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Abstract
Purpose of Review  Climate change poses a threat to European forests and threatens their capacity to deliver ecosystem 
services. Innovation is often considered critical to increasing resilience in wood-based value chains. However, the knowl-
edge about types of innovation processes and how they enhance resilience, if at all, is largely dispersed. In this conceptual 
paper, we refer to examples from the forestry, bioeconomy, adaptation, and innovation literature to develop an overview of 
innovation pathways along the wood value chain. Thereafter, we evaluate the extent to which they enhance or compromise 
resilience to climate change and how they do so.
Recent Findings  We differentiate between forest and value chain resilience and assume that innovation positively influences 
both types of resilience via three resilience drivers: diversifying the product portfolio, making operations more efficient, or 
making the processes more flexible. Our literature review revealed nine innovation pathways along the value chain.
Summary  The pathways rarely connect forest management and the processing industry. Consequently, a mismatch was identi-
fied between the innovation pathways and resilience drivers applied to increase diversification at the beginning of the value 
chain (in forest management) and those applied to increase efficiency towards the end of the value chain (in the processing 
industry). Considering this mismatch, we stress that it is critical to reconsider the term innovation as a silver bullet and to 
increase the awareness of resilience drivers and innovation pathways, as well as reconsider ways to combine them optimally. 
We recommend engaging in open innovation activities to cooperatively draft innovation strategies across the entire wood 
value chain and intercept pathways by making processes more flexible.

Keywords  Innovation · Value Chain Resilience · Forest Resilience · Climate Change Adaptation · Forest-Based Sector

Introduction

European forests are critical to the European environment, 
economy, and society [1]. Climate change poses a growing 
threat to European forests due to the increasing frequency 
and severity of heat waves, extended periods of drought, 
storms, wildfires, and other natural disturbances that affect 
forests on an increasingly large scale. As a result, forest 
ecosystem dynamics, forest resilience, and tree species 

suitability are being altered at best and most likely nega-
tively impacted [2]. As climate change continues, forest 
managers have to cope with both short-term and long-term 
impacts on the stability of forests and their capacity to 
deliver ecosystem services [3•]. As an indication, extreme 
disturbance events occurring over the last decade [4] have 
challenged the forest-based sector by causing unpredictable 
wood flows and reduced wood quality [5].

The concept of resilience has been assigned multiple 
forms of significance in different disciplines. In the forest 
sciences, [6••] recognizes a hierarchy of concepts in which 
engineering resilience refers to the ability of a system to 
recover after a disturbance [7]; ecological resilience cor-
responds to the ability of the system to persist, absorbing 
changes and disturbances and avoiding shifts to alternative 
states [8]; and socio-ecological resilience addresses the 
capacity to adapt and reorganize interconnected natural and 
human systems in response to unexpected shocks or gradual 
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changes [9]. Thus, the term resilience is generally defined as 
encompassing these concepts and refers to the capacity of a 
system to absorb disturbances and to recover and reorganize, 
retaining essentially the same structure, identity, and func-
tions [10–12]. This definition includes three components 
that should be applied to enhance a forest’s (and potentially 
the value chain’s) capacity to cope with (climate change-
induced) disturbances and uncertainties [13••]: resistance, 
resilience (corresponding to the abovementioned engineer-
ing resilience), and adaptive capacity. In this regard, resist-
ance is the ability of an ecosystem to resist external stress, 
resilience is the ability of an ecosystem to return to its origi-
nal state after a disturbance, and adaptive capacity relates to 
the ability of an ecosystem to adapt to climate change and 
other global changes.

Although some research has been performed on how to 
enhance the capacity of specific forest ecosystems to cope 
with climate change (e.g. [3•, 14]), few efforts have been 
made to specifically investigate relationships between adap-
tive management and the associated value chains. Depend-
ing on the type of forest disturbance that occurs, wood-based 
value chains can be affected by the over- and undersupply of 
wood, and the wood value chain can shift from applications 
with higher value (e.g. sawn wood) to those of lower value 
(e.g. wood for energy production) [15–17].

Regarding forest-sector value chains, we can recognise 
nature- and human-driven subsystems as being connected 
by ecosystem services that interact with one another. The 
nature-driven system supplies ecosystem services to the 
human-driven subsystem, but the human-driven subsystem 
strongly influences the development of the nature-driven 
subsystem through policy and management [18]. Thus, the 
resistance, resilience, and adaptive capacity of a forest rely 
on the maintenance or improvement of such ecosystem ser-
vices or their associated value chains. In this context, we 
define value chain resilience as the ability to deliver and 
increase the value of ecosystem services as demanded by 
the human-driven subsystem throughout the value chain, 
while simultaneously being able to absorb disturbances, 
and recover and reorganize, retaining essentially the same 
structure, identity, and functions.

Innovation is seen as a silver bullet that can enhance value 
chain resilience and is often mentioned in academic papers 
(e.g. [19–22]). As an indication, a political vision introduced 
in the New European Forest Strategy suggests that inno-
vation and new product development have the potential to 
shift the composition of value chain structure, enabling it 
to respond to changes in societal demand [23] and to those 
related to climate change. This vision, which is becoming 
steadily more broadly accepted, encourages those working 
in the forest-based sector to develop new management strate-
gies, explore new markets, and develop new business models 
[24].

It is unclear how much and in which ways, if at all, inno-
vation enhances value chain resilience. Innovation itself is a 
broad term. If we define innovation as broadly as the authors 
of [25, 26] do, the term refers to the “generation, acceptance, 
and implementation of new ideas, processes, products or 
services”; hence, it would include any climate change adap-
tation strategy beyond those used in the current operational 
forest or industry practice.

According to [27••], resilience in ‘low-certain value 
chains’, which are subject to risks due to unpredictable envi-
ronmental factors, can be improved by strengthening struc-
tural variety (i.e. diversification), parametric redundancy 
(i.e. efficiency), and process flexibility. First, strengthened 
structural variety can be enhanced by diversifying the prod-
uct portfolio and supplier–consumer relationships, while 
minimising the number of intersections between different 
suppliers and consumers (e.g. by avoiding sourcing from 
the same suppliers). Second, value chain processes must 
become more efficient to reduce parametric redundancy 
and to ensure that natural, social, human, manufactured, 
and financing capital are optimally allocated [27••]. Nev-
ertheless, maintaining some redundancy could support 
resilience, since part of the system that fails can be easily 
replaced by another [28]. And finally, to strengthen process 
and resource flexibility, we need to allow resources to be 
exchanged upstream and downstream of the value chain, 
and specifically by establishing flexible workstations and 
decentralised control principles supported by track-and-trace 
mechanisms. This makes it possible to select short-term sta-
bilisation measures based on a clear understanding of the 
available capacities and inventories [27••].

In the forest-based sector, it has been argued that diver-
sification in forest management for wood could strengthen 
engineering resilience and ecological resilience, especially 
when targeting forests that are evenly aged and contain sin-
gle species [29–31]. This, in turn, could increase the capac-
ity of these forests to cope with climate change-induced 
disturbances [32, 33]. Expanding forest product portfolios 
beyond wood production can also contribute to forest income 
heterogeneity and stability. Job opportunities may be created 
as new customers and markets are reached [29, 30, 34, 35]. 
Thereby, diversification will contribute more prominently to 
‘inclusive growth’ [36]. Within the value chain, diversify-
ing procurement strategies and processing different types of 
wood could also lead to more stability [15–17].

Regarding efficiency, the pressure on forest resources is 
decreased when interactions between nature- and human-
driven subsystems ensure the optimal allocation of capital 
[37]. However, increasing the efficiency of the wood harvest 
could be a dangerous goal. In the past, the advocacy for 
even-aged pure forests that are easy to be managed led to 
damage that is not only caused by climatic changes, but also 
to less resistant and resilient forest structures, which suffer 
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from a low adaptive capacity [38, 39]. Efficiency-enhancing 
innovations also require a large number of investments to 
be made in the physical and social infrastructures of forests 
(e.g. transportation routes, forest partnerships, and knowl-
edge sharing) [40].

To increase the resource flexibility in the forest and the 
process flexibility in the value chain, resources should be 
exchanged upstream and downstream and new industry con-
nections should be formed [37]. By optimally shifting wood 
from higher-value applications to lower-value applications, 
employment opportunities, export income, and other indica-
tors for economic resilience can improve [41, 42]. In addi-
tion, the need for resource flexibility has become evident 
due to more blurred industrial boundaries and the fact that 
chemical, energy, and forest-based industries often use the 
same feedstocks and develop products for the same markets 
[43].

In the present work, we set out to define innovation path-
ways that the forest-based sector is adopting or has been 
recommended to follow by the scientific literature. Thereaf-
ter, we assessed various innovation pathways and analogous 
resilience drivers (diversification, efficiency, and flexibility) 
along the wood value chain in order to evaluate how much 

they enhance or compromise (forest and value chain) resil-
ience to climate change and how they do so.

The remainder of this paper is structured as follows: We 
describe our methodological approach and study design in 
Sect. 2, present our analytical results in Sect. 3, and discuss 
these results in light of previous research and the policy 
implications of the study in Sect. 4. Finally, a short conclu-
sion is provided.

Methods

To determine innovation pathways in the forest-based sector 
and assess how they contribute or compromise resilience, 
we must first have a clear overview of the wood value chain 
(Fig. 1).

In this study, we identified relevant peer-reviewed 
research articles, limiting the search to articles written in 
the English language, published between January 2013 
and December 2022 in international scientific journals, 
and indexed in the Scopus abstract and citation database. 
We performed the same queries in the ScienceDirect data-
base and on the Web of Science platform, which provides 

Fig. 1   Graphical representa-
tion of all activities along the 
value chain of wood products 
(adapted by [44, 45••])
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access to multiple databases, enabling us to identify addi-
tional papers. We set up a recordkeeping and reporting sys-
tem according to the widely accepted Preferred Reporting 
Items for Systematic Review and Meta-Analysis Statement 
(PRISMA) and describe the literature review process and 
exclusion criteria in a flow diagram [46] (Fig. 2).

We first conducted a systematic literature review (Fig. 2) 
to identify innovation pathways.1 In total, 89 papers were 
identified as relevant data sources which enabled us to 
preliminarily define innovation pathways along the wood 
value chain. To cluster the themes found in the literature 
and identify the pathways, we first assigned each paper a 
position along the value chain. Thereafter, we applied an 
iterative coding process with multiple rounds to detect simi-
larities and differences among the themes derived from the 
literature.

Subsequently, a second literature review was carried out 
as described above by using keywords related to innovation 
pathways and climate adaptation.2 As a result, 37 additional 
papers were identified that were further used in the analysis. 
These selected scientific papers were read in detail, continu-
ously referring to the selected three drivers of value chain 
resilience (diversification, flexibility, and efficiency) in order 

to determine whether a paper referred to resilience to cli-
mate change or to another form of resilience. Finally, not all 
papers used to classify a pathway were used to describe that 
pathway in the results section.

Results

Overview of the literature, the pathways, and their 
resilience drivers

In total, 125 papers were used to define and analyse the 
innovation pathways, 71 of which referred to climate 
change (Fig. 3). The analysis of these papers enabled the 
identification of nine innovation pathways along the value 
chain (Fig. 4): Innovations supporting mixed structure-rich 
forestry (1), technology-driven silvicultural innovations 
(2), innovations strengthening forest recreation (3), inno-
vative payment or ecosystem services (PES) schemes (4), 

Fig. 2   Graphical representa-
tion of the literature screening 
process used for the review per-
formed in this study (n = num-
ber of papers)

1  2 separate search terms: Forest* AND Innovation* (1) and Wood 
AND Innovation.

2  15 separate search terms: forest* AND (“Climate adaptation’’ OR 
“climate resilience’’) AND (1) “Community ownership’’ (2) “non-
wood forest product’’ (3) “forest farming’’ (4) recreation (5) “pay-
ment for ecosystem services’’ (6) “wood cascading’’ (7) bioenergy 
(8) technolog* (9) marketing (10) certification (11) construction (12) 
“wood fiber’’ (13) Packag* (14) “Climate-smart forestry’’ (15) “
  mixed forestry’’.
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innovations extending the product portfolio beyond wood 
(5), innovations supporting co-management and joint for-
est ownership (6), innovations supporting circularity (7), 
innovations extending the product portfolio with high-value 
products (8), and innovative approaches to sales and market-
ing (9). A more in-depth analysis of the literature in each 
pathway is described in Sects. 3.2–3.10. The literature used 
to define and analyse each pathway is summarised in the 
supplementary materials.

Innovations supporting mixed structure‑rich 
forestry

The sample of scientific literature that enabled us to develop 
this innovation pathway consists of 25 papers, 23 of which 
were directly related to climate change resilience, while 21 
mentioned diversification as a resilience driver. In addition, 
one paper referred to more flexibility, as the harvest timing 
in structure-rich forestry can be more flexible [47] (Fig. 3). 
In this sample, twelve papers build on ecological modelling 
and forest simulation, seven are literature reviews, five report 
results of dendrological measurements or other measures 
in a stand, one consists of stakeholder interviews, and one 
applies an analytical framework to assess resilience.

The application of mixed structure-rich forestry can be 
implemented at the beginning of the value chain. In this 

work, we interpret a mixed forest as a forest dominated by 
more than one single tree species, which sometimes corre-
sponds to a mixture of broad-leaved and coniferous species 
and that could include an understorey of shrubs and bushes 
[39]. Mixed forests often show a heterogeneous structure, 
where different cohorts and size classes co-exist ensuring 
regeneration capacity and habitat diversity. The management 
of mixed forests predominantly emphasises tree species that 
are well-adapted to the current growing conditions and a 
changing climate. Mixed forestry also includes dynamic 
forestry practices, which involve, for instance, successional 
species rotation and harvest practices.

More stringent silvicultural interventions might be needed 
to maintain a defined mixture over the whole rotation time 
[48]. Several tree species may coexist in mature old-growth 
forests, which show more resilience to warming trends 
[49]. However, more dominant forest species can tend to 
suppress others (e.g. due to a long history of selecting fast-
growing species and continuous thinning), especially in the 
early stages of stand development, and gap opening might 
be required [31, 50]. For example, in a mixture of Norway 
Spruce and European Beech, the spruce continuously out-
competes (i.e. height) the beech [33]. In addition, birch colo-
nises forest gaps, subsequently increasing soil functioning 
and biodiversity, but its rapid height growth might also affect 
the vitality of other forest species [51], especially when the 

Fig. 3   Scientific articles used to categorise and analyse the innovation pathways
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forest is not allowed to grow for long enough until birch is 
again replaced by other shade-tolerant species.

Although the species diversity and the structural com-
plexity of mixed forests does not always guarantee enhanced 
resilience, a mixed forest tends to be more resilient under 
certain conditions. Mixed structure-rich forests made up 
of a variety of tree species adapted to local environmental 
conditions or to ongoing climate change are more resilient 
to disturbances than homogeneous forests due to the comple-
mentary ecological performance of species and early stages 
of tree growth, which support regeneration. The species mix-
ture or uneven-aged structures might enhance the recovery 
speed, enabling the forest to reach a pre-disturbance state 
after a severe disturbance [14], while the integration of tree 
species with rare functional traits could enhance the adap-
tive capacity of a forest, thus maintaining forest resilience 
under strongly altered conditions [13••]. Thus, these mixed 
forests tend to ensure a good spread of risk to climate change 
and disturbances and promote potential synergies between 
species [32, 33]. For example, increasing the variability 
to European Beech stands [52] and Norway Spruce stands 
[47, 53] increases the resilience of these stands to climate 
change, while Silver Fir forests benefits from species mixing 
during drought [54]. Adding broad-leaved species to conifer 
stands helps them to become more resistant to windthrow 
and pests [47, 55]. Tree species mixing can also improve 
the growing conditions of trees, irrespective of disturbances 
[56]. For example, [57] found that beech trees in mixed 
stands grew taller and used nutrients more efficiently than 

mono-specific stands, while [58] found that incorporating a 
nitrogen-fixing species (e.g. Anadenanthera peregrina) into 
plantations increased eucalyptus growth there. Other stud-
ies have shown that the stem shape and wood quality in the 
Sessile and Common Oak are improved when stand mixing 
increases (e.g. by adding European Beech, Hornbeam, or 
limetree) [59, 60]. Lastly, [61] found that mixing and care-
fully managing non-native tree species may have climate 
adaptation benefits. Regarding the introduction of non-native 
tree species (e.g. introduced Blackwood in Portugal [62]), 
these should be carefully managed, since introducing non-
native species from distant regions could also introduce non-
native pests such as fungi and microorganisms and disrupt 
local food webs [61]. Alternatively, assisted gene flow from 
populations currently located in gradients, including the pro-
jected future climatic conditions, may increase the resilience 
of mixed forests to climate change [63].

Favouring mixed, structure-rich forests might enhance 
the forest’s economic resistance [64] and increase the 
value chain resilience associated to these forests, as they 
are more flexible to market demand [65], although careful 
management and interventions are needed. Diversification 
increases timber returns and reduces timber volume losses 
experienced under negative environmental conditions such 
as drought [14, 66] assessed innovative silvicultural strate-
gies linked to resilience and found that shifting from a clear-
fell system to continuous cover forestry in Central-European 
forests enhanced economic resilience. [67] found that adding 
Douglas Fir to a predominantly spruce forest and adapting 

Fig. 4   Innovation pathways, indicating their locations along the value chain and their contributions to resilience
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the rotation periods compensated for the adverse economic 
effects of climate change. [68] found a higher production 
potential for mixed stands in a context of climate change 
as compared to monospecific mountain forests in Central 
Europe. [69] found that adding Silver Fir to beech forests 
increased their ability to adapt to climate change and secured 
profit. Finally, regarding Southern European forests, [70] 
found that a mixture of Sweet Chestnut and Truffle Holm 
Oak had higher socio-ecological resilience. Therefore, the 
literature reviews show that mixed stands tend to buffer the 
adverse economic consequences of climate change, although 
they do not completely mitigate them, as has been observed 
in some cases (Southeast Germany [71]). Sometimes an 
insurance premium is offered following a diversifying inno-
vation. However, higher returns may not be enhanced by this 
practice, as a certain extent of efficiency is lost [64].

Technology‑driven silviculture innovations

Eight scientific papers laid the foundation to classify this 
innovation pathway, comprising four literature reviews, one 
study based on interviews, one case study, and two mixed-
method approaches. Half of these papers refer to climate 
change resilience, and six of these argued that resilience is 
driven by efficiency. Out of these six, three also argued for 
flexibility as a resilience driver (Fig. 3). Based on this sam-
ple, this pathway encompasses technological solutions that 
enhance efficiency in value chains in the forest-based sector. 
Examples from the analysed papers include the use of satel-
lite technologies and remote sensing to simplify the process 
of creating a forest inventory [72] and to more effectively 
respond to disturbances [73]. The use of digital technolo-
gies can also enhance people’s recreational experiences in 
forests [40, 74].

Innovations in this pathway can optimise supply chain 
management and enable the forest-based sector to respond 
more quickly to changes in demand. However, these are also 
characterised by innovations that could be knowledge- and 
material-intensive. As a result, such innovations may be too 
costly for small-scale forest owners. For example, this short-
coming applies to costs associated with complementing a 
ground-level forest inventory with forest measurements to 
collect data with remote sensing (e.g. assessing the carbon 
storage of large forested areas or large-scale forest distur-
bances) [72]. Similarly, in Northern Europe, cut-to-length 
systems or mechanised planting rely heavily on the ability to 
make real-time measurements by using onboard computers 
and sensors in harvesters. Such harvesting systems reduce 
administrative tasks, wood waste, and discrepancies in stock 
data, but are expensive [75]. Similar conclusions regard-
ing high costs were reached for recreation-enhancing digital 
solutions [40, 74].

Innovations in this pathway are also sometimes associ-
ated with strengthened forest resilience. Digital solutions 
can streamline forest operations, and the collected data can 
be used to accurately respond to rapidly changing environ-
mental conditions [72]. As an indication, drone technology 
is being increasingly used to detect and map the spread of 
pests, diseases, wildfire outbreaks, and damage to forest 
infrastructure. These solutions thus contribute to the devel-
opment of early warning systems and the coordination of 
forest management efforts [73, 76]. In addition, forest inven-
tory data may be used in forestry along with more citizen 
monitoring, rightly shifting the power to the population [76], 
for example, by improving forest fire disturbance responses 
and fire prevention management by providing the local popu-
lation with digital solutions [77]. However, in some cases, 
digitisation has not improved resilience. Historically, forest 
administrations have advocated homogenisation and ration-
alisation of forestry, favouring even-aged stands consisting 
of low tree diversity, which are easy to manage and require 
little machinery [38].

Innovations strengthening forest recreation

The third innovation pathway includes modifications related 
to forest tourism, recreation, and the experience economy. 
The sample of scientific literature consists of 16 papers, five 
of which refer to climate change resilience. The methods 
applied vary: Five survey approaches (one in combination 
with interviews), five interviews, two choice experiments, 
one modelling approach, one literature review, one govern-
ance analysis, and one exploratory study. Eleven papers 
addressed diversification as the value chain resilience driver 
(Fig. 3). A few examples mentioned in the papers include 
mountain bike tourism [78, 79], tourism related to the col-
lection of forest products [80], and forestry workshops [81].

No evidence was found in the sample of papers that diver-
sifying forest systems by strengthening recreational systems 
directly enhances forest resilience. However, forest-based 
recreation is often found to be indirectly linked to the appre-
ciation of a forest, which depends heavily on its diversity 
[82, 83]. Forest preference studies conclude that people 
appreciate mature forests that have good visibility, some 
undergrowth, and a green field layer with no obviously vis-
ible signs of forest management [84, 85]. In contrast, inten-
sive wood production, short rotation cycles, and large size 
management units negatively affect forest attractiveness, 
decreasing the suitability of a forest for recreation [86]. The 
“naturalness” of an area, meanwhile, might reduce the acces-
sibility and thus negatively affect recreation [87]. However, 
a forest that is optimal for recreation does not necessarily 
provide optimal risk diversification. While functional diver-
sification serves as a buffer against uncertainty, it could also 
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result in a completely different forest portfolio compared to 
the one which is optimally diversified for recreation [39].

Innovations strengthening forest recreation might diver-
sify the product portfolio, but a forest owner typically only 
receives minimal benefits from allowing recreation on their 
land, and recreation-oriented management practices could 
reduce profits from timber production [85, 86] examined pri-
vate landowners’ preferences in Finland and found that many 
forest owners are willing to protect their land and benefit 
from the recreational fees received as compensation for use. 
The idea that forests are publicly owned and the frequent 
assertion of everyman’s rights make it difficult to integrate 
commercial innovations into recreational services, as citi-
zens are unaccustomed to paying for them [88]. Payments for 
parking spaces near recreation areas, however, have proved 
to be an important source of income.

Creative approaches applied in combination with pay-
ments for ecosystem services schemes to enhance consum-
ers’ experiences would be potentially useful in the future, 
but institutional support for the development of such busi-
nesses is lacking [89]. Collaborative deliberation and com-
munication processes are needed to teach forest managers 
how they can support and carry out such processes [90]. In 
addition, maintaining good relationships between entrepre-
neurs and private forest owners, as well as combining their 
interests, is vital for sustaining nature tourism activities [91]. 
For example, without community cooperation, mountain 
biking trails in Switzerland and Austria would not exist and 
would not provide additional income or garner government 
funding [79, 92].

Innovative payment for forest ecosystem services 
(PES) schemes

Twelve papers were analysed to determine and describe 
the fifth innovation pathway. Out of these twelve papers, 
nine referred to climate change resilience. Seven papers 
addressed diversification as a value chain resilience driver 
(Fig. 3). The methodologies applied included four case stud-
ies, two economic valuation methods, two interviews (one in 
combination with a survey), one literature review, and one 
mixed method approach.

Many forms of payments for ecosystem services exist, 
and these can be differentiated by whether they include 
direct payments or indirect payments. Some examples 
include schemes related to regulating and supporting ecosys-
tem services, such as habitat improvement and soil conserva-
tion [93], carbon sequestration [94], or water tariffs paying 
forest owners to manage their forests in order to improve 
water quality and quantity [95]. Other examples include 
cultural ecosystem services, such as payment schemes that 
enhance recreation. For example, [96] described a system 
in Trentino where the tourism tax is used to maintain the 

landscape values. This system was set up after a large storm 
severely damaged the landscape. Alternatively, some pay-
ment schemes combine the above-mentioned ecosystem 
services, including those for provisioning, for example, by 
offering payments for targeted livestock grazing to reduce 
wildfire risks and boost biodiversity, water quality, and sce-
nic beauty [97] or to meet other goals, such as increasing 
wood production or conservation [85, 98]. Some encour-
age the production of mushroom colonies on dead wood to 
improve biodiversity and forest microclimates [99].

Diversification by implementing payments for ecosystem 
service schemes can potentially enhance forest and value 
chain resilience, particularly in light of climate change. 
These examples lead to forest diversification and indirectly 
strengthen the forest’s ecological quality and, thereby, its 
resilience to cope with disturbances [19]. In addition, imple-
menting payments for ecosystem service schemes could 
strengthen the economic value of the forest-based sector by 
reducing the financial imbalance caused by climate change 
[19, 20].

Innovations extending the product portfolio 
beyond wood

The fifth innovation pathway includes innovations that 
extend the product portfolio in the forest management part 
of the value chain beyond wood production. Fourteen papers 
served as a basis for developing and analysing this pathway, 
half of which referred to climate change resilience. Eleven 
stressed the importance of diversification to improve resil-
ience, one of which also referred to increased (cost) effi-
ciency by offering hunting as a product [100] (Fig. 3). The 
applied methodologies include six exploratory literature 
reviews, two interview approaches, two surveys, two case 
studies, one economic assessment, and one combined legal 
and spatial assessment. A few examples from this sample of 
literature include introducing by-products into the market, 
such as wild mushrooms, commercialising edible fruits, or 
including forest farming and silvo-pastoral systems. In addi-
tion, alternative forms of income such as woodland burials 
[101] or income from wind power [102] were considered.

Although alternative forest products have more poten-
tial to enhance value chain resilience than is presently rec-
ognised [29, 30, 103], their potential to strengthen forest 
resilience is scarcely documented in the academic literature. 
[30] conducted a review of recent European advances in 
modelling integrated multifunctional forest systems, includ-
ing both wood and non-wood products. In almost all cases, 
wood and NWFPs could be synergistically produced and 
create additional income for forest owners. For example, 
managing Mediterranean pine stands was unprofitable with-
out the additional income from the sale of mushrooms and 
pine nuts [104–106]. In some cases, promoting NWFPs did 
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not provide forest owners with additional income, as, for 
example, in the joint production of timber and mushrooms 
in Norway spruce stands [107]. In other cases, harvesting 
NWFPs had a negative impact on timber quality or yield; 
resin and sap tapping conflicts with timber production [30]. 
Sometimes this additional income is equivalent to a work-
ing income: The income earned per hour worked may not be 
attractive to forest owner, as the assumed cost per working 
hour may be too high to enable the forest owner to earn a 
profit [108]. Furthermore, in Serbia, NWFPs can be exported 
at an increased price, but the profit is not earned by the right 
people due to the high fees charged by intermediaries [109, 
110]. Similarly, [111] stated that the economic viability of 
chestnuts should be supported by policy and driven by the 
private sector [112].

Integrating NWFP production into forest management 
may involve interventions (e.g. using forest-thinning regimes 
to enhance mushroom or berry production) [36], selecting 
specific tree species (e.g. cherries, nuts, or other fruit trees) 
[30], or implementing forest farming systems (e.g. the Por-
tuguese Montado system with cork production and grazing) 
[97]. In some situations, extending the product portfolio 
while offering recreational possibilities makes management 
more feasible, as is the case regarding game-oriented forest 
management and other non-wood services [100] or growing 
and selling Christmas trees [35].

Innovations supporting co‑management or joint 
forest ownership

The sample of papers in this pathway consists of 18 papers, 
only six of which referred to climate change resilience. The 
effects of forest ownership on climate resilience have not 
been studied in detail or were deemed to be insufficiently 
correlated. Nevertheless, six papers mention diversification, 
and seven papers underline flexibility as an important resil-
ience driver (Fig. 3). Out of these 18 scientific papers, four 
are case studies, five are surveys, one is a qualitative data 
analysis, four are interviews, three are literature reviews, and 
one is a policy mapping.

The term joint forest ownership refers to management 
approaches involving multiple parties in decision-making 
and management processes. These approaches generate 
income through the production of goods and services, but 
also provide social returns for the partners, comprising par-
ticipatory forestry and community-owned forest manage-
ment. Co-management is defined as cooperation among 
forest owners with larger forest holdings to increase the 
efficiency of the forest operations, e.g. by sharing equipment 
or supporting synergies in the production and marketing of 
wood products. Although a more mixed property structure 

correlates with resilience, this does not mean that single 
owners miss out on chances to strengthen their resilience.

Cooperation positively correlates with strengthened forest 
and value chain resilience and climate adaptation goals. Co-
owners or stakeholders may differ in terms of their gender, 
age, education, or other individual characteristics that tend to 
be associated with multifunctional forest values and diverse 
management strategies [113–115] found evidence indicating 
that social and community enterprises in Britain generate 
more diverse benefits, such as conservation and increasing 
social benefits for the community or a larger population. 
Similarly, [116] found that woodland social enterprises are 
diverse and consider different forms of income than just the 
income from wood. In Sweden, [117] also noted that people 
who knew more about climate adaptation were more likely 
to apply more climate adaptation practices.

Several studies have shown that corporations continually 
find new ways to innovate, increase their assets, and mobi-
lise wood while taking a stronger competitive position in 
the market [40, 118, 119]. Individuals that are convinced 
of the value of a forest to a larger group of stakeholders, 
such as a community, drive innovation [120]. For example, 
[120] found that community forests in England share finan-
cial responsibility, increase the number of income streams, 
and have many volunteers. [121] found that co-management 
practices in Finland increase financial stability. Forest coop-
eratives in Greece have found win–win situations that meet 
sustainability goals and increase demand [122]. Similarly, in 
Spain ‘socio-ecological resilience’ to forest fires is strength-
ened by including additional stakeholders, and especially 
bottom-up initiatives [123].

Innovations supporting circularity

The seventh innovation pathway encompasses all innova-
tions related to cascading wood use, ranging from higher 
value applications (e.g. sawn wood) to lower value applica-
tions (e.g. fuelwood), and the use of process waste. Eleven 
papers were used to analyse this pathway, merely four of 
which refer to climate change resilience (Fig. 3). Meth-
odologically the sample is varied: two Delphi studies, four 
literature reviews, three case studies, and one mass flow 
analysis. From analysing the papers, it becomes clear that 
innovations supporting circularity potentially enhance resil-
ience by driving efficiency (8 papers) and diversification (4 
papers). Examples include the use of by-products from the 
sawmill industry as raw material for the pulp industry [124], 
the integration of a biorefinery concept in existing pulp and 
paper operations, and the production of energy from for-
est waste [125, 126] or the enhancement of the potential to 
recover solid wood for other applications [127].

By enhancing efficiency and diversification, this innova-
tion pathway strengthens value chain resilience. Most of the 
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literature on circular economy and biorefinery development 
places a focus on the mitigation aspect of climate change, 
but little evidence was found that this innovation results in 
higher forest resilience. The large amounts of wood damaged 
as a result of climate change-related disturbances, however, 
could easily be utilised in lower value applications. In addi-
tion, primary and secondary producers further downstream 
in the value chain can become more independent if they 
diversify their procurement strategies and source wood from 
other sources along the value chain instead of directly from 
the forest, thus reducing the pressure on the standing trees 
[15–17].

Cascading wood use is considered a robust but conserva-
tive transformation pathway. [126] found that most biore-
finery projects in Finland and Sweden displayed merely 
incremental differences in terms of their dominant busi-
ness logic and technology paradigms. However, the authors 
emphasised that the perception of wood availability could 
be a limiting innovation along this pathway. Furthermore, in 
order to avoid dependency on fossil fuels, the total produc-
tion site in the processing industry must be optimised [125]. 
This finding contrasts with that of [128], who suggest that 
the volume of the fibre sludge side stream (commercially 
used as a dust-binding agent) is too high to be fully utilised 
by producers and cannot be used for higher-value applica-
tions. Similarly, bark and other tree residues (e.g. foliage) 
still remain a largely underexploited resource [129].

Innovations extending the product portfolio 
with high‑value products

The process of extending the product portfolio with high-
value products differs in sawmills and pulp mills. The wood 
needed for high-quality applications in pulp mills is of lower 
quality than the wood needed in sawmills. Therefore, this 
pathway complements the seventh innovation pathway. 
The sample used to determine and analyse this innovation 
pathway consists of 24 papers. It is the only pathway in 
which diversification (addressed in 15 papers), efficiency 
(addressed in seven papers), and flexibility (addressed in 
three papers) come together (Fig. 3). The analysed papers 
apply the following research methods: nine literature 
reviews, two interviews (one with observations at seminars 
and workshops), three case studies, one forest sector model 
application, one LCA, one wood quality measurements, two 
Delphi studies, one focus groups, one willingness-to-pay 
approach, one trade flow analysis, and one questionnaire. 
Examples include wooden (multi-storage) construction [130, 
131], wood textiles [23], furniture [42], sustainable packag-
ing solutions [132, 133], design products [132], the use of 
wood in the automotive industry [134], and the use of bark 
phytochemicals as bulk chemicals in the food, pharmaceuti-
cal, and cosmetic industries [129].

For high-value applications, higher-quality wood is 
needed in many cases [37, 135]. This resource does not 
need to harmonise with the higher availability of low-quality 
wood due to increased forest disturbance [37, 135] listed 
desirable wood properties for optimal processing in higher-
value applications: Wood used for conventional sawn wood, 
panels, and plywood needs to have strength, stiffness, and a 
high density. This requires trees to be more uniform, have 
an improved trunk form and less juvenile wood; at the same 
time, the wood must have a small microfibril angle and a 
high lignin content. The desired properties of wood used for 
paper, paperboard, and packaging production are broader, as 
the wood can be enhanced by adding cellulosic nanomateri-
als in the form of fillers and coatings to meet high quality 
standards, such as increased sheet smoothness and strength. 
This requires the wood to have a higher cellulose to lignin 
and hemicellulose ratio. Lignin is more easily removed from 
softwood than from hardwood; however, the lignin in hard-
wood species has a higher quality. In addition, using wood in 
some higher-value applications requires using specific frac-
tionation and effective purification processes that are techno-
logically demanding and often not cost-effective [23, 136].

When these processes are implemented and high-quality 
wood is available, increases in employment opportuni-
ties and export income from high-value products are seen, 
strengthening value chain resilience. In Sweden, for exam-
ple, the value of joinery and furniture is 15–20 times higher 
than that of sawn timber. The added value of wood in the 
building industry is about 1.5 times higher (also in Swe-
den) [42]. Similarly, many possibilities exist to capitalise on 
lignin production for a large number of applications [137], 
and the willingness of consumers to pay for wood fibres in 
textiles is growing steadily [138]. Creating wood products 
by using higher-value applications also strengthens forest 
company branding and opens up new supply markets [132].

Innovative approaches to sales and marketing

The last innovation pathway centres around organisational 
adaptations made to diversify marketing and sales channels, 
such as using sustainability labels, trans-shipment points, 
and biomass trade-centres, hosting wood auctions, or launch-
ing forest e-shops. This pathway builds on five papers, none 
of which refer to climate change. Nevertheless, they do refer 
to strengthened resilience through flexibility (three papers) 
and efficiency (four papers) (Fig. 3). The applied methods 
include two literature reviews, one expert interviews, one 
application of an analytical framework, and one application 
of the expanded business model canvas.

Innovations along this pathway enable forest firms to 
respond more rapidly to changing consumer demands and 
market opportunities, as well as to find international con-
sumers for products [139–141] which might become more 
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available as the result of disturbances. For example, [40] 
examined an e-shop in Finland and the use of high-quality 
wood auctions in Slovenia. The e-shop is run by a forest 
owner association (FOA) that tries to offer new market-
ing channels based on social media by using Google as a 
marketing channel to offer the forest owner group benefits. 
By using the internet as a delivery channel, the easy access 
to products and services is safeguarded, and these can be 
quickly adapted to meet customers’ demands. Furthermore, 
a new type of nationwide partnership has been established 
where financial benefits can be derived from joint market-
ing and niche product production to avoid competing with 
the same kind of forest products. In this regard, [21] sug-
gested that eco-labels and certification can be considered 
as essential for sustainable product development in forest 
sector. The business model of Slovenian high-quality wood 
auctions offers private forest owners a chance to sell high-
quality wood from their forests for a price that is higher than 
ordinary prices. This increases the forest owners’ motivation 
to become active in areas of forest management, education, 
and investments in research and development [40].

[142] examined drivers, organisational resources, and 
innovations in the transition of the Finnish forest-based sec-
tor to a circular bioeconomy. They found that it is essential 
for teams with diverse knowledge to develop communica-
tion and marketing skills. This aspect has been proven dif-
ficult for smaller companies, as they often do not have the 
resources to develop such skills. The challenges that were 
identified include the frequent need to find new markets and 
the lack of validity for traditionally marketing traditional 
products. In addition, different customers often need market-
ing messages specifically tailored for their needs.

Discussion

Innovation has been claimed by many authors and research-
ers to positively contribute to climate adaptation in forest-
based value chains (e.g. [19–22]). However, knowledge 
regarding the kind of innovation pathways and how these 
enhance resilience, if at all, is widely dispersed. This con-
ceptual paper was written to increase the understanding of 
such innovation pathways along wood value chains and to 
evaluate the extent to which they enhance or compromise 
resilience to climate change in the forest-based sector.

Based on the results of two subsequent literature reviews, 
we were able to identify nine innovation pathways along the 
wood value chain (Fig. 4). Taking a deeper look, we saw 
that innovation mostly contributes positively to resilience to 
climate change, but it can also compromise resilience under 
certain circumstances. We analysed this by asking three 
questions: Where does innovation occur along the wood 
value chain? Which form of resilience does it contribute to 

(i.e. value chain [143] or forest resilience [144])? And which 
value chain resilience driver is attached to the innovation 
(efficiency, flexibility, or diversification) [27••]?

Our findings indicate that innovation that supports resil-
ience takes on different forms at the beginning of the value 
chain (in forest management) than at the end of the value 
chain (in the processing industry). In the forest manage-
ment part of the value chain, innovation is dominated by 
the resilience driver diversification. In contrast, efficiency 
as a resilience driver dominates in the primary and second-
ary processing parts of the value chain. The two drivers 
might not complement one another, because diversification 
increases complexity rather than simplicity and, by exten-
sion, reduces efficiency. Pathway 2 (technology-driven sil-
vicultural innovations) is the only pathway positioned in the 
forest management part of the value chain that are based on 
an efficiency resilience driver (whereas the other pathways 
are based on diversification). This innovation pathway also 
includes cases of innovations that have compromised resil-
ience, for example, when new digital technologies or harvest 
operations require easy-to-measure forest structures which 
can be managed straightforwardly by using high amounts of 
mechanization. According to [38], this is also reflected by 
the fact that forest managers have historically advocated for 
the homogenisation and rationalisation of forestry, suggest-
ing that even-aged, pure forests are optimal. At present, we 
can see the consequences of such systems in some European 
regions, where the enormous damages are not only caused 
by climatic changes, but also by less resistant and less resil-
ient forest structures that suffer from a low adaptive capacity 
[145, 146].

As depicted in Fig. 3, innovation rarely links forest man-
agement and the processing industry. Three pathways can 
be implemented in multiple parts of the value chain: path-
way 6 (innovations towards co-management and joint forest 
ownership), pathway 7 (innovations towards circularity), and 
pathway 9 (innovative approaches to sales and marketing). 
The latter (pathway 9) could be implemented throughout the 
value chain. In addition, these pathways (pathway 6, 7, and 
9) can be combined with a broader set of innovations along 
the value chain and can subsequently increase the amount of 
control industries have over the wood value chain, strength-
ening their connections with suppliers or customers [40].

In some cases, combining various innovation pathways is 
reported to lead to synergies related to forest and value chain 
resilience. Fostering forest resilience by creating a mixed 
and structure-rich forest (pathway 1) is considered to be par-
ticularly appropriate for recreational purposes (pathway 3) 
[82, 84, 85]. Such a forest has also been shown to positively 
influence the ability of innovations to extend the product 
portfolio beyond wood (pathway 5) [30, 35, 100]. Likewise, 
some authors reported that the high financial costs and tech-
nological demand hindering pathway 2 (technology-driven 
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silvicultural innovations) could be resolved if forest own-
ers joined forces with others, as suggested in pathway 6 
(innovations supporting co-management and joint forest 
ownership) [40, 118, 119]. Furthermore, pathways 7 and 8 
should be strategically combined, and wood should first be 
used in higher-value applications before it is downcycled to 
low-value applications [37]. Lastly, combining pathways 4 
(innovative PES-schemes) and 9 (innovative approaches to 
sales and marketing) could intensify the positive contribu-
tion of all other innovation pathways for forest management, 
potentially increasing the ability of these forests to adapt to 
climate change.

In other cases, combining various pathways could result 
in conflicts, in the same way that forest functions might con-
flict. For example, conflicts were noted between wood pro-
duction and recreation [85, 86], between wood production 
and carbon sequestration [147], and between wood produc-
tion and nature conservation goals [82]. Such trade-offs are 
also expected to result in conflicts downstream in the value 
chain, because the primary and secondary production sectors 
prefer to have a constant supply of softwood at reasonable 
prices. Another potential trade-off is underlined by the fact 
that processing wood further in higher-value applications 
(pathway 8) does not harmonise with the higher availabil-
ity of low-quality wood due to increased forest disturbance, 
but it does harmonise with cascading wood to lower-value 
applications (pathway 7).

Two solutions are presented to overcome the mismatch 
between diversification and efficiency drivers as described 
above, as well as to foster synergies and minimise conflicts. 
First, it is possible to strengthen flexibility by using innova-
tions that support co-management and joint forest ownership 
(pathway 6), those that support circularity (pathway 7), or 
that extend the product portfolio with high-value products 
(pathway 8), or to take innovative approaches toward sales 
and marketing (pathway 9). Second, our analysis of the 
innovation pathways enabled us to identify two important 
common and interconnected drivers: taking an inter- and 
multidisciplinary participatory approach and engaging in 
open innovation activities. In particular, other researchers 
have found that exhibiting openness towards cross-sectoral 
relations [40, 41, 148–150] and civil society [79, 128, 142, 
150] is especially critical. Other critical factors identified 
include having sufficient technological resources, human 
skills [151], integrating and coordinating policies [152], 
increasing environmental awareness [153], and setting vol-
untary climate change targets [154].

Regarding the reliability and validity of the results, some 
limitations associated with systematic literature reviews 
should be considered when weighing our study outcomes. 
Most importantly, the lack of scientific publications that 
address certain aspects of climate adaptation does not nec-
essarily imply that these aspects do not exist. This study 

involved the detection and analysis of 126 relevant papers 
with a European scope. In the future, it would be of interest 
to examine experiences made in this topical area outside of 
Europe.

Conclusions

In this study, we determined nine innovation pathways and 
analogous resilience drivers along the wood value chain. We 
then assessed the extent to which the associated innovations 
are known to enhance or compromise resilience to climate 
change in the forest-based sector. An important outcome of 
the study was that we could recognize the role of innovation 
drivers with respect to value chain resilience: These drivers 
increase diversification, efficiency, and/or flexibility (Fig. 3).

Our results show that a mismatch exists between innova-
tion pathways and resilience drivers at the beginning of the 
value chain in forest management and towards the end of the 
value chain in the processing industry. Indeed, innovation 
rarely links forest management and the processing industry. 
Moreover, innovation pathways used in forest management 
to strengthen resilience also support diversification, whereas 
those used in the processing industry support efficiency. The 
trade-off between diversification and efficiency has led to 
conflicts in the past: The rationalisation of efficient forestry 
suggests that even-aged, pure forests that are easy to manage 
are optimal, but these are not resistant or resilient to natural 
disturbances exacerbated by climate change.

This conceptual work linking resilience to innovation has 
consequences for future research on this topic. To overcome 
the mismatch between diversification and efficiency drivers, 
as well as to foster synergies and minimise conflicts, we rec-
ommend integrating forest and wood value chain research. 
In this regard, an increased awareness of resilience drivers 
and the analogous innovation pathways, as well as of the 
possibility to optimally combine them, is needed. At the 
same time, communication between forest management and 
the processing industry needs to be improved. Along these 
lines, we recommend engaging in open innovation activi-
ties to cooperatively draft innovation strategies across the 
wood value chain, thereby facilitating joint work among for-
est owners, managers, transportation companies, primary 
processing industries, and secondary processing industries.

Future researchers could look at the direction of the 
effects, which requires further consideration: Intercepting 
such innovation pathways could increase the resilience of 
forests to climate change, but we need to know more about 
how climate change is driving such pathways. Lastly, our 
work focuses on the wood value chain. It would also be good 
to consider first resilience and second innovation in other 
primary production-based value chains, such as those for 
cork, eucalyptus, or resin.
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