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Abstract  Remediation of cadmium (Cd)  pollu-
tion is one of the priorities of global environmental 
governance and accurate detection of Cd content is 
a key link in remediation of Cd pollution. This study 
aimed to compare three methods (inductively coupled 
plasma optical emission spectrometry (ICP-OES), 
inductively coupled plasma mass spectrometry (ICP-
MS), and graphite furnace-atomic absorption spec-
trometry (GF-AAS)) for the determination of Cd with 
different tissues of various ramie varieties, and distin-
guish the advantage and disadvantage of each method. 
In total, 162 samples of ramie (Boehmeria nivea L.), 
which is an ideal plant for heavy metal remediation, 
were detected and the results showed that the three 
methods were all suitable for the de-termination of 
Cd content in ramie. ICP-OES and ICP-MS were sim-
pler, faster, and more sensitive than GF-AAS. ICP-
MS could be recommended for the determination of 
samples with various concentrations of Cd. ICP-OES 
could be used for measurement of samples with > 

100 mg/kg Cd content, while GF-AAS was suitable 
for the detection of samples with very high (> 550 
mg/kg) or very low (< 10 mg/kg) Cd content. Over-
all, considering the accuracy, stability, and the cost of 
measurement, ICP-MS was the most suitable method 
for determination of Cd content. This study provides 
significant reference information for the research in 
the field of Cd pollution remediation.

Keywords  Cadmium determination · Plant sample · 
Method comparison · Cadmium stress · Remediation 
of Cd pollution

Introduction

Cadmium (Cd) is a toxic heavy metal that has a great 
potential risk to human health. Long-term expo-
sure to cadmium can damage humans’ reproductive 
system, muscles, and bones, to a significant extent, 
related to various types of cancer (de Angelis et al., 
2017; Kumar & Sharma, 2019; Reyes-Hinojosa 
et  al., 2019). Due to mining activities, the soil in 
mineral areas has higher Cd concentration than that 
in other regions. Rice grown up on high Cd–contam-
inated soil has higher Cd concentration than that in 
the standard level (Du et al., 2013). Cd pollution was 
characterized in the area of the mining at Guiyang, 
northeast of Hunan Province in China, and it showed 
a high ecological risk (Lu et  al., 2015). Another 
study found that Cd mainly comes from agriculture 
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activities (Zhang et al., 2020). Based on the Cd con-
tamination current situation, researchers devoted 
themselves to remediation of soil heavy metal pol-
lution. Many researches showed that bioremediation 
is an eco-friendly and efficient method of reclaiming 
environments contaminated with heavy metals by 
making use of the inherent biological mechanisms 
of microorganisms and plants to eradicate hazard-
ous contaminants (Ojuederie & Babalola, 2017). 
Phytoremediation is an emerging technology imple-
menting green plants to clean up the environment 
from contaminants and has been considered as a 
cost-effective and non-invasive alternative to the con-
ventional remediation approach (Ashraf et al., 2019). 
Whether it is the evaluation of soil Cd pollution 
degree, food safety, human health, or the evaluation 
of phytoremediation Cd pollution effect, it is neces-
sary to detect the Cd content of corresponding sam-
ples. An effective, rapid, and accurate measurement 
method of Cd content is an important link in the field 
of Cd pollution control. Ramie (Boehmeria nivea L.) 
has a long-time planting history in China, which is a 
high-quality natural fiber crop and has potential for 
remediation of heavy metal–contaminated soils (Sun 
et al., 2014; Yang et al., 2010). It is known that ramie 
has high tolerance to Cu, Cd, Pb, and Zn, as well as 
high accumulation (Lan et al., 2020; Rehman et al., 
2019; She et  al., 2018). Many researches were per-
formed on the effects of chelators, peat, abscisic acid, 
and biochar to repair Cd pollution in ramie (Chen 
et al., 2021; Gong et al., 2019). In that context, how 
to quickly and accurately measure the Cd content in 
ramie is very important. The analytical precision of 
Cd determination plays a special role in the remedia-
tion effect on heavy metal–contaminated soil.

There are many methods for determination of 
Cd content. For example, the molybdenum-coated 
T-shaped slotted quartz tube atom trap flame atomic 
absorption spectrophotometry method (Kasa et  al., 
2020) is considered a sensitive and accurate way 
to measure Cd concentration in foods. The pro-
posed method based on “turn-on” fluorescence 
of NP-1 is simple, sensitive, and reliable for rapid 
determination of Cd in samples with high applica-
bility and stability (Tumay et al., 2020). A method 
for the determination of Cd in herb samples based 
on solidified floating organic drop microextrac-
tion (SFODME) using 1-(2-pyridylazo)-2-naph-
thol (PAN) as a chelating reagent and detection 

by electrothermal atomic absorption spectrometry 
(ETAAS) is developed rapidly (Thongsaw et  al., 
2017). Determination of Cd in fish by atomic 
absorption spectrometry with electrothermal atomi-
zation is based on sample digestion in a microwave 
oven and subsequently read using an atomic absorp-
tion spectrometer with a graphite furnace (Costa 
et al., 2012). Determination of Cd in bread and bis-
cuit samples using ultrasound-assisted temperature-
controlled ionic liquid microextraction is presented 
as a simple, cheap, ecological, and sensitive alterna-
tive (Santos et al., 2019). An all-solid light address-
able potentiometric sensor (LAPS) is presented for 
determination of Cd in rice, which is satisfactory 
precision, accuracy, and selectivity (Zhang et  al., 
2018). An immunochromatography kit was used 
to determination Cd in rice, which is an inexpen-
sive, reliable tool for quick and easy on-site deter-
mination of Cd in cereals and soybeans (Abe et al., 
2014). One research showed that different elements 
have their own most suitable detection methods, 
such as for Pb, the most suitable method is ICP-
MS, and for Zn, the most suitable method is AAS 
(Pan et al., 2020). Thus, which is the most suitable 
method for Cd determination is worth to be consid-
ered. ICP-OES and ICP-MS were used for the anal-
ysis of heavy metals in leaves, fruits, and branches 
of mistletoe (Kamar et al., 2018), and also used for 
precise measurement of major and trace elements 
in bulk pyrite and magnetite (Liu et  al., 2020), 
essential and non-essential/toxic trace metals in the 
edible parts of some common vegetables (Iftikhar-
Ul-Haq et al., 2021), and measure trace elements in 
baby food, milk power, and inorganic contaminants 
(Kiani et  al., 2022; Krzyzaniak et  al., 2019). GF-
AAS coupled with the method of mild extraction 
using diluted acid is an efficient, cost-saving, con-
venient and friendly way to measure Cd concentra-
tion in grain (Zhou et  al., 2019). ICP-MS and GF-
AAS were useful and fast methods for blood lead 
and Cd determination (Trzcinka-Ochocka et  al., 
2016). ICP-OES is a common method for determi-
nation of soil Cd (McBride, 2011). ICP-OES, GF-
AAS, and ICP-MS are widely used and cost effec-
tive, but which one is the best way to determination 
of Cd and which one is faster and more accurate 
should be discussed. In this study, the three widely 
used methods (ICP-OES, ICP-MS, GF-AAS) were 
compared with various tissues (root, stem, leaf) 



Environ Monit Assess        (2023) 195:1009 	

1 3

Page 3 of 13   1009 

Vol.: (0123456789)

from different varieties of ramie, which were grown 
under Cd conditions. And the advantage and disad-
vantage for each method were discussed.

Materials and methods

Ethics statement

The ramie varieties Zhongzhu No. 1 (zz1), Zhonng-
zhu No. 3 (zz3), and Zhongzhu No. 4 (zz4) used in 
this study were bred by the Institute of Bast Fiber 
Crops, Chinese Academy of Agricultural Sciences, 
China. Therefore, no specific permissions were 
required for using these specimens. All methods com-
ply with relevant institutional, national, and interna-
tional guidelines and legislation.

Plant materials and Cd treatment experiment

Three ramie varieties Zhongzhu No. 1 (zz1), Zhonng-
zhu No. 3 (zz3), and Zhongzhu No. 4 (zz4) were used 
in this study, which were bred by the Institute of Bast 
Fiber Crops Chinese Academy of Agricultural Sci-
ences. The lateral branches of ramie plants were sam-
pled and cultured by hydroponic culture (Chen et al., 
2018). Meanwhile, we dried the soil and divided it 
into six equal portions, then sprayed it with different 
concentrations of cadmium chloride, making sure the 
Cd concentrations of six portions were 0, 10, 30, 50, 
80, and 150 mg/kg, respectively. Finally, we weighed 
12 kg of the soil in a pot. Each treatment was set for 
three repetitions. The lateral branches with 10-cm 
roots were planted in the pot, one plant in one pot. 
The pots were put in a greenhouse under the fol-
lowing conditions: 500–600 μmol m-2 s-1 light, 12-h 
light/12-h dark period, 25–30°C, and 60–70% relative 
humidity. After 3 months of cadmium stress, root, 
stem, and leaf in each pot were harvested, blanked at 
105°C for 30 min, dried to constant weight at 75°C, 
and ground into powder.

Sample preparation

All reagents used in this study were at least of analyti-
cal grade. The Cd standard solutions were provided 
by the internet of National Standard Material Center 

and National Nonferrous Metals and Electronic Mate-
rials Analysis and Testing Center (Beijing, China).

Preparation of Cd standard solution for ICP-
OES: 2.5 mL of 1000 μg/ml Cd standard solution 
was added to 25-mL volumetric flask and diluted to 
the mark with 1% nitric acid to prepare 100 mg/L 
Cd intermediate solution. Then 0 mL, 0.25 mL, 
0.75 mL, and 1.25 mL Cd intermediate solutions 
were added to a 25-mL volumetric flask and diluted 
to the mark with 1% nitric acid, making the stand-
ard series concentrations of 0, 1, 3, and 5 mg/L, 
respectively.

Preparation of Cd standard solution for ICP-MS: 5 
mL of 1000 μg/mL Cd standard solution was added 
to a 50-mL volumetric flask and diluted to the mark 
with ultrapure water to prepare 100 mg/L Cd inter-
mediate solution. In total, 0.5 mL Cd intermediate 
solution was absorbed to a 100-mL volumetric flask 
and diluted to the mark with ultrapure water. Then, 1, 
2, 4, and 10 mL of 0.5 mg/L Cd solution was added 
to a 100-mL volumetric flask and diluted to the mark 
with ultrapure water, making the standard series con-
centrations of 5, 10, 20, and 50 μg/L, respectively. 
Finally, 0, 2, 5, 10, and 20 mL of the 10 μg/L Cd 
solution was added to a 100-mL volumetric flask and 
diluted to the mark with ultrapure water. The final Cd 
standard solution gradients were 0, 0.2, 0.5, 1, 2, 5, 
10, 20, and 50 μg/L.

The method of preparing the Cd standard solution 
for GF-AAS was the same as the method for ICP-MS, 
and the final Cd standard solution gradients were 0, 
0.2, 0.5, 1, 2, and 2.5 μg/L.

Before Cd measure, the plant sample was prepared 
with 65% HNO3. Teflon reaction vessels were used 
in all digestion procedures. For microwave-assisted 
digestion, 0.1 g of dried ramie (in triplicate) was 
weighted and 10 mL HNO3 was added to each Teflon 
flask (Pan et al., 2018). Ramie sample and nitric acid 
were homogenized using vortex, put in the closed 
microwave digestion system, and digested with the 
program showed in Table S1. After digestion, the cap-
sule was opened and heated to dryness gently. When 
1~2 mL liquid was left in the capsule stopped heat-
ing, it was transferred to a 25-mL volumetric flask. 
Then the capsule was washed with ultrapure water for 
several times, and finally diluted to the mark. Three 
replicates were set for each sample.
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Determination of Cd content

Cd content was measured by ICP-OES (plasma 
atomic emission spectrometer ICPE-9820, 
SHIMZDZU), GF-AAS (iCE3500 AA Atomic 
absorption spectrometer), and ICP-MS (iCAP Q MS, 
Thermo scientific), respectively. ICP-OES instrumen-
tal conditions are listed in Table S2. The operating 
parameters of the ICP-MS are shown in Table S3. 
The data acquisition mode was full quantitative, and 
the determination was repeated three times. The pro-
gram of GF-AAS is listed in Table S4.

Statistical analysis

Statistical analysis was performed using IBM SPSS 
Statistics 25. The Kolmogorov-Smirnov and Shapiro-
Wilk tests were used to determine the normality of 
each dataset. The Wilcoxon signed-rank test was used 
to determine statistical similarities or differences for 
non-parametric datasets containing two related sam-
ples. Sample linear regression analysis and correla-
tion were conducted using GraphPad Prism 9.

Results

Evaluation of standard curve

The limit of quantitation (LOQ) and limit of detection 
(LOD) of cadmium content measured by ICP-MS, 
ICP-OES, and GF-AAS are listed in Table  1. The 
ultrapure water was used as a blank solution through 
the whole process of the three methods. Three times 
standard deviation of 10 consecutive measurements 
was used as the value of LOD, and 10 times of the 
standard deviation was used as the value of LOQ 
(D’Archivio et al., 2019; Iftikhar-Ul-Haq et al., 2021; 
Peng & Liu, 2019). The lower values of detection 
limits indicated that the three methods provided ade-
quate sensitivity.

Comparison of Cd content determined by GF‑AAS, 
ICP‑MS, and ICP‑OES

To receive the detected samples, ramie plants were 
set to Cd stress with various Cd concentrations. In 
total, 162 samples including 54 stems, 54 leaves, and 
54 roots of three ramie varieties were used for Cd 
content determination. We observed that the Cd con-
tents for the three detected ramie varieties were about 
1–160 mg/kg in leaf, 1–500 mg/kg in root, and 1–800 
mg/kg in stem (Fig.  1). To evaluate the precision 
and stability of the instruments, the relative standard 
deviation (RSD) was analyzed using these data meas-
ured by GF-AAS, ICP-MS, and ICP-OES. The results 
showed that the RSDs of roots, stems, and leaves in 
the three detected ramie varieties were almost all less 
than 5% (Table 2), which indicated that accurate data 
can be obtained by using these three instruments to 
detect Cd content in a large range (1–800 mg/kg).

In fact, when RSD was below 20%, it can be con-
sidered an acceptable limit for ICP-OES analysis in 
some complex samples (Altundag & Tuzen, 2011; 
D’Archivio et al., 2019; Dolan & Capar, 2002). Thus, 
the small accidental error for the Cd content determi-
nation measured by GF-AAS, ICP-MS, and ICP-OES 
in our study suggested that the three methods were 
feasible for Cd determination in ramie. Obviously, 
the value measured by ICP-OES for each sample was 
higher than that detected by GF-AAS and ICP-MS 
(Fig.  1), which may be caused by its high sensitiv-
ity. For samples with Cd content less than 100 mg/
kg, the values detected by GF-AAS and ICP-MS were 
relatively close, especially when the Cd content was 
less than 10 mg/kg; there was almost no difference 
between the values measured by these two methods. 
To compare the differences of the values detected 
by the three methods, significance analysis was per-
formed using SPSS with one-way ANOVA mode. 
The result showed that when the Cd content of the 
samples was about 10 mg/kg, and there was no sig-
nificant difference between the values detected by 

Table 1   The standard 
curve limit of detection and 
limit of quantification of 
the ICP-OES, ICP-MS, and 
GF-AAS methods

Method Linear equation Correlation 
coefficient R2

LOD (mg/L) LOQ (mg/L)

GF-AAS y=0.11759x+0.0176 0.99210 0.00845 0.0338
ICP-MS y=5.985x+31.644 1.00000 0.00041 0.0016
ICP-OES y=(9.2783e−005)x−0.0396 0.99997 0.34990 1.3996
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Fig. 1   Cd content of roots, stems, and leaves of ramie deter-
mined by GF-AAS, ICP-MS, and ICP-OES. A–C The Cd con-
tent of roots, stems, and leaves in Zhongzhu No. 1. D–F The 

Cd content of roots, stems, and leaves in Zhongzhu No. 3. G–I 
The Cd content of roots, stems, and leaves in Zhongzhu No. 4

Table 2   The relative 
standard deviation (RSD) 
of cadmium content in 
root of ramie measured by 
ICP-OES, ICP-MS, and 
GF-AAS methods

Cd treat-
ment (mg/
kg)

Variety GF-AAS ICP-MS ICP-OES

Root Stem Leaf Root Stem Leaf Root Stem Leaf

0 zz1 2.838 4.318 0.719 3.334 5.812 4.175 0.657 3.728 1.372
zz3 1.862 2.429 5.300 1.120 3.726 2.101 1.349 1.319 3.858
zz4 1.160 1.460 2.595 0.567 6.054 6.800 4.184 0.657 0.451

10 zz1 0.094 4.599 4.798 2.036 5.828 1.764 2.742 1.057 1.724
zz3 1.006 2.917 4.346 0.750 2.216 0.966 2.676 1.189 2.382
zz4 2.430 0.217 4.572 4.222 1.402 2.875 2.927 3.040 1.968

30 zz1 1.349 0.708 2.494 4.841 3.302 6.070 2.348 0.720 0.583
zz3 0.527 4.136 2.660 4.277 3.072 4.958 0.794 1.359 0.236
zz4 3.059 1.808 0.956 2.420 3.592 3.218 1.957 2.525 0.299

50 zz1 0.710 2.070 2.068 2.081 2.452 4.521 2.404 1.416 0.503
zz3 3.608 1.079 2.073 3.203 1.888 4.661 1.407 0.353 1.465
zz4 3.260 1.464 1.165 2.865 1.677 3.591 4.308 2.311 7.292

80 zz1 3.003 2.963 2.036 4.304 2.681 1.147 1.012 2.192 0.980
zz3 2.207 2.648 1.642 1.334 6.216 3.760 0.240 5.740 3.725
zz4 1.909 0.565 4.207 0.639 0.364 2.759 1.180 0.520 1.066

150 zz1 2.717 0.918 1.376 0.827 0.803 3.051 1.099 1.203 1.423
zz3 3.577 0.914 1.382 3.067 1.588 3.379 3.587 0.991 1.204
zz4 1.413 2.620 2.810 3.634 0.943 2.199 4.767 0.787 0.770
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GF-AAS and ICP-MS in roots, stems, and leaves of 
zz1 (Fig. 1, Table 3).

When the Cd content of the sample was greater 
than 10 mg/kg but less than 100 mg/kg, although 
the values detected by GF-AAS and ICP-MS have 
reached a significant level, the difference was much 
less than that detected by ICP-OES. For example, 
under the treatment of 50 mg/kg Cd concentration, 
the difference between the values detected by GF-
AAS and ICP-MS in roots of zz1 was only −3.540. 
Similar results were observed in roots, stems, and 
leaves of zz3 and zz4 (Fig. 1, Table 4 and Table 5), 
which further confirmed that GF-AAS and ICP-MS 
were more suitable for the determination of samples 
with Cd content less than 100 mg/kg when comparing 
with ICP-OES. When the Cd content of the sample 
was 100–550 mg/kg, the values detected by ICP-MS 
and ICP-OES were close, while the values detected 
by GF-AAS were significantly lower than those 
detected by the other methods (Fig. 1; Tables 3, 4, 5). 
When the Cd content of the sample was greater than 
550 mg/kg, the values detected by the three methods 
showed little difference, which was also confirmed 

by the results of difference analysis (Fig. 1; Tables 3, 
4, 5). These results suggested that ICP-MS and ICP-
OES were more suitable for the determination of sam-
ples with Cd content of about 100–550 mg/kg, while 
the three methods were all suitable in measuring sam-
ples with Cd content greater than 550 mg/kg. Overall, 
our study suggested that ICP-MS was applicable to 
samples with various concentrations of Cd, and ICP-
OES could be used for measurement of samples with 
> 100 mg/kg Cd content, while GF-AAS was suitable 
for the detection of samples with very high (> 550 
mg/kg) or very low (< 10 mg/kg) Cd content.

Correlation analysis of Cd content determined by 
GF‑AAS, ICP‑MS, and ICP‑OES

To evaluate the relationships among the values detected 
by GF-AAS, ICP-MS, and ICP-OES, correlation analy-
sis was performed. The result showed that, in roots of 
ramie, the correlation coefficients between GF-AAS 
and ICP-MS, GF-AAS and ICP-OES, and ICP-MS 
and ICP-OES were 0.899, 0.892 and 0.992, respec-
tively (Table 6). In stems, the correlation coefficient of 

Table 3   Significance analysis of Cd content determined by GF-AAS, ICP-MS, and ICP-OES in Zhongzhu No. 1

A-M, A-O, and M-O denote the differences of the average values determined by GF-AAS and ICP-MS, GF-AAS and ICP-OES, and 
ICP-MS and ICP-OES, respectively. MD denotes mean difference

Cd treatment 
(mg/kg)

Comparison Root Stem Leaf

MD p-value MD p-value MD p-value

0 A-M 1.226 0.000 −1.445 0.533 1.484 0.002
A-O −17.474 0.000 −36.416 0.000 −28.913 0.000
M-O −18.701 0.000 −34.972 0.000 −30.397 0.000

10 A-M −0.946 0.664 −13.538 0.000 0.186 0.434
A-O −33.230 0.000 −58.212 0.000 −44.479 0.000
M-O −32.285 0.000 −44.674 0.000 −44.665 0.000

30 A-M −4.837 0.000 6.026 0.015 0.196 0.750
A-O −25.709 0.000 −17.122 0.000 −38.117 0.000
M-O −20.872 0.000 −23.148 0.000 −38.314 0.000

50 A-M −3.540 0.001 −38.629 0.000 −9.019 0.000
A-O −15.289 0.000 −81.303 0.000 −43.886 0.000
M-O −11.749 0.000 −42.674 0.000 −34.866 0.000

80 A-M 16.354 0.000 −90.668 0.001 9.982 0.000
A-O −8.439 0.004 −156.631 0.000 −11.581 0.000
M-O −24.793 0.000 −65.963 0.003 −21.563 0.000

150 A-M −20.652 0.000 −300.270 0.000 −16.753 0.001
A-O −62.814 0.000 −330.800 0.000 −32.671 0.000
M-O −42.162 0.000 −30.530 0.000 −15.918 0.001
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Table 4   Significance analysis of Cd content determined by GF-AAS, ICP-MS, and ICP-OES in Zhongzhu No. 3

A-M, A-O, and M-O denote the differences of the average values determined by GF-AAS and ICP-MS, GF-AAS and ICP-OES, and 
ICP-MS and ICP-OES, respectively. MD denotes mean difference

Cd treatment (mg/
kg)

Comparison Root Stem Leaf

MD p-value MD p-value MD p-value

0 A-M 1.363 0.000 –6.063 0.000 0.692 0.370
A-O −15.940 0.000 −38.701 0.000 −28.956 0.000
M-O −17.303 0.000 −32.638 0.000 −29.648 0.000

10 A-M 0.985 0.126 −8.692 0.000 0.127 0.785
A-O −23.228 0.000 −51.575 0.000 −48.374 0.000
M−O −24.213 0.000 −42.883 0.000 −48.501 0.000

30 A-M −16.866 0.000 −12.967 0.000 1.032 0.001
A-O −35.211 0.000 −57.906 0.000 −46.330 0.000
M-O −18.345 0.000 −44.939 0.000 −47.361 0.000

50 A-M −5.576 0.000 −54.102 0.000 −2.374 0.019
A-O −18.370 0.000 −96.929 0.000 −37.045 0.000
M-O −12.794 0.000 −42.826 0.000 −34.672 0.000

80 A-M −31.530 0.000 −82.243 0.001 −13.554 0.000
A-O −40.041 0.000 −114.669 0.000 −37.291 0.000
M-O −8.511 0.000 −32.426 0.041 −23.737 0.000

150 A-M −0.526 0.886 −205.398 0.000 −0.082 0.963
A-O −5.358 0.178 −258.831 0.000 −23.421 0.000
M-O −4.832 0.218 −53.433 0.000 −23.338 0.000

Table 5   Significance analysis of Cd content determined by GF-AAS, ICP-MS, and ICP-OES in Zhongzhu No. 4

A-M, A-O, and M-O denote the differences of the average values determined by GF-AAS and ICP-MS, GF-AAS and ICP-OES, and 
ICP-MS and ICP-OES, respectively. MD denotes mean difference

Cd treatment 
(mg/kg)

Comparison Root Stem Leaf

MD p-value MD p-value MD p-value

0 A-M 1.615 0.329 0.607 0.014 0.811 0.022
A-O −28.756 0.000 −31.566 0.000 −28.704 0.000
M-O −30.371 0.000 −32.173 0.000 −29.515 0.000

10 A-M −13.951 0.000 −81.233 0.000 −12.661 0.000
A-O −48.876 0.000 −104.190 0.000 −49.217 0.000
M-O −34.925 0.000 −22.957 0.000 −36.557 0.000

30 A-M −30.883 0.000 5.000 0.145 −17.383 0.000
A-O −86.280 0.000 −16.173 0.002 −56.458 0.000
M-O −55.398 0.000 −21.173 0.000 −39.075 0.000

50 A-M 10.064 0.026 −62.136 0.000 −8.640 0.000
A-O −15.186 0.004 −114.887 0.000 −38.323 0.000
M-O −25.250 0.000 −52.751 0.000 −29.683 0.000

80 A-M −41.061 0.000 −219.658 0.000 −25.942 0.001
A-O −96.609 0.000 −253.348 0.000 −49.607 0.000
M-O −55.548 0.000 −33.690 0.000 −23.665 0.001

150 A-M −224.559 0.000 53.417 0.006 12.046 0.511
A-O −271.574 0.000 34.700 0.035 −0.102 0.995
M-O −47.015 0.019 −18.717 0.194 −12.148 0.508
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the pairwise comparison among the three methods was 
0.873–0.997, while in leaves it was 0.907–0.969. Over-
all, the correlation coefficient between ICP-MS and 
ICP-OES in leaves (0.969), stems (0.997), and roots 
(0.992) was all the highest among the three pairwise 
comparisons. All these correlation coefficients above-
mentioned had reached significant level at p < 0.01, 
which suggested that the data obtained by the three 
methods have high stability and reliability.

Regression analysis of Cd content determined by 
GF‑AAS, ICP‑MS, and ICP‑OES

To further evaluate the relationships among the val-
ues detected by GF-AAS, ICP-MS, and ICP-OES, 

regression analysis was performed. The results 
showed that the regression coefficients (R2) between 
ICP-MS and GF-AAS, ICP-OES and GF-AAS, and 
ICP-MS and ICP-OES in roots were 0.814, 0.803, and 
0.983, respectively (Fig. 2). In stems, the R2 between 
ICP-MS and GF-AAS, and ICP-OES and GF-AAS 
were 0.780 and 0.762, respectively, while the highest 
value of R2 (0.995) was in the comparison of ICP-MS 
and ICP-OES (Fig. 3). Strong relationships were also 
observed between ICP-MS and GF-AAS (R2=0.909), 
ICP-OES and GF-AAS (R2=0.830), and ICP-MS 
and ICP-OES (R2=0.944) in leaves (Fig.  4). These 
data suggested that whether in root, stem, or leaf of 
ramie samples, the comparison of ICP-MS and ICP-
OES had a stronger relationship than the relationship 
between ICP-MS and GF-AAS, and also the relation-
ship between GF-AAS and ICP-OES, which was con-
sistent with the results of the correlation analysis.

As mentioned above, the values measured by GF-
AAS were similar to the values measured by ICP-MS 
under 0, 10, 30, and 50 mg/kg concentrations of Cd 
treatment, and the result of the correlation analysis also 
conformed to these. The data measured by GF-AAS 
was lower than the data measured by ICP-MS and ICP-
OES when samples were treated with 50, 80, and 150 
mg/kg concentrations of Cd, which was also confirmed 
by the results of the correlation analysis. Here, the 
results of linear regression analysis further confirmed 
these results. As shown in Fig.  5A, the agreement 
between Cd concentrations determined by ICP-MS and 
GF-AAS was remarkably good, which was pointed out 

Table 6   Correlation analysis of Cd content determined by GF-
AAS, ICP-MS, and ICP-OES

**Significantly different at the p < 0.01 level

GF-AAS ICP-MS ICP-OES

Root GF-AAS 1.000 0.899** 0.892**
ICP-MS 0.899** 1.000 0.992**
ICP-OES 0.892** 0.992** 1.000

Stem GF-AAS 1.000 0.883** 0.873**
ICP-MS 0.883** 1.000 0.997**
ICP-OES 0.873** 0.997** 1.000

Leaf GF-AAS 1.000 0.953** 0.907**
ICP-MS 0.953** 1.000 0.969**
ICP-OES 0.907** 0.969** 1.000
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Fig. 2   Regression analysis of Cd content in roots of ramie measured by ICP-MS, ICP-OES, and GF-AAS
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by a high value of R2 (0.947). It was concluded that it 
was a much better choice to use ICP-MS and GF-AAS 
to determine Cd content when samples were treated 
with low concentrations of Cd (0–50 mg/kg). As shown 
in Fig. 5, the data determined by ICP-MS was consist-
ent with that determined by ICP-OES.

These two methods had a stronger relationship 
(R2=0.997) than the relationship between ICP-OES 
and GF-AAS (R2=0.761), and also stronger than 
the relationship between GF-AAS and ICP-MS 
(R2=0.783). It was concluded that using ICP-MS 
and ICP-OES to determine Cd content was more 
accurate than GF-AAS when samples were treated 
with high concentrations of Cd (80–150 mg/kg). In 
fact, the instrument for ICP-OES determination was 

more expensive than that of ICP-MS. Therefore, it is 
an advisable choice for us to choose ICP-MS when 
the detected sample has a high Cd content. GF-AAS 
wastes more time and sometimes you have to dilute 
the solution. Meanwhile, ICP-MS measurement not 
only saves time but also simultaneously detects mul-
tiple elements. Thus, it is a better choice to use ICP-
MS than GF-AAS if your samples are at a lower Cd 
concentration level.

Cost of Cd determination measured by GF‑AAS, 
ICP‑MS, and ICP‑OES

To evaluate the cost of Cd determination detected 
by GF-AAS, ICP-MS, and ICP-OES, time and 

Cd sample observation Regression line Upper/Lower confidence limit (95%)
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Fig. 3   Regression analysis of Cd content in stems of ramie measured by ICP-MS, ICP-OES, and GF-AAS
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Fig. 4   Regression analysis of Cd content in leaves of ramie measured by ICP-MS, ICP-OES, and GF-AAS
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consumed materials were calculated (Table  7). 
The test time for ICP-MS and ICP-OES was 2–3 
min per each sample, while it was 3–5 min for GF-
AAS. Before Cd determination, the sample solu-
tion was diluted when using GF-AAS to measure. 
Thus, using GF-AAS to measure Cd content was 
time-consuming. However, argon was used when 
using ICP-MS and ICP-OES for Cd content, which 
increased the test cost. Moreover, the prices of the 
instruments for ICP-MS and ICP-OES measurement 
were much more expensive than that for GF-AAS 
measurement. In this point, there was a high testing 
cost when using ICP-MS and ICP-OES to measure 
Cd content. Using GF-AAS to detect Cd content 
wasted more time, while ICP-MS not only saved 
time but can also simultaneously detect multiple 
elements. Thus, it was a better choice of using ICP-
MS than GF-AAS to detect the samples with a low 
Cd content.

Discussion

Remediation of Cd pollution is one of the priorities of 
global environmental governance in heavy metal–pol-
luted areas. Accurate detection of Cd content is a key 
link in remediation of Cd pollution. ICP-MS, GF-AAS, 
and ICP-OES were used to detect Cd content in blood 
or soil (McBride, 2011; Trzcinka-Ochocka et al., 2016). 
ICP-OES, GF-AAS, and ICP-MS are widely used and 
cost-effective, but which one is the best way to deter-
mine Cd and which one is faster and more accurate 
should be discussed. Previously, there were several 
documents about the comparison of ICP-MS, GF-
AAS, and ICP-OES (Zeiner & Steffan, 2007; Zhu et al., 
2011). However, only a few samples were used for 
analysis in these researches. Here, we used 162 ramie 
samples of various tissues from treatments of different 
Cd concentrations to compare the methods of ICP-MS, 
GF-AAS, and ICP-OES, and the differences among the 
three methods were discussed. We found that the GF-
AAS, ICP-MS, and ICP-OES methods were all suitable 
for determination of Cd in ramie. In particular, ICP-MS 
and ICP-OES were simpler, faster, and more sensitive 
than the GF-AAS, while the GF-AAS was lower cost 
but more time-consuming than the other methods.

Previously, researches showed that ICP-OES and ICP-
MS measurements were unable to quantify soil Cd at low 
near-background levels at the emission light of 226.5 nm, 
and it may provide biased values when Cd is at higher 
levels (McBride, 2011). In our study, we used the emis-
sion light of 228.8 nm in Cd determination, which was 
considered to be interfered by severe As or Ni concentra-
tion (McBride, 2011). For ICP-MS, if oxide or hydroxide 
ions of Pd, Sn, In, Zr, Mo, Ru, Nb, or Y are present in the 
sample at concentrations at least several orders of magni-
tude higher than the Cd concentration, there will be spec-
tral interferences (May & Wiedmeyer, 1998). However, in 
this study, the Cd content in the samples was much higher 
than other elements, so that the interfering elements in 
these samples were not high enough to produce a false 
positive reading for Cd. Due to this problem, ICP-MS is 
the best suitable method to measure Cd content sample.
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Fig. 5   A Linear regression analysis of ramie samples under 
0–50 mg/kg Cd treatment. B Linear regression analysis of 
ramie samples under 50–150 mg/kg cadmium treatment

Table 7   The cost of Cd 
content determination 
detected by ICP-OES, 
ICP-MS, and GF-AAS

Method Price of the instrument Diluted Test time/sample Consumed materials

GF-AAS 18 million RMB YES 3~5 min Tubes
ICP-MS 25 million RMB NO 2~3 min Argon and tubes
ICP-OES 48 million RMB NO 2~3 min Argon and tubes
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Conclusions

In this study, we compared the three methods of ICP-
OES, ICP-MS, and GF-AAS for Cd content determi-
nation using various ramie varieties for the first time. 
We recommend that ICP-MS was applicable to sam-
ples with various concentrations of Cd, and ICP-OES 
could be used for measurement of samples with > 100 
mg/kg Cd content, while GF-AAS was suitable for 
the detection of samples with very high (> 550 mg/
kg) or very low (< 10 mg/kg) Cd content. However, it 
was considered that using ICP-OES to measure may 
be affected by spectral interference and the instrument 
was expensive. Meanwhile, ICP-MS has shown good 
accuracy in both high and low concentrations of Cd 
determination. Therefore, we concluded that ICP-MS 
was the best suitable method to measure Cd content of 
ramie samples among the three methods.
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