;eÞ; YðdÞ
� 	

¼
P

k;j ŷ
ði;l;eÞ
k;j � y

ðdÞ
k;j

���
���

P
k;j 1

; L2,

L Ŷ ði;l;eÞ; YðdÞ
� 	

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k;j ŷ
ði;l;eÞ
k;j � y

ðdÞ
k;j

� 	2

P
k;j 1

vuuut

; or PSNR between high-resolution images YðdÞ and super-

resolution images Ŷ ði;l;eÞ from Eq. 3; k is a trade-off

parameter and Lh is the high-level image loss like per-

ceptual and/or adversarial loss (Wang et al. 2018).

During our model training, we used the default settings

of the three SISR models. For example, VDSR used the

whole images, and RCAN and ESRGAN used cropped

high-resolution patches with the spatial size of 192� 192

and 128� 128 respectively. Their mini-batch size was 64,

16 and 16 respectively (Wang et al. 2018; Kim et al. 2016;

Zhang et al. 2018a). Restricted by the computational

resources we could access, the mini-batch of RCAN and

ESRGAN was hard to increase. On the separate validation

data set for lead times up to 30 days, the average forecast

CRPS of trained VDSR, RCAN, and ESRGAN across

Australia is 1.38, 1.53, and 1.68 respectively. The forecast

skill of RCAN and ESRGAN is not as good as QM with a

forecast CRPS of 1.39. For our downscaling problem, both

ESRGAN and RCAN were found slow to converge, par-

tially because cross-channel dependency mechanisms

became useless for our data. VDSR converged fast and

outperformed QM. We selected the VDSR model for fur-

ther development. We also tried a few different settings of

VDSR, such as with 8, 12, 15, 20, 30, or 36 convolutional

layers. Its forecast CRPS on the validation data set

decreased from 8 to 20 layers, and after that, did not change

much on the validation data set. We stuck with 20 layers as

Kim et al. (2016) did for SISR.

3.3 Very deep statistical downscaling (VDSD)

As we discussed earlier, other climate variables such as

temperature or air pressure could influence precipitation

and have often been used for precipitation simulation and

downscaling (Pan et al. 2019; Baño-Medina et al. 2020).

To further improve downscaling performance of VDSR,

we include these climate variables in our very deep sta-

tistical downscaling (VDSD). The climate variables, dif-

ferent from precipitation, are resolvable in climate

modelling and often have more reliable forecasts (Pan

et al. 2019; Baño-Medina et al. 2020; Merryfield et al.

2020). Including these climate variables and their combi-

nation into VDSR, we have 15 variants of VDSR, indicated

as VDSRv1 to VDSRv15, as in Fig. 2. The overall

Fig. 2 Flow Chart of model selection and development based on the

forecast skill CRPS on the validation data. ESRGAN, VDSR, and

RCAN are three SISR deep learning models. VDSRv indicates

different variants from VDSR, such as including additional climate

variables (VDSRv1 to VDSRv15), and different learning objective

function like VDSRvL1 and VDSRvL2
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structure of finalised VDSD is illustrated in Fig. 3 in which

Geopotential Height (ZG) at 850 hPa is incorporated as the

additional input for the 9th ensemble members as in Fig. 1.

VDSD, modified from VDSR, mainly has three parts:

input, intermediate feature extraction, and output layers. It

can take precipitation images and other climate images,

such as ZG as input in Eq. 3. These input images have been

pre-processed with the same spatial resolution as high-

resolution output images, and the same normalised value

range (0 to 1, detailed in Sect. 2.3). These input images go

through multiple feature extraction layers/blocks. These

feature extraction layers have both convolution and acti-

vation modules, while the output layer only has a convo-

lution module to generate a residual precipitation image.

Adding back the interpolated raw precipitation image,

indicated by the rightwards arrow with tip downwards in

Fig. 3, it finally generates an output image at the same

resolution as the target image. VDSD, similar to VDSR,

does not have pooling and normalisation layers, as it

maintains residual learning which has been widely

demonstrated to contribute to robust and speedy training

for SISR (Kim et al. 2016; Wang et al. 2020).

As shown in Fig. 3, two or more input images Xlr and

Zlr, which represent the raw climate forecasts after

upsampling (i.e., with 48 km spatial resolution for our

applications), first go through the input layer. This layer

has a convolution layer and a rectified linear unit (ReLU)

activation layer that forces a negative input to zero and

leaves a positive input unchanged. The convolution layer

has 64 3� 3 matrix filters that are slid across the input

image and multiplied with the input image to produce 64

first-level feature images. Then the ReLU layer performs

the ReLU function (max(0, x)) to force negative values

from the feature images to be zero. The operation can be

formulated as

M0 ¼ B Xlr; Zlrð Þ ¼ ReLU Conv Xlr; Zlrð Þð Þ ð6Þ

where M0 is the first level feature images generated by the

input layer, and ReLU() and Conv() are ReLU and con-

volution layers that perform the ReLU function and 2-di-

mensional convolution respectively. Each convolutional

layer has 64 filters and produces 64 feature images. The

filter size is set to be 3� 3. Both the padding and stride

step lengths are 1. Therefore, the size of each feature image

is the same as the size of high-resolution images. Suppose

the size of input images is m� n�2, then the size of the

feature image generated by the input layer is m� n�64.

These basic features then go through multiple intermediate

blocks. The intermediate blocks are identical and each of

them consists of a convolutional layer, which extracts

deeper spatial features, and a ReLU layer, which introduces

nonlinearity and interaction. Each convolutional layer

takes 64 feature images from the previous block as input.

Therefore, the operation of each intermediate block is the

same, which can be written as

Mt ¼ B Mt�1ð Þ ¼ ReLU Conv Mt�1ð Þð Þ ¼ Bt M0ð Þ ð7Þ

where Mt represents the tth level feature image, and B is

the operation of an intermediate block.

The output layer is a convolutional layer that converts

64 high-level feature images into a residual image—that is

to use spatial patterns discovered to predict the difference

between upsampled low-resolution rainfall forecast and the

target image. Finally, the residual image is added to the

upsampled precipitation input image to generate a super-

resolution precipitation forecast. The unknown parameters,

Fig. 3 The structure of the VDSD model, modified from VDSR (Kim

et al. 2016), where 	 represents element-wise matrix addition with

input precipitation image, orange blocks indicate layers of the neural

network, blue rectangles indicate feature images, input and output

daily rainfall data images are on the left-hand and right-hand sides

respectively. For easy understanding, these input/output images are

shown in the original scale, instead of the normalised scale used in

downscaling
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such as these in filters, will be learned from training image

pairs.

A convolution layer is used in each of input, interme-

diate feature extraction, and output layers. A convolution

layer, together with a ReLU layer, in each feature extrac-

tion block, uses 64 filters with a size of 3� 3 to slide

through its input images to generate different spatial fea-

tures with different receptive fields. The receptive field on

the original input images gradually becomes larger after

passing through one feature extraction block. Around 20

feature extraction blocks can generate spatial features from

quite different local areas from both precipitation and the

other climate variable images. These features are tuned

during model training by adjusting the parameters in the

filters. These features may capture potentially complex

spatial patterns, which are expected to improve

downscaling.

We again used the forecast CRPS across the whole of

Australia on the separate validation data set to finalise

VDSD. We tested two different types of variants of VDSD.

(1) One added extra input images for downscaling. We

tried four climate variables from ACCESS-S1 and their

combinations: ZG, daily maximum temperature, daily

minimum temperature, and sea level pressure. There are

total 15 variants of VDSR. Our results showed that adding

more climate variables than ZG rarely improved CRPS,

and often deteriorated its ensemble forecast skills. (2) The

other was to try two different loss functions in Eq 5, i.e.,

L1 or L2. It leads to two more variants as in Fig. 2. L1 gave

a slightly lower average forecast CRPS of 1.36 for lead

times up to 30 days and would be used in our finalised

VDSD model. Thus, there are two main differences

between VDSD and VDSR. VDSD uses extra input ima-

ges, and L1, instead of L2 as the learning objective.

4 Test results and discussions

To illustrate the downscaling performance of VDSR and

VDSD whose network structure has been finalised in

Sect. 3, we used the last 3-year retrospective forecast data

for cross-validation. To facilitate a fair comparison with

the ACCESS-S1 calibrated data set (i.e., the QM method),

we conducted two leave-one-year-out tests. (1) We took

forecasts made on the 48 initialisation dates in 2012 for

testing and the other forecasts made before 2012 for

training the downscaling models’ parameters. Daily

BARRA precipitation data between 1 Jan 2012 and 29 July

2013 were included in the test set as the ACCESS-S1

forecasts made on 25 Dec 2012 cover up to 29 July 2013

for its 217-day lead time forecasts. (2) We left forecasts

made on the 48 initialisation dates in 2010 as the second

test set and took ACCESS-S1 forecasts made in other

years, i.e, 1990–2009 and 2011–2012, as training data.

Daily precipitation data between 1 Jan 2010 and 29 July

2011 were used in the test. In total, around 1152 daily

precipitation images from BARRA were used in the pre-

diction performance test.

4.1 Downscaling performance metrics

A benchmark for SCFs for a given year is to use obser-

vations on the same day of other years except for the target

year in a base period to form an ensemble forecast, which

is often called climatology (Li and Jin 2020; Schepen et al.

2020). In this study, we use 1990–2012 as the base period,

and thus there are 22 ensemble members in our climatology

ensemble forecasts.

As in Sect. 3.2, the average CRPS of ensemble forecasts

for each grid point (k, j) on test data is treated as an overall

ensemble forecast skill assessment. For each grid point,

averaging across all the initialisation dates in the test year,

we obtain the average CRPS of a forecast model m for a

lead time l, CRPS
ðmÞ
l;k;j. For further comparison with clima-

tology and easy understanding, we calculate the CRPS skill

score for model m against the CRPS of climatology as

follows.

CRPS�SS
ðmÞ
l;k;j ¼ 1�

CRPS
ðmÞ
l;k;j

CRPS
ðclimÞ
l;k;j

ð8Þ

The model with a higher CRPS skill score is preferred. The

skill score ranges from �1 to 1 and reaches its maximum

of 1 when the CRPS is 0, i.e., a perfect forecast where each

forecast is identical to its associated observation. The skill

score is zero if a forecast has the same average CRPS as

climatology. A positive CRPS skill score indicates the

downscaled forecast is better than the climatology model,

and vice versa.

As downscaling techniques are often assessed by MAE

(Liu et al. 2020; Wang et al. 2020), we also use another

comparison metric, average MAE, which is defined as

MAEl;k;j ¼
P

f ;e
Ŷ
ðf ;l;eÞ
k;j

�Y
ðdÞ
k;j

�� ��
P

f ;e
1

for a lead time of l days. Taking

climatology as the reference forecast, we can define the

MAE skill score for model m for each pixel as

MAE�SS
ðmÞ
l;k;j ¼ 1�

MAE
ðmÞ
l;k;j

MAE
ðclimÞ
l;k;j

ð9Þ

Similarly, a higher MAE skill score is preferred.

For a fair comparison, skill scores presented in the fol-

lowing subsections exclude locations on the ocean as QM

has results only on the Australian continent and Tasmania.
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4.2 Results for forecasts made in 2012

Three typical ensemble members forecast on 1 Jan 2012 for

7 Jan 2012, downscaled by BI, VDSR and VDSD respec-

tively, are illustrated in Fig. 1. VDSR keeps similar pre-

cipitation area patterns as BI-downscaled ACCESS-S1

forecasts and often has more areas with precipitation.

Downscaled results of VDSD follow precipitation patterns

of the raw forecasts and more likely reduce precipitation

amount for 7 Jan 2012. VDSD could adjust the precipita-

tion area shapes to some degree. For example, for ensemble

members 2 and 11, VDSD substantially reduces the pre-

cipitation along the 30� S latitude line, which brings its

downscaled precipitation images closer to the

observations.5

Averaging across 48 initialisation days in 2012, we

calculate its average CRPS skill score for each grid point

for different lead times. Figure 4 illustrates average CRPS

skill scores across the whole of Australia by the four

downscaling models along with different lead times up to

216 days. VDSR has the highest scores in the first three

lead times, and then VDSD becomes the best of the four

models for almost all the other lead times. For example, for

the lead time of 6 days (some typical downscaled results

are illustrated in Fig. 1), its CRPS skill scores for the four

models are spatially visualised in Fig. S1.6 For most

locations on the Australian land (except north-western

Australia, the eastern seaboard of Australia, and Tasma-

nia), VDSD has a positive CRPS skill score. It has very

high skills for locations in the central part of the Australian

mainland where its three counterparts perform badly. The

average CRPS skill score of VDSD is 5:69� 10�2. It is

higher than 2:13� 10�2, �8:50� 10�3 and �1:21� 10�1

of VDSR, QM and BI respectively (the second column,

Table 1). Averaging across the 217 different lead times,

VDSD has positive CRPS skill scores for most locations in

Australia, while its three counterparts have negative scores

for most locations (Fig. S2). Their mean CRPS skill scores

are 5:63� 10�3; �2:54� 10�2; �1:05� 10�1, and

�1:42� 10�1, respectively. That means only VDSD is on

average better than the climatology for most locations.

Among the four downscaling techniques, only VDSD is

better than climatology on average as its positive CRPS

skill score.

To check the performance of these downscaling tech-

niques for sub-seasonal forecasts, Fig. 5 illustrates the

average CRPS skill scores for the first 45 lead times. The

skill scores of BI are around their mean of �1:39� 10�1

for most locations in Australia. QM has some improvement

with a mean of �7:40� 10�2. For most locations, VDSR

has skill scores close to 0 with a mean of �4:65� 10�3.

VDSD has positive skill scores for most locations on the

Australian continent, with a mean of around 2:76� 10�2.

VDSD still has negative skill scores along the eastern

coastline, north-western parts of Australia, and Tasmania.

VDSD has better forecast accuracy in terms of average

MAE (Fig. S3). Except for the lead time of 0, VDSD has

the lowest MAE values. Its average MAE is 1.37 mm/day

for the first 45 lead times. VDSR comes second with an

average MAE of 1.67 mm/day. They are much smaller

than the other three methods, QM, BI and climatology,

with the average MAE of 2.06, 2.29, and 2.20 mm/day

respectively. The MAE skill scores of the four downscaling

methods are 4:12� 10�1, 2:30� 10�1, 7:29� 10�2, and

�9:90� 10�2 respectively as listed in the third column,

Table 1.

Similar to CRPS skill scores, the two deep learning

methods hold their improvement for the long lead times in

terms of the MAE skill scores as illustrated in Fig. 6.

Except for the first six lead times, BI has negative MAE

skill scores. QM often has positive MAE skill scores. Both

deep learning models, VDSR and VDSD have substantial

improvements for all the different lead times. Averaging

across these 217 different lead times, the MAE skill scores

of VDSD, VDSR, QM and BI are around 4:17� 10�1,

2:29� 10�1, 4:00� 10�2, and �9:48� 10�2 respectively.

4.3 Results for forecasts made in 2010

Figure 7 illustrates the average CRPS skill scores along

with different forecast lead times based on SCFs made on

the 48 different initialisation days in 2010. For most of the

217 different lead times, VDSD has the highest CRPS skill

score among the four models. For example, for the lead

time of 6 days, the CRPS skill scores of two deep learning

models are positive in most locations in Australia

(Fig. S4). In comparison, QM and BI have negative CRPS

skill scores in various locations. VDSD has higher CRPS

skill scores than VDSR in the southeast and south-central

Australia though both have quite similar spatial patterns.

On average, the average CRPS skill scores of VDSD and

VDSR are 5:34� 10�2 and 3:97� 10�2. They are sub-

stantially higher than �3:01� 10�2 and �8:79� 10�2 of

QM and BI respectively (Table 2). The average CRPS skill

scores of VDSD and VDSR across the 217 different lead

times are often positive or close to zero for most locations

on Australian land (Figs. S5d and S5c), and both QM and

BI are normally in the negative domain (Figs. S5b and

S5a). The mean CRPS skill scores for VDSD, VDSR, QM

5 More downscaled rainfall images, as well as Python (v3.7.4) source

codes of VDSD, can be found on https://github.com/JiangWeiFanAI/

HRSCF.
6 To facilitate an easy comparison, these spatial plots use the same

colour scale.

3194 Stochastic Environmental Research and Risk Assessment (2023) 37:3185–3203

123

https://github.com/JiangWeiFanAI/HRSCF
https://github.com/JiangWeiFanAI/HRSCF


and BI across Australian land and 217 lead times are

�1:02� 10�2, �2:53� 10�2, �6:46� 10�2, and �6:52�
10�2 respectively (Table 2). VDSD is about 1:51� 10�2

higher skill score than VDSR, and 5:50� 10�2 higher than

both the traditional downscaling techniques. VDSD is

slightly worse than climatology on average for the 217

different lead times. Note that VDSD has 11, less than 22

in climatology, ensemble members that can lead to a few

percentage points lower CRPS skill score (Ferro et al.

2008; Li and Jin 2020).

For sub-seasonal forecasts, the average CRPS skill

scores for the first 45 different lead times are 1:38� 10�2,

�1:02� 10�3, �6:62� 10�2, �9:06� 10�2, respectively,

for VDSD, VDSR, QM and BI. As illustrated in Fig. 8, for

most locations in Australia, both VDSR and VDSD have

CRPS skill scores between �0:10 and 0.10 while VDSD

has slightly higher CRPS skill scores in northern and

eastern Australia. From the forecast accuracy, VDSR and

VDSD have the average MAE values for the first 45 lead

times around 2.14 and 2.07 mm/day respectively. They are

smaller than 2.92, 3.16 and 2.74 mm/day obtained by QM,

BI, and climatology, respectively. Thus VDSD, VDSR,

QM and BI again have MAE skill scores from high to low,

as listed in Table 2.

The four downscaling techniques keep their MAE skill

score orders almost for all the 217 different forecast lead

times as illustrated in Fig. 9. VDSD and VDSR always

have positive skill scores. Except for the first eight lead

times, both QM and BI have negative skill scores. Aver-

aging across these 217 lead times, the MAE skill scores of

these four models are 2:41� 10�1, 2:13� 10�1, �9:14�
10�2 and �1:97� 10�1 respectively. VDSD has a rela-

tively small improvement against VDSR, and both are

much better than climatology. Considering these results,

we conclude VDSD is comparable with climatology in

terms of both forecast accuracy and ensemble forecast skill

for the SCFs made on the 48 initialisation dates in 2010.

4.4 Discussions

From Figs. 4, 6, 7, and 9, we can see that VDSD normally

has the highest average CRPS and MAE skill scores among

Fig. 4 Average CRPS Skill

Scores across the Australian

land for the ensemble forecasts

made on the 48 different

initialisation dates in 2012

Table 1 Average CRPS and

MAE (after ‘\’ ) skill scores of

the four models on different

lead times or periods for

forecasts made on the 48

different initialisation dates in

2012

Model\Lead time 6-days only Over 0–44 days 0–216 days

BI - 1.21E-01\- 4.06E-02 - 1.39E-01\- 9.90E-02 - 1.42E-01\- 9.48E-02

QM - 8.50E-03\1.54E-01 - 7.40E-02\7.29E-02 - 1.05E-01\4.00E-02

VDSR 2.13E-02\2.65E-01 - 4.65E-03\2.30E-01 - 2.54E-02\2.29E-01

VDSD 5.69E-02\4.11E-01 2.76E-02\4.12E-01 5.63E-03\4.17E-01

VDSD–BI 1.78E-01\4.52E-01 1.67E-01\5.12E-01 1.47E-01\5.12E-01

Higher skill scores are favoured
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the four downscaling models for different forecast lead

times. The skills of ACCESS-S1 raw forecasts are often a

bit away from climatology, indicated by the negative CRPS

and the negative MAE skill scores of BI. VDSD often

makes substantial improvements on downscaled forecasts.

As listed in the last row of Table 1, VDSD has about

1:47� 10�1 higher CRPS and 5:12� 10�1 higher MAE

skill scores than BI averaging across the whole of Australia

and the 217 lead times on the SCFs made in 2012. The

improvement can be slightly higher for the first 45 lead

times. Similarly, for 2010 in Table 2, VDSD has about

5:50� 10�2 higher CRPS skill scores and 4:38� 10�1

higher MAE skill scores on average. Thus, the bias and

displacement issues in the ACCESS-S1 raw forecasts are

mitigated to some degree. VDSR also makes substantial

improvements over BI, though it performs slightly worse

performance than VDSD. The improvement of VDSD and

VDSR may come from their large receptive fields of

around 492 km � 492 km due to the 20 convolutional

layers, which could benefit local forecasts from GCM’s

forecast skills on a large scale. The relatively small image

patches used for training the other two outstanding SISR

models, RCAN and ESRGAN, would fail to capture

GCM’s forecast skills on a large scale. The further

improvement of VDSD over VDSR illustrates the useful-

ness of incorporating other climate variables into

downscaling.

Fig. 5 Average CRPS skill score for lead time 0–44 days across Australia for forecasts made on the 48 different initialisation dates in 2012

3196 Stochastic Environmental Research and Risk Assessment (2023) 37:3185–3203

123



Fig. 6 Average MAE skill

scores across Australia for daily

precipitation forecasts made on

the 48 different initialisation

dates in 2012

Fig. 7 Average CRPS skill

scores across the Australian

land for forecasts made on the

48 initialisation dates in 2010

Table 2 Average CRPS and

MAE (the higher the better) of

the four models on different

lead times or periods for

forecasts made on the 48

different initialisation dates in

2010

Model\Lead time 6 days only Over 0–44 days 0–216 days

BI - 8.79E-02\- 1.68E-01 - 9.06E-02\- 2.32E-01 - 6.52E-02\- 1.97E-01

QM - 3.01E-02\6.38E-02 - 6.62E-02\- 8.37E-02 - 6.46E-02\- 9.14E-02

VDSR 3.97E-02\3.11E-01 - 1.02E-03\2.36E-01 - 2.53E-02\2.13E-01

VDSD 5.34E-02\3.42E-01 1.38E-02\2.71E-01 - 1.02E-02\2.41E-01

VDSD–BI 1.41E-01\5.10E-01 1.04E-01\5.02E-01 5.50E-02\4.38E-01
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Though VDSD makes a substantial improvement, for

the SCFs made in 2010, its average overall ensemble

forecast skill, CRPS skill score, is slightly worse than cli-

matology in general. There are some possible reasons. (1)

For forecasts made in 2010, rainfall data from 1 Jan 2010

to 29 July 2011 are used for skill assessment. The years

2010 and 2011 are the third- and second-wettest calendar

years on record for Australia, with 703 mm and 708 mm

respectively. Both are well above the long-term average of

465 mm due to the La Niña event peak.7 The La Niña

event peak in 2012 is much weaker and made 2012

relatively easier to forecast. That means the training data

for the models to test on 2010 and 2011 have relatively less

precipitation, hence VDSD intends to move in that direc-

tion, which deteriorated its performance for the SCFs made

in 2010. (2) The climatology benchmark we have used has

22 ensemble members. Such a double ensemble size can

lead to a few percentage points higher CRPS skill scores

(Ferro et al. 2008). (3) The host climate model ACCESS-

S1 may perform worse in 2010 than in 2012, on e.g.,

geopotential heights. For both test settings, VDSD’s final

performance still heavily depends on ACCESS-S1 raw

forecasts. Therefore, to generate skilful SCFs, more

research efforts should be put into improving both deep-

Fig. 8 Average CRPS skill score for lead time 0–44 days across Australia for forecasts made in 2010

7 http://www.bom.gov.au/climate/history/enso/. Accessed on 20 Jan

2022.
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learning downscaling methods like VDSD and climate

models like ACCESS-S1.

To compare other downscaling techniques for Australia,

the deep learning techniques are preliminarily examined

against station-based techniques: Extended Copula-based

Post-Processing (ECPP) (Li and Jin 2020), and an

improved analogue method (Shao and Li 2013), as well as

dynamic downscaling CCAM (Thatcher and McGregor

2009). The analogue method (Shao and Li 2013) is a

specific implementation of the well-known K-Nearest

Neighbours (KNN) method in the machine learning com-

munity. As most station-based downscaling techniques are

time-consuming to train models (like ECPP) or to make

forecasts (like analogue) for the whole of Australia, we

only choose five weather stations for a simple comparison.

These five stations are from three different states in Aus-

tralia and have different climate characteristics (Table S4).

The forecast lead time is up to 28 days as the dynamic

downscaling like CCAM generates a huge amount of data

for its 11 runs with different boundary conditions from 11

ensemble members for each SCF initialisation date. Simi-

larly, the initiation date is restricted to the first day of each

month in 2012. The CCAM downscaling used in this

comparison employed a better soil initialisation with spin-

up soil temperature and moisture, which have improved

forecast skills. The average CRPS skill score for a single

lead time is averaged from the five locations and 12 dif-

ferent initialisation days. For the first week (with a lead

time of up to 6 days), all the downscaling techniques

except BI have a positive skill score (the second column in

Table S5). ECPP performs best, followed by two deep

learning downscaling techniques VDSD and VDSR. For

the first 2 weeks (lead time up to 13 days), VDSD per-

forms best on average, followed by VDSR, ECPP and QM.

Averaging over 29 different lead times, VDSD is better

than ECPP, QM and VDSR that have similar forecast skills

as climatology. Analogue, BI and CCAM have negative

skill scores as the raw seasonal forecasts lose skills with a

longer lead time for these five weather stations. VDSD

often has better forecast skills than its counterparts for the

three different lead time periods. These improvements are

relatively small compared with the large standard deviation

of CRPS skill scores (Table S5), though we can claim at

least that VDSD has comparable forecast skills as its

competitors.

Another comparison can be made from the perspective

of computational time. Table 3 lists the average computa-

tion time required for both training and operation/test

where 11 ensemble members for 217 days forecasts from

ACCESS-S1 are downscaled. We used the following

hyper-parameters in both VDSR and VDSD. The number

of epochs was 50, for which we normally observed the

Fig. 9 Average MAE skill

scores across Australia for

precipitation forecasts made on

the 48 initialisation dates in

2010

Table 3 Computation time in hours of four downscaling methods

Method Training time on Gadi Operation time on the PC

BI 0 0.02

QM 0 11.21

VDSR 12.12 0.08

VDSD 16.76 0.56
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objective function stabilised. The learning rate was

1:0� 10�4, relatively small as both networks are very deep

(Bengio et al. 1994). The optimisation method was

stochastic gradient descent with a momentum of 0.9. The

deep learning training was run on Gadi, a high-perfor-

mance computer in National Computational Infrastructure

(NCI), Australia. We used 36 CPUs (IntelrXeonr Plat-

inum 8268, 2.9GHz), and 3 GPUs (Nvidiar V100). Fore-

cast downscaling and validation were done on a normal PC

with one IntelrCoreTM i5-9600K processor (3.7GHZ) and

with a mid-range GPU GeForce RTX 2070. The training

time for VDSD was around 16.76 h. It is about 38.3%

longer than VDSR. BI and QM didn’t require training time.

Downscaling operation on the PC, BI, QM, VDSR and

VDSD required 0.02, 11.21, 0.08 and 0.56 h respectively.

VDSD is about 7 times slower than VDSR and 20 times

faster than QM.

ECPP (Li and Jin 2020) needed about 1 h for training

for a station or grid point and took 0.46 s for an operation

forecast. It would take around 15.11 h to downscale rain-

fall for the whole of Australia on a normal PC. The

improved analogue method took similar time as ECPP for

downscaling but didn’t need training (after an appropriate

similarity metric was specified). CCAM (Thatcher and

McGregor 2009), a dynamic downscaling model, doesn’t

need training, and took about 0.33 h to simulate a single

1-month lead time forecast to 10 km resolution on a

CSIRO supercomputer Pearcey with 1536 cores (personal

communication with M. Thatcher). Compared with ECPP

and CCAM, VDSD is much faster for downscaling long

lead time daily forecasts.

5 Conclusion

Downscaling long lead time daily rainfall ensemble fore-

casts has been modelled as a single image super-resolution

(SISR) problem with an additional target on maximising

overall ensemble forecast skill—continuous ranked prob-

ability score (CRPS). To leverage advanced deep learning

techniques, we have applied three outstanding SISR tech-

niques to generate high-level features and learn non-linear

relationships automatically, and chosen very deep super-

resolution (VDSR) as the most suitable model. The selec-

tion has been based on average CRPS on a randomly

selected validation data set. We have incorporated an extra

climate variable, geopotential height, into VDSR and

established the very deep statistical downscaling (VDSD)

model with an expectation to enhance downscaling. Both

deep learning models have finalised their structures based

on the average CRPS on the validation data. On leave-one-

year-out cross-validation for 48 ensemble SCFs made in

2012 and 2010, VDSD has outperformed VDSR and two

traditional downscaling techniques QM and BI in terms of

both forecast accuracy and skill on the whole of Australia.

With positive CRPS skill scores in general in Australia,

VDSD has outperformed climatology, a benchmark for

long lead time ensemble climate forecast, in 2012 and the

first 45 lead times in 2010, though its improvement has

become smaller with longer forecast lead time. As evi-

denced by its forecast skill improvement over the

ACCESS-S1 forecasts in 2012 and 2010, optimising CRPS

in our model development might have mitigated the mis-

match issues between the ACCESS-S1 low-resolution raw

forecasts and high-resolution observations to some degree.

A simple comparison with two station-based statistical

downscaling methods, an improved analogue method and

ECPP, and one dynamic downscaling model CCAM on

five representative weather stations has further demon-

strated VDSD’s advantages. Compared with the CRPS skill

score variabilities, the improvement of VDSD over VDSR

or ECPP is relatively small. VDSD is comparable with, if

not better than, various downscaling counterparts in terms

of forecast skill and accuracy. On the other hand, both

VDSD and VDSR, after lengthy training over a large

amount of data, have downscaled long lead time daily

precipitation very fast. They have been normally much

faster than sophisticated station-based downscaling tech-

niques like ECPP and analogue, and dynamic downscaling

like CCAM for the whole of Australia. Thus, deep learning

models, such as the proposed VDSD, have demonstrated

their potential for possible operational use in the future.

Though deep-learning-based downscaling methods can

provide more skilful high-resolution SCFs to drive impact

models or biophysical models, the accuracy and overall

forecast skills of these SCFs may still not be high enough

for direct use by wider communities such as agriculture and

hydrology (Kusunose and Mahmood 2016; Luo 2016).

There are several directions to move the proposed tech-

nique for daily operation in the future. Station-based pre-

cipitation observations have not been assimilated in

BARRA and its grid precipitation may not be very con-

sistent with on-the-ground observations (Acharya et al.

2019). To remove such inconsistency, station-based

downscaling techniques might further improve long lead

time forecasts. Integrating station-based techniques with

deep learning and conduct comprehensive comparison are

subject to future work. VDSD only downscales to 12 km,

which should be further enhanced to a higher resolution for

real-world applications, by including other inputs (Vandal

et al. 2017; Pan et al. 2019). Deep-learning-based down-

scaling still requires a lot of time for model development,

structure finalisation, and parameter training, and we leave

downscaling techniques for other climate variables as

future work. For a fair comparison (and saving training
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time), we have only included the forecasts with forecast

lead times less than 7 days into the training data. It would

lead our models to take less attention to correcting inherent

biases of GCM’s long lead time forecasts. Skilful SCFs

depend more heavily on progresses made in climate mod-

elling. Thus, to deliver skilful SCFs to final applications,

climate modelling and deep learning communities should

collaborate closely for further development.
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