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Abstract
Purpose  Vegetation is a typical sensitive indicator of climate change, and therefore provides theoretical and valuable infor-
mation for addressing issues arising from climate change including improving soil ecosystem services. Exploring how veg-
etation responses to climate change has become one of major hotspots of research. However, few scholars have performed 
bibliometric analyses of this field. This study investigated the current research activities and the trend developments of 
vegetation responses to climate change.
Materials and methods  We conducted a quantitative bibliometric analysis of 2,310 publications on vegetation responses 
to climate change from 1991 to 2021 retrieved in the Web of Science Core Collection. The analysis comprised significant 
journals, disciplines, and scholars, as well as partnerships between countries and institutions, keyword co-occurrence and 
burst analysis. The bibliometric analysis tools, Histcite, Vosviewer, CiteSpace software, and R (Bibliometrix package), 
were applied.
Results and discussion  The related publications on vegetation responses to climate change had been increasing exponentially 
in the past 30 years and its total global cited score reached its peak in 2010. The USA and China were the leading countries, 
with the Chinese Academy of Sciences having the highest number of publications and citations. The scholars who had 
the most citations were Allen CD, Bresears DD, and Running SW. Six research clusters were generated by keywords co-
occurrence analysis, including impact, response, CO2, growth, climate change, and vegetation. These clusters represented 
the current research topics that highlighted the responses of vegetation to climate change, the manifestation of its impact, 
and coping strategies. In future research on vegetation, the emphasis is expected to be placed on “human activities” and 
“N2O emission”.
Conclusion  This study has performed a comprehensive and systematic and quantitative analysis of the publications on the 
responses of vegetation to climate change. The results reveal the characteristics, development patterns, and research trends 
of studies on vegetation activity in response to climate change, which sheds new insights into understanding the relationship 
between soil and climate.
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1  Introduction

Vegetation can be a sensitive indicator of climate change 
(Sun et al. 2010; Xu et al. 2014; Fu et al. 2020; Succarie et al. 
2020, 2022; Liu et al. 2021). Changes in vegetation activ-
ity are critical for understanding the mechanisms of climate 

change impacts on ecosystem structure and functions (Ito and 
Inatomi 2012; Piao et al. 2019). Some studies have revealed 
that increased atmospheric carbon dioxide concentration has 
heightened the sensitivity of dryland vegetation to precipita-
tion, resulting in increased water use efficiency and noted 
greening in tropical and high-latitude regions (Keenan et al. 
2013; Zhang et al. 2022a). Nonetheless, it has been shown 
that extreme weather events and drought “legacy effects” can 
cause direct harm to vegetation and reduce its growth (Ciais 
et al. 2005; Anderegg 2015; Schwalm et al. 2017; Yang 
et al. 2023). Climate change has also taken responsibility 
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for significant alterations in biodiversity and species replace-
ment. Some research indicating that annual and perennial 
plants in turn dominate the primary ecological niche in the 
aftermath of drought and rainfall (Sun et al. 2022a, b). More-
over, the productivity and function of vegetation communities 
are strongly affected by climate change, resulting from the 
extension of vegetation growth cycles due to global warming, 
which is a principal reason for the noted rise in vegetation 
productivity (Piao et al. 2007). However, climate change may 
weaken vegetation productivity, potentially impacting nega-
tively on the global land carbon sink (Zhang et al. 2022b). 
Conversely, vegetation can further influence the process of 
climate change by regulating soil moisture, improving soil 
quality, and increasing soil organic substance, which provides 
feedback on climate change (Higgins et al. 2023). Therefore, 
the systematic research on the relationship between vegeta-
tion and climate change, especially the responses of vegeta-
tion to climate change, is of great value to deeply understand 
the ecological processes and mechanisms above, while also 
facilitating the development of effective measures to cope 
with climate change (Zhang et al. 2018; Gillison 2019).

The adaptation of vegetation activities in responses to cli-
mate change performs nonlinear as influenced by a combina-
tion of multiple factors. Studies have widely reported that 
vegetation possesses the capacity to adapt to ever-changing 
environmental conditions, like variations in climate change 
with a currently marked acceleration (Keeling et al. 1976). 
This process is complex and dynamic, with responses largely 
reliant on the water and heat conditions in a given region. 
For example, the phenomenon of temperature-induced 
effects on photosynthesis is widely recognized (Prasad 
et al. 2008). Under suboptimal temperatures, photosynthe-
sis may be stimulated, accompanied by an enhancement in 
soil nutrient release and nutrient use efficiency (Ow et al. 
2010). However, exceeding the optimal temperature range 
may induce the depletion of nutrients, intensify drought 
effects, and trigger adverse consequences. Besides, fluctua-
tions in precipitation also play a pivotal role in modulat-
ing vegetation activity. Climate change has the potential to 
induce notable alterations in the distribution, frequency, and 
intensity of precipitation, which may exert a profound influ-
ence on the water balance, productivity, and coverage of ter-
restrial ecosystems (Lavorel et al. 1998). When soil moisture 
content and the availability of moisture for vegetation alters 
due to the varying precipitation, the vegetation activity will 
be changed consequently (Wang et al. 2021).

The responses of vegetation activities to climate change 
are characterized by spatial heterogeneity (Torresan et al. 
2008). The spatial heterogeneity of climate change, such as 
the uneven distribution of warming and cooling (Kaufmann 
et al. 2017), has engendered significant regional variation 
in the responses of vegetation activities to climate change. 
The findings of regional climate model simulations indicate 

that the temperature increase is more pronounced in high 
latitude regions than in low latitude regions. For instance, 
vegetation zones shifted towards higher latitudes and alti-
tudes, while specifically, the alpine grassland communities 
expand southward mostly to temperate grassland found in 
the Qinghai-Tibet Plateau region of China (Hu et al. 2017; 
Li et al. 2022).

Bibliometric analysis constitutes a quantitative and ana-
lytical method employed to study the publication progress, 
research trends, and keyword co-occurrence in specific 
fields. This comprehensive discipline integrates big data 
analysis, mathematical statistics, and computer science, and 
has been widely utilized across various fields (Chen 2017; Li 
et al. 2021). Recently, bibliometric approaches were used to 
investigate the impact of varied climate change phenomena, 
including high temperature, drought, and rising ozone con-
centration, on vegetation at different spatial scales (Verrall 
and Pickering 2020; Jimenez-Montenegro et al. 2021; Cui 
et al. 2022; Idris et al. 2022). Nonetheless, few bibliometric 
studies have hitherto focused on the overall impact of climate 
change on natural vegetation on a global scale. Even though 
a similar study has been conducted by Afuye et al. (2021) 
with a limited number of publications retrieved lacking the 
capability to fully represent the research status. Therefore, 
to further clarify the current vegetation research status and 
characteristics under climate change, a bibliometric study 
of this field is certainly necessary to be conducted. In this 
study, four visual analysis tools, namely Histcite, Vosviewer, 
CiteSpace, and R (Bibliometrix package), are employed to 
quantitatively analyze the publications on the impact of cli-
mate change on natural vegetation from 1991 to 2021. It is 
pertinent to note that in this study, vegetation pertains exclu-
sively to natural vegetation, excluding artificial vegetation 
such as orchards, cultivated lands, and artificial grasslands. 
This study aimed to achieve three objectives: (1) reveal the 
publication evolution and trend of vegetation research under 
climate change globally, (2) summarize the current research 
statuses and hotspots, and (3) provide coping strategies for 
the future vegetation research under climate change.

2 � Data and method

2.1 � Publication search strategy

To comprehensively investigate the global landscape of 
research progress and trends pertaining to vegetation under 
climate change, the publications dataset in this study was 
sourced from the Web of Science (WOS) Core Collection 
Science Citation Index Expanded (SCI-Expand) in the 
1991–2021 period. The strategy of the advanced search 
was selected after repeated tests (Fig. 1). By checking the 
records respectively in the original organized dataset based 
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on the Hiscite software, the incorrect and duplicated publica-
tions were eliminated. The 2,310 unique publications were 
obtained within the final dataset for the further analysis.

2.2 � Analysis software

Histcite, a tool developed by Eugene Garfield, facilitates 
the analysis of a research field’s historiography through 
the citation relationships of publications, thereby enabling 
the identification of important publications and scholars as 
well as understanding the research landscape. For this study, 
Histcite 12.03.07 was utilized for publication preprocessing 
and data cleaning, with selectively removing the publication 
featuring high information missing rates.

By analyzing the cluster and key nodes of the co-
citation network, the complex relationships within 
retrieved publications can be uncovered (Chen 2013). 
Co-occurrence analysis on journals, institutes, authors 
and keywords, and the burst analysis were performed via 
Vosviewer 1.6.18 and CiteSpace 6.1R2 respectively in this 
study. Vosviewer, an open-source software developed by 
Van Eck and Waltman at Leiden University in 2009, is 
employed for bibliometric network visualization analysis, 
including the co-occurrence analysis, cooperative analy-
sis, and co-citation analysis. Illustrated by an example 
of the keyword co-occurrence analysis mapping, nodes 
symbolize the given keywords and their size signifies the 
Total Link Strength (TLS), or alternatively recognize as 

Fig. 1   The flow chart of the 
literature search and biblio-
metric analysis, including two 
steps: (1) literature search and 
preprocess and (2) bibliometric 
analysis



2966	 Journal of Soils and Sediments (2023) 23:2963–2979

1 3

the co-occurrence strength. The significance of any two 
given keywords is demonstrated through the distance 
between their corresponding nodes and the number of 
links. Whenever two words are closely correlated, their 
respective nodes are in close proximity to one another, 
and the connection between them are more pronounced 
or thicker, signifying a strong relationship between the 
two keywords with respect to their corresponding research 
topics. CiteSpace, developed by Chen C at Drexel Uni-
versity, is a Java-based platform for analyzing and visual-
izing co-citation network analysis. The software analyzes 
the literature status at each time point of a time series 
to infer the evolutionary trends in the specific research 
field (Chen 2017). Data visualization was also carried out 
through Bibliometrix, a free R package developed by Aria 
M’s team at the Federico II University of Naples, Italy in 
2017. In this study, the network analysis of collaborations 
between countries was conducted by Bibliometrix (Aria 
and Cuccurullo 2017).

3 � Results

3.1 � Temporal evolution of publications

A significant increase had existed in publications 
related to vegetation research in the context of climate 
change over the past 30 years (Fig. 2). This period can 
be roughly divided into three stages based on the pub-
lication growth rate. At the first stage, before 2010, the 
annual volume of publication did not exceed 50, dis-
playing a gradual growth rate of approximately 2.2 pub-
lications per year. The second stage, after 2010, saw 
a significant increase in the number of publications 
with over 100 annually and an average rate of nearly 

10 publications per year. The third stage, after 2017, 
witnessed a further surge in the number of publications, 
which can be attributed in part to the intensified debate 
over climate change, especially after the Paris Agree-
ment was adopted at the United Nations Climate Change 
Conference in 2015. This agreement aimed to restrict 
global temperature increase in this century to below 2℃. 
As of 2021, 272 publications had been published, with 
an annual growth rate of 28.8%.

Furthermore, the total cited frequency of the publications 
showed a cutoff point in 2010, where the maximum num-
ber of citations reached 11,237. Prior to this, there were 
small peaks in 1995, 1997, 2000, and 2005, exhibiting ris-
ing volatility. However, the total number of citations in the 
publications remained relatively stable after 2010, which 
may indicate that it takes longer for recent publications to 
gain attention (Fig. 2).

3.2 � Journals and disciplines analysis

The dataset included more than 86% of research publica-
tions, published in 495 journals. The number of publica-
tions from the top 20 journals amounted to 789, accounting 
for approximately 34.16% of the total, followed Pareto’s 
principle, indicating that these journals were the main-
stream sources in this field (Fig. 3a). Among the top 20 
journals, Global Change Biology had the highest number 
of publications (130) and the highest journal impact fac-
tor (10.863 in 2021), ranking among the top 25% (Q1) of 
Journal Citation Report (JCR). The total number of cita-
tions of related publications in this journal reached 12,251. 
Notably, the top 10 journals did not include top compre-
hensive journals such as Nature and Science. Instead, the 
top 10 journals were more recognized by the professional 
and were the primary source for tracking the latest research 

Fig. 2   The annual trend of the 
number of publications and the 
total citation scores from 1991 
to 2021
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progress. Additionally, comprehensive journals covered a 
wide range of content, which could be a reason for the large 
number of the related publications in those journals. Moreo-
ver, the top 10 disciplines in this field were also identified 
based on their total citations (Fig. 3b). These categories were 
Environmental Science (18,777 citations), Ecology (16,383 
citations), Forestry (10,240 citations), Plant Sciences (7,632 
citations), Geosciences Multidisciplinary (6,733 citations), 
Biodiversity Conservation (5,103 citations), Meteorology 
Atmospheric (4,781 citations), Geographic Physical (3,773 
citations), Water Resources (3,163 citations), and Multidis-
ciplinary Sciences (3,125 citations). Environmental Science 
and Ecology received the most attention in our dataset.

3.3 � Authors analysis

The cooperation network of authors who published at least 5 
publications were grouped into 6 distinct clusters (Fig. 4a). 
The red cluster, represented by Piao S from Peking Uni-
versity, exhibited the highest level of cooperation with the 
other five teams. This group predominantly composed of 
Chinese scholars, underscoring the significant research 
activity among Chinese researchers in the related field of 
vegetation responses to climate change.

Among the top five authors ranked by the number of 
research output, Scheller RM came in first with 17 publica-
tions, followed by Lindner M with 15 publications, Penuelas J 
with 14 publications, and Bugmann H and Iverson LR with 13 
publications respectively (Fig. 4b). Scheller RM published the 

most publications with the first publication published in 2005 
and had continued to produce at a steady pace, with three pub-
lications published in 2010 and four publications published in 
2018. For the top 10 scholars, most of their research achieve-
ments were concentrated after 2010, except for Lindner M 
and Iverson LR, who both started publishing relevant publica-
tions in 1997 and have maintained a strong research presence. 
Notably, Li Y published his first research on vegetation under 
global change in 2014, but by 2021, his cumulative publica-
tions had placed him among the top 10 authors.

Furthermore, based on the number of citations, Allen CD, 
Breshears DD, and Running SW emerged as highly influen-
tial figures in this area, with citation counts of 5,913, 5,760, 
and 4,964, respectively. Notably, these three authors were 
not identified as the top productive authors, indicating the 
authors with the highest citation counts did not necessar-
ily publish the most publications. Instead, researchers who 
collaborated with these highly cited authors often received 
more citations, even if they did not appear as the first authors 
or correspondents in the affiliation. This highlighted the 
importance of using representative works to accurately 
evaluate scholars’ academic output.

3.4 � Cooperation analysis of institutes and countries

The analysis revealed that Europe played a central role 
in this research field, with active and frequent collabora-
tions with the USA and Canada, indicating their strong 
research capabilities and extensive international cooperation 

(a) (b)

Fig. 3   Number of publications in the top 20 journals in the field (a),  Top 10 disciplines in the total number of cited journals (b)
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(Fig. 5a). Meanwhile, the USA and Canada maintained close 
research cooperation with China and Australia, demonstrat-
ing a robust research network across continents. In total, 28 
countries had published more than 25 publications in the 
field. The top-ranking countries were the USA (637 publica-
tions), China (510 publications), Canada (257 publications), 
and Germany (232 publications). The USA emerged as the 
leading country in terms of the number of publications pub-
lished in the field, with China following closely behind in 
second place.

Additionally, 25 academic institutions which had pub-
lished more than 20 publications in the field of vegetation 
responses to climate change research were also identified, 
which enabled them to be grouped into four distinct clusters 

(Fig. 5b). The green cluster, represented by Chinese Acad-
emy of Sciences (228 publications), University of Chinese 
Academy of Sciences (81 publications), and Beijing Nor-
mal University (29 publications) had the highest number of 
publications and demonstrated the closest cooperation with 
other academic institutions or universities. The red cluster 
represented by United States Forest Service (74 publica-
tions), United States Geological Survey (37 publications), 
and Colorado State University (27 publications). The yel-
low cluster included the University of British Columbia (43 
publications) and National Resource Centre of Canada (38 
publications). Finally, the blue cluster is featured by Swedish 
University of Agricultural Sciences (29 publications) and 
University of Freiburg (25 publications).

Fig. 4   Author cooperation 
network of the research stud-
ies of vegetation responses to 
climate change (a), comparison 
of annual publications and cita-
tions of top 10 scholars in the 
research studies of vegetation 
responses to climate change (b)
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Fig. 5   Network distribution of 
research cooperation between 
countries and regions in the 
research of vegetation response 
to climate change (a), coopera-
tive distribution of institutions 
in vegetation research (b)

Table 1   Top 20 keywords in 
the field of the research of 
vegetation responses to climate 
change from 1991 to 2021

R Ranking, O Occurrences, C Clusters, TLS Total Link Strength

R Keywords O C TLS R Keywords O C TLS

1 Climate change 1,493 5 7,084 11 Drought 179 4 1,052
2 Impact 312 1 1,865 12 Management 180 1 1,024
3 Temperature 276 5 1,601 13 Forest 181 4 1,020
4 Response 251 2 1,528 14 Diversity 150 2 950
5 Model 268 1 1,526 15 Carbon 156 3 928
6 Growth 239 4 1,367 16 Adaptation 143 1 811
7 Dynamic 217 5 1,299 17 Precipitation 132 5 798
8 Vegetation 238 6 1,281 18 Conservation 128 2 769
9 CO2 204 3 1,230 19 Global change 142 2 728
10 Biodiversity 185 2 1,220 20 Land use 121 1 707
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3.5 � Keyword co‑occurrence analysis

The dataset analyzed in this study included 2,310 publica-
tions and 10,502 keywords. Among the top 20 keywords, 
“climate change” had the highest frequency appearing 1,493 
times with a total link strength of 7,084 (Table 1). “Impact” 

and “temperature” ranked second and third in co-occurrence, 
appearing 312 and 276 times respectively, with total link 
strengths of 1,865 and 1,601. Furthermore, Fig. 6 depicts 
six major clusters in the keyword co-occurrence network: 
climate change, impact, responses, CO2, growth, and veg-
etation. More detailed analysis can be found in section 4.2.

Fig. 6   Keywords co-occurrence 
mapping for the research of 
vegetation responses to climate 
change

Fig. 7   Top25 burst keywords in 
the research field of vegetation 
responses to climate change 
from 1991 to 2021
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3.6 � Burst analysis

The burst analysis illustrated the temporal evolution of pub-
lications of vegetation responses to climate change, which 
can be divided into the following three stages (Fig. 7):

1.	 From 1991 to 1996, the retrieved research shifted its focus 
to boreal forests due to its unique sensitivity to global 
warming (Prentice et al. 1991a; Burton and Cumming 
1995; Sykes and Prentice 1995; Suffling 1995; Wang and 
Polglase 1995). Additionally, the burst keywords, “climate 
change”, “CO2”, and “global warming” were included in 
relevant vegetation research as the background (Prentice 
et al. 1991b; Kasischke et al. 1995; Parton et al. 1995; 
Clark et al. 1996). Furthermore, this stage marked the 
beginning of research concerning the vegetation’s sensi-
tivity to climate change (Hall et al. 1995).

2.	 During the period from 1997 to 2012, the research 
became more specific, and the background of climate 
change was no longer limited. For example, studies 
focused on the relationship among “elevated CO2”, 
“atmospheric CO2” and vegetation conducted by simula-
tion models. These studies also included “nitrogen” and 
“soil” as important factors affected by climate change, 
since nitrogen is identified as a key component in nutri-
ent cycling, while soil provides water and minerals to 
vegetation. Relevant studies through this period included 
those above conducted by Kellomäki and Väisänen 
(1997), Iverson and Prasad (1998), Flannigan et  al. 
(2000), Kramer et al. (2000), Shaw and Harte (2001), 
Zavaleta et al. (2003), Woodward and Lomas (2004), 
Hamann and Wang (2006), Liu et al. (2009), Luo et al. 
(2009), Compant et al. (2010), Elser et al. (2010), and 
Lindner et al. (2010).

3.	 During the period of 2014 to 2021, the focus of the 
research had transformed to the analysis of the causes, 
impacts, and coping strategies of climate change on 
vegetation. The main factor causing global warming is 
recognized to be human activities, and thus the direct 
or indirect effects of human activities on vegetation 
have become a research hotspot (Cook et al. 2013). To 
quantify the impact of climate change, “tree growth”, 
“NDVI” and “vulnerability” were commonly used 
as criteria (Sperry and Love 2015; Sun et al. 2015; 
Zimmermann et al. 2015; Wu et al. 2015; Yang et al. 
2017). Since 2018, microscopic studies related to 
vegetation have been using the high-frequency key-
words “trait” and “water use efficiency” (Bussotti 
et al. 2014; Anderegg 2015; Camarero et al. 2015; 
Henn et al. 2018). In addition, climate factors such as 
rising temperatures and frequent droughts have led to 
increased fires, particularly forest fires. Thus, “fire 
regime” has become a crucial topic for researchers 

studying management strategies in recent years (Cai 
et al. 2018; Huang et al. 2021). It is noteworthy that 
certain keywords, such as “human activities”, “N2O 
emissions”, “NDVI”, and “soil respiration” have burst 
as high-frequency keywords since 2019. Following the 
typical pattern, it is anticipated that these keywords 
will remain the focus of research in this field of the 
coming years.

4 � Discussion

4.1 � Publication citation burst analysis

The frequency of citations is a crucial indicator of a pub-
lication’s influence. As referenced in section 3.1, the total 
frequency of publication citations exhibited an abrupt shift in 
2010. Here we will further analyze and discuss the publica-
tion citation burst situations. The three pieces of publications 
published in 2010 with the highest citation frequencies are as 
follows: (1) “A global overview of drought and heat-induced 
tree mortality reveals emerging climate change risks for for-
ests” (Allen et al. 2010) with 4,294 citations, provided the 
first global assessment of tree mortality due to drought and 
heat stress, emphasizing that global forests would become 
more vulnerable to tree mortality in a changing climate; (2) 
“Climate change impacts, adaptive capacity, and vulnerabil-
ity of European forest ecosystems” (Lindner et al. 2010) with 
1,392 citations, which introduced in detail the impacts of 
climate change, adaptability, and vulnerability of European 
forest ecosystems; and (3) “Biological stoichiometry of plant 
production: metabolism, scaling and ecological responses to 
global change” (Elser et al. 2010) with 504 citations, which 
summarized the latest research progress in the field of plant 
ecology and global change. Thus, high-frequency citations of 
publications above resulted in an apparently abrupt change of 
total citations of publications in 2010, which suggested that 
these three publications had a greater influence and were 
highly regarded in this field. Therefore, the popularity of a 
certain research can be distinguished through the changes in 
the number of references cited. Furthermore, when evalu-
ating scholars’ scientific research outputs, more emphasis 
should be placed on the citation of their representative works.

4.2 � Keyword co‑occurrence analysis

The occurrence of specific keywords indicates an interest in a 
particular subject. Analyzing the co-occurrence of keywords 
over a long period reveals research hotspots in recent years 
and guides researchers in selecting topics for future stud-
ies. In this study, 10,502 keywords retrieved were grouped 
into six major clusters in the keyword co-occurrence network 
(Fig. 6). To further understand the responses of vegetation to 
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climate change, the publications with the keywords of each 
cluster will be further discussed with a summary subtitle of 
the main content (Table 2).

4.2.1 � Impacts of climate change to vegetation

Climate change can trigger a range of effects on vegeta-
tion, leading to alterations including individual physiology 
function, species distribution, and community composi-
tion (Saxe et al. 2001; Thomas et al. 2004; Groffman et al. 
2012; Anderegg 2015). These impacts have been already 
investigated and will occur continuously in the future 
(Walther et al. 2002). Thus, exploring the impacts of cli-
mate change on vegetation has become a hotspot in recent 
ecological research (Sun et al. 2022a, b). The studies in 
this field revolved around three main aspects, the current 
state of vegetation after being affected (Allen et al. 2010; 
Elmendorf et al. 2012), the causes and mechanisms of the 
impact exerted by climate change (Thompson et al. 2011; 
Liu et al. 2009; Shi et al. 2020), and the corresponding cop-
ing measures (Lindner et al. 2014; Thébault et al. 2014; 
Keenan 2015). Generally, the methods involved observa-
tions (i.e., in situ observations and remote sensing) (Shen 
et al. 2015; Huang et al. 2016), experimental manipulations 
(Dunne et al. 2003; Cornelissen et al. 2007), and modeling 
stimulations (Dale et al. 2010; Wu et al. 2015). Moreover, 
the arid and semi-arid areas, the Tibetan Plateau, and North-
ern Hemisphere particularly become the popular research 
area in this field where they are more sensitive to climate 
change (Niu et al. 2008; Liu et al. 2009; Shen et al. 2015; 
Sun et al. 2015; Li et al. 2023).

4.2.2 � Responses of vegetation to climate change

Climate exerts a selective force in natural populations, so it 
is important for vegetation to respond such a rapid climatic 
change. The most common response of vegetation species is 
migration (Jump and Peñuelas 2005). Climate is a key factor 
in determining species distributions, so the local vegetation 

migrates to adapt to the current climatic conditions. Moreover, 
the genetic composition of vegetation is likely to be altered to 
response climate change. Therefore, a series of unpredictable 
changes could be induced, including the risk of extinction, the 
biological diversity, and the capability of resistance and resil-
ience (Zavaleta et al. 2003; Booker et al. 2009; Alfaro et al. 
2014; Wang et al. 2016). Notably, the responses to climate 
change will be intensified with longer exposure time and an 
increased number of affected factors, hence the correspond-
ing variations could be strengthened (Komatsu et al. 2019). 
To further understand the responses vegetation triggered, 
the physiological analysis may also provide insights into the 
mechanisms to explain them (Ezquer et al. 2020).

4.2.3 � Effects of elevated CO2 on vegetation

The atmospheric CO2 concentration increased from 
315.7 ppm in March 1958 to 418.90 ppm in July 2022, an 
increase of 32.69% in 65 years (https://​keeli​ngcur​ve.​ucsd.​
edu/), which has resulted in climate change, particularly 
global warming (Fu et al. 2015; Solomon et al. 2009). Veg-
etation plays an important role to mitigate greenhouse gas 
emissions by storing carbon in its cell walls, with each plant 
cell contributing to carbon storage and sequestration (Ezquer 
et al. 2020). It is thereby facilitating the achievement of car-
bon emission reduction targets (Sun et al. 2022a, b). It was 
estimated that scientific management of grassland grazing 
or increasing grassland productivity would mitigate 150,000 
tons of global CO2 emissions by 2030 (O’Mara 2012). Addi-
tionally, elevated atmospheric CO2 has beneficial effects 
on vegetation, such as enhancing disease resistance and 
promoting its growth (Compant et al. 2010; Lindner et al. 
2010). Except for CO2, as one of the greenhouse gases, the 
atmospheric abundance of other greenhouse gases such as 
nitrous oxide (N2O) and methane (CH4) has also increased 
in recent years (IPCC 2001). Hence, the interaction between 
the greenhouse gas fluxes and vegetation changes becomes 
a research focus (Jones et al. 2005; Johansson et al. 2006; 
Ward et al. 2013).

Table 2   Six clusters of keywords co-occurrences in the research of vegetation responses to climate change from 1991 to 2021

ID serial number, N number of keywords in the cluster, C node color in the cluster, L cluster label

ID N C L Top 10 keywords

1 122 Red Impact Impact, model, management, adaptation, land use, forest management, vulnerability, carbon sequestration, 
biomass, future

2 110 Green Response Response, diversity, conservation, biodiversity, global change, global warming, community, distribution, 
plant, nitrogen deposition, species distribution model

3 102 Purple CO2 CO2, carbon, greenhouse gas, elevated CO2, wetland, soil, grassland, nitrogen, methane, nitrous oxide
4 74 Yellow Growth Growth, forest, drought, Scots pine, climate, temperate, spruce, Norway spruce pine, species diversity, leaf
5 73 Blue Climate change Climate change, temperature, dynamic, precipitation, variability, trend, ecosystem, NDVI, China, sensitivity
6 73 Cyan Vegetation Vegetation, boreal forest, disturbance, fire, vegetation change, wildfire, succession, environmental change, 

climatic change, tundra

https://keelingcurve.ucsd.edu/
https://keelingcurve.ucsd.edu/
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4.2.4 � Changes in vegetation growth

Climate change could exert the double-edged sword effect 
on vegetation growth. Due to the extreme weather events, 
the vegetation growth shows a continuous reduction both in 
productivity and biomass, which may induce an increase of 
the mortality, especially in arid regions (Allen et al. 2010; 
Tei et al. 2017). However, increased mortality has positive 
implications to promote evolutionary adaptation of vegeta-
tion to climate change (Kuparinen et al. 2010). Based on the 
physiological process of vegetation, CO2 concentrations can 
be one of the factors which is regarded as an influential ele-
ment of the vegetation growth (Sun et al. 2022a, b). Rising 
CO2 concentrations contribute to an expansion of vegeta-
tion coverage and its greening (O’ishi and Abe-Ouchi 2009; 
Luo et al. 2020). Recent research also found that vegetation 
grew synchronously in different areas, responding to climate 
change and reflecting the temporal and spatial adaptability 
of vegetation growth (Shestakova et al. 2016). Thus, tree 
growth networks can be an effective tool to study multi-
species co-growth (Dorado-Liñán et al. 2019). Moreover, 
Norway spruce and Scots pine become two of the common 
research materials of the experiments of exploring the vege-
tation growth (Lebourgeois et al. 2010; Temperli et al. 2012; 
Nothdurft et al. 2012). This is because Norway spruce is 
sensitive to arid environments, while Scots pine is a drought-
tolerant but vulnerable species (Zlatanov et al. 2017).

4.2.5 � Climatic factors affecting vegetation change

Significant climate events, such as extreme temperature and 
heavy precipitation, have become more frequent and severe 
(Huang et al. 2016; Zhang et al. 2018; Wang 2021), par-
ticularly affecting the vegetation growth (Kato et al. 2004; 
Wu et al. 2021). To examine the vegetation change and its 
possibly driving meteorological factors, correlation analy-
sis, trend analysis, and principal component analysis (PCA) 
are frequently used (Zhou et al. 2007; Li et al. 2020; Duan 
et al. 2021; Xue et al. 2021). Besides, remote sensing, based 
on long time series, is commonly used to monitor vegeta-
tion growth using the vegetation index (such as NDVI, NPP, 
SIF), identifying the distribution and characteristics of veg-
etation (Shen et al. 2015; Zheng et al. 2019). Temperature 
and precipitation are wildly regarded as the two primary 
controls of vegetation research under climate change (Saxe 
et al. 2001; Boisvenue and Running 2006; Wu et al. 2015; 
Piao et al. 2019).

4.2.6 � Effects of disturbances on vegetation dynamics

Vegetation is subjected to undergo intensifying natural 
disturbances prompted by climate change. Fire is one of 
the dominant disturbances (Flannigan et al. 2000). Climate 

change affects the fire regimes through direct effects 
such as changes in temperature, seasonal precipitation 
patterns, wind behavior, and atmospheric stability, alter-
ing fire behavior, fire seasons, and fuel moisture (Huang 
et al. 2021). The research primarily investigated the veg-
etation changes after the fires, including the current status 
(Bergeron and Flannigan 1995; Krawchuk and Cumming 
2011; Cassell et al. 2019; Heidari et al. 2021), the succes-
sion of vegetation (He et al. 2002; Brncic et al. 2009), and 
potential coping managements (Raftoyannis et al. 2014; 
Halofsky et al. 2016; Williamson et al. 2019). The popular 
study area of this filed is boreal forest (Amiro et al. 2001; 
Lindner et al. 2010; Luo et al. 2020), since the influence of 
climate change on fire may become more dramatic in this 
region (Liu et al. 2012). The uncertainty owing to climate 
change requires novel approaches to improve the ability of 
vegetation ecosystems to rapidly respond to disturbance 
events (Mina et al. 2021). For instance, to reduce the likeli-
hood of fires, one strategy is to plant deciduous species, 
while another approach is to employ resistant management 
techniques by reducing intra-species competition (Huang 
et al. 2021).

5 � Conclusion

A bibliometric analysis was conducted using HistCite, 
Vosviewer, CiteSpace and R (Bibliometrix package) based 
on the WOS Core Collection to examine research publica-
tions on vegetation responses to climate change over the past 
30 years. The analysis revealed the following key findings:

Firstly, the number of publications in this field had 
grown exponentially over time, with a slow growth rate of 
2.2 publications per year before 2010, and an average of 
over 100 per year with a growth rate of nearly 10 after 2010. 
Secondly, Global Change Biology was the leading journal 
in publishing publications, and Environmental Science and 
Ecology were the two disciplines that showed the great-
est interest in this research area. Thirdly, the most highly 
cited scholars in this field were Allen CD, Bresears DD, 
and Running SW. Europe served as the geographical center 
of this research field. Research teams from the USA and 
China made the most significant contributions and exhib-
ited a high impact in this field. The Chinese Academy of 
Sciences, University of the Chinese Academy of Sciences, 
and the United States Forestry Service published the highest 
number of research publications. Fourthly, the keyword co-
occurrence analysis revealed six clusters: impact, response, 
CO2, growth, climate change, and vegetation. The develop-
ment of this field could be divided into three stages: macro-
level responses of vegetation to climate change, investiga-
tion of the relationship between specific climate change 
indicators and vegetation activity, and in-depth analysis of 



2974	 Journal of Soils and Sediments (2023) 23:2963–2979

1 3

the phenomenon, mechanism, and responses strategy of 
how climate change affected vegetation.

Although this study provides a valuable theoretical sup-
port and important data for future investigations of the 
impact of climate change on terrestrial ecosystems, there 
are certain limitations that could be improved upon. Specifi-
cally, the study only focused on natural vegetation, poten-
tially overlooking the impact of climate change on artificial 
vegetation such as farmland and orchards. Additionally, the 
publication retrieval was limited to the WOS Core Collec-
tion and only included English publications, potentially 
excluding relevant studies from other databases and lan-
guages. Despite these limitations, this study offers a new 
perspective for understanding the research dynamics and 
future trends of vegetation responses to climate change and 
serves as an essential reference for researchers to identify 
current research hotspots in this field. Future studies could 
incorporate artificial vegetation and publications from mul-
tiple databases and languages to provide a more compre-
hensive analysis.
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