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Abstract
The number and diversity of phenological studies has increased rapidly in recent years. Innovative experiments, field studies, 
citizen science projects, and analyses of newly available historical data are contributing insights that advance our understand-
ing of ecological and evolutionary responses to the environment, particularly climate change. However, many phenological 
data sets have peculiarities that are not immediately obvious and can lead to mistakes in analyses and interpretation of results. 
This paper aims to help researchers, especially those new to the field of phenology, understand challenges and practices 
that are crucial for effective studies. For example, researchers may fail to account for sampling biases in phenological data, 
struggle to choose or design a volunteer data collection strategy that adequately fits their project’s needs, or combine data 
sets in inappropriate ways. We describe ten best practices for designing studies of plant and animal phenology, evaluating 
data quality, and analyzing data. Practices include accounting for common biases in data, using effective citizen or commu-
nity science methods, and employing appropriate data when investigating phenological mismatches. We present these best 
practices to help researchers entering the field take full advantage of the wealth of available data and approaches to advance 
our understanding of phenology and its implications for ecology.
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Introduction

The study of phenology, the seasonal timing of recurring 
life history events (Schwartz 2003), is increasingly used 
to investigate the effects of climate change and other envi-
ronmental changes on ecosystems. Scientists from a range 
of disciplines are using phenology to study and predict the 
demographic consequences of species’ responses to climate 
change, the susceptibility of species to extreme weather 
events, and the effects of changes in growing season length 
on ecosystem processes such as water, nutrient, and carbon 
fluxes (Chmura et al. 2019; Poloczanska et al. 2013; Jin et al. 
2017; Browning et al. 2021; Caparros-Santiago et al. 2021; 
Chuine and Régnière 2017; Iler et al. 2021a; Piao et al. 2019; 
Friedland et al. 2018).

New sources of phenological data are opening innova-
tive avenues for research. The digitization of museum spec-
imens, historical records, and field data allows scientists to 
examine phenological events over wider geographical areas 
and longer time scales than have previously been possible 
(Hedrick et al. 2020; Gwinn and Rinaldo 2009; Jarić et al. 
2020). Rapidly expanding citizen science networks—such 
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as eBird, iNaturalist, and Nature’s Notebook—are provid-
ing dense spatial and temporal coverage of certain pheno-
logical events, such as flowering and bird and fish migra-
tions (Soroye et al. 2018; Taylor et al. 2019; La Sorte and 
Graham 2021; Dalton et al. 2022; Rosemartin et al. 2014). 
Long-term weather records, crucial to most phenological 
research, are becoming more accessible and can provide 
estimates of climate at fine geographical scales (Daly et al. 
2002). Direct observations of phenology can be supple-
mented with camera images, sound recordings, and DNA 
samples, and matched to large-scale phenological data col-
lected by satellites (Zeng et al. 2020; Yamasaki et al. 2017; 
Matsuhashi et al. 2019; Zimova et al. 2020a; Brown et al. 
2016b; Buxton et al. 2016; Friedland et al. 2018).

As the study of phenology grows, researchers benefit 
from understanding best practices in designing phenol-
ogy studies, working with data, and interpreting results. 
Many phenological data sets have peculiarities that are not 
immediately obvious and can lead to mistakes in analyses 
and interpretation of results. This challenge is exacerbated 
when researchers analyze data sets that lack good metadata 
(a common problem for historical data sets) or combine 
data from different sources such as citizen science, museum 
specimens, and remote sensing (Elmore et al. 2016; Atha 
et al. 2020). With the abundance of historical phenology 
data, new data becoming available, and new experiments 
and studies being designed, these challenges surface with 
increasing frequency in phenology research.

Here we present ten best practices that can help research-
ers overcome these challenges and advance the study of phe-
nology through better planning, data collection, analyses, 
and interpretation. These practices are appropriate whether 
researchers use existing data, collect new data, or combine 
new and past data.

 1. Ensure clear and consistent data collection protocols
 2. Be aware of data quality and biases
 3. Match data precision and duration to the question or 

application
 4. Utilize citizen science data and programs to maximize 

research benefit
 5. Avoid errors when combining or comparing disparate 

data sets
 6. Account for long-term changes in the study species
 7. Account for external factors that affect the study sys-

tem
 8. Use statistics and models appropriate for the data and 

questions
 9. Ensure appropriate data are available when studying 

phenological mismatches
 10. Base new phenological theories on more comprehen-

sive evidence

Materials and methods

This paper is the result of a working group (the authors) 
that synthesized decades of experience to help researchers 
new to the field avoid common problems when studying 
phenology. Working group members frequently encounter 
these issues when reviewing grant proposals and manu-
scripts, and even when reading published literature. The 
working group’s goal was to identify the most common 
challenges and suggest best practices that researchers 
could use to overcome these challenges. The working 
group identified the challenges and best practices based on 
(1) their own experiences reviewing proposals and manu-
scripts, (2) a review of the literature, and (3) input from 
other experts (see Acknowledgements). The resulting best 
practices are organized generally by activities that occur 
during planning and data collection (best practices 1–4) 
and activities that occur during data analysis and interpre-
tation (best practices 5–10). Case studies that highlight 
practical use of these best practices are included as online 
supplementary information.

Best practice 1: Ensure clear and consistent 
data collection protocols

Challenges

Researchers often do not have control over protocols used 
(previously) to collect the data they analyze (e.g., when 
analyzing historical or citizen science data or during meta-
analyses). Sampling protocols and effort might change 
over the data collection period, or metadata may lack key 
information. For example, exceptionally long-term records 
of cherry blossom festivals in Kyoto, Japan, suffer from 
changes in protocols and gaps in data (Fig. 1) (Arakawa 
1956; Aono and Saito 2010). And long-term marine stud-
ies frequently experience changes in survey gear that affect 
species catchability (Staudinger et al. 2019). Variation in 
sampling timing (e.g., dates of collection), intensity (e.g., 
days per week or number of sites), location, or signifi-
cant gaps in long-term time series can affect detection of 
extreme events (e.g., unusual dates of first or last flower-
ing or bird arrivals) (Leopold and Jones 1947; Bradley 
et al. 1999) and may yield results that reflect changes in 
sampling rather than phenology (Stegman et al. 2017; 
Schwartz et al. 2013; de Keyzer et al. 2017; Dalton et al. 
2022). These challenges can extend to contemporary data 
as well. For example, observers of bird phenology may not 
record whether they use visual or audible cues, how many 
hours they observe, or how large of an area they survey.
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Best practices

When collecting data, it is important to follow clear and con-
sistent protocols that are thoroughly documented, readily avail-
able, and updated as needed (Nordt et al. 2021; Denny et al. 
2014). Ideally, documentation includes illustrations or photos 
to aid identification of species or phenophases. When possible, 
researchers should cross-reference their protocols to interna-
tional phenology standards, such as the BBCH system for plants 
(Meier 2003; Meier et al. 2009), which can aid comparisons 
across data sets.

In the absence of good metadata, it may be possible to 
contact people who have worked with the data previously or 
use clues from the data or field notes to reconstruct methods. 
Researchers can also use statistical techniques, such as cor-
rection factors or hierarchical survival models, to account for 
changes in methods (Miller et al. 2021; Elmendorf et al. 2019; 
Moritz et al. 2008; Dalton et al. 2022). However, researchers 
should exercise caution when interpreting results derived from 
poorly documented data (Online Resource 1).

Best practice 2: Be aware of data quality 
and biases

Challenges

Phenological observations can suffer from imperfect detec-
tion and misidentification of species and phenophases 
(McDonough MacKenzie et al. 2017), introducing error 
into data sets. Detection and identification challenges can 
occur whether observations are made by volunteers or pro-
fessionals, or are extracted from historical records. Fuccillo 
et al. (2015) found that volunteer observers identified pheno-
phases correctly more than 90% of the time, though accuracy 
dropped during periods of transition (e.g., transition from 
closed to open flowers). Highly mobile, cryptic, or aquatic 
species can introduce uncertainty due to imperfect detec-
tion and the risk of false non-detections (Ramp et al. 2015; 
Staudinger et al. 2019; MacKenzie and Royle 2005).

Observer preferences, which can reflect study goals or 
individual habits, can bias data in a variety of ways (Online 

Fig. 1  Interannual variation in the dates of the cherry blossom festi-
val in Kyoto, Japan, shows earlier flowering times in the past 50 years; 
data were acquired from historical documents and recent records. 
Dates of full flowering of the mountain cherry (Prunus jamasakura) 
are shown for A the period from AD 801 to 1400 and B 1400 to 2008. 
Flowering dates are affected by both global climate change and urban-
ization. Data gaps exist for particularly old records, many of which 

were lost during natural disasters and fires. DOY refers to day-of-the-
year (i.e., Jan. 1 = 1). Language and calendars changed during this 
record, requiring researchers to translate old records to modern Japa-
nese language and the Gregorian calendar. C Historical record docu-
menting cherry flowering. D People celebrating the cherry blossom 
festival in Tokyo. Figure from (Aono and Saito 2010; Aono and Kazui 
2008) (images courtesy of Aono (A–C) and Hiroyoshi Higuchi (D))
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Resource 2). For example, observers may preferentially 
observe plants or animals that are more accessible, biasing 
observations towards those closer to buildings, shorelines, 
roads, or cities, or toward individuals that are more visible or 
appear healthier than nearby counterparts (Daru et al. 2018; 
Hijmans et al. 2000; Cohen et al. 2018). Observers may also 
choose to track species that are easier to identify or are more 
eye-catching (Hortal et al. 2007). Observers may favor or 
avoid rare species (Daru et al. 2018; Callaghan et al. 2019). 
Or observers may favor some phenophases over others (e.g., 
insect flight times rather than larval development) (Rosemar-
tin et al. 2018; Crimmins et al. 2022). In many cases, logisti-
cal constraints may dictate preference for observing certain 
life stages; for example, phenology of immature seabirds, 
migratory whales, and larval stages of many fish and inverte-
brate species are difficult to observe (Staudinger et al. 2019; 
Pendleton et al. 2022). Finally, temporal bias can arise if 
observers concentrate effort on particular days of the week, 
seasons, during favorable weather, or during organized 
events like World Migratory Bird Day or bioblitzes (Daru 
et al. 2018; Courter et al. 2013; Crimmins et al. 2021).

As with all data collection, errors can arise when observ-
ers record data or when people or software transcribe data 
from paper to digital formats (e.g., 6/7 could mean June 7 
or July 6). Errors in recording data may occur more fre-
quently early in growing seasons, when many observers are 
first learning field methods (Crimmins et al. 2017), or in the 
first year for particular observers.

In addition, phenology observations collected from con-
trolled experiments may not reflect “real world” phenology 
(Wolkovich et al. 2012). Bias in experimental results can be 
caused by methods of warming (e.g., open-top greenhouses, 
soil warming, warming chambers) that fail to replicate field 
warming, by methods that alter humidity and soil moisture 
in unexpected ways, or by methods that warm only parts 
of plants or study plants at different life stages (Wolkovich 
et al. 2012; Primack et al. 2015; Berend et al. 2019). Simi-
larly, manipulations of precipitation (e.g., rain catchment 
systems) can influence sunlight or wind, and manipulations 
of snowmelt date (e.g., dust, snow removal, or tarps) can 
influence nutrients, moisture, and carbon dioxide emissions 
(Beier et al. 2012; Rixen et al. 2022).

Best practices

Data users should carefully consider sources of phenologi-
cal data, potential biases, and the impact of these factors on 
results (Online Resource 2). The use of vouchers—such as 
photographs, specimens, genetic samples, or environmental 
DNA (eDNA)—can improve detections and species iden-
tification (Ogden 2022; Zimova et al. 2020a). The use of 
algorithms or custom applications can further support spe-
cies identification where large data sets of photographs are 

available, such as in the case of digitized museum specimens 
or photo-based citizen science programs, like iNaturalist or 
iSpot (Puchałka et al. 2022). Including observer identity and 
expertise level in metadata can allow data users to track and 
account for some types of observer bias. Setting minimum 
limits on temporal or geographical representation (e.g., a min-
imum number of observations from each time period or area) 
and averaging across observations can reduce the likelihood of 
single observations unduly influencing results (Puchałka et al. 
2022). Statistical estimators (e.g., Weibull estimators) can 
help account for some observer biases, particularly for non-
systematically collected data, although they may not account 
for environmental heterogeneity (Pearse et al. 2017; Iler et al. 
2021b). Repeated measures designs can also help control for 
observers, which may be important in some data sets.

Combining experimental and observational approaches to 
studying phenology can help avoid biases caused by experi-
mental or observational methods alone (McDonough Mac-
Kenzie et al. 2020). Areas where experiments and observa-
tions disagree can reveal potential biases or confounding 
factors that deserve further investigation or should be 
accounted for in analyses (Rixen et al. 2022) (see also Best 
Practice 5 for more information about combining or compar-
ing disparate data sets).

Best practice 3: Match data precision 
and duration to the question or application

Challenges

Over the course of a year, organisms progress through major 
phenophases such as growth or reproductive states as well as 
finer-scale stages within those major phases (Meier 2003). 
For example, leaf development involves expansion of leaf 
bud scales, emergence of young leaves, and numerous stages 
of growth. Marine fish pass through phenophases such as 
immature, developing, active spawning (ripe and running), 
and atresia (reproductive cessation). Researchers might 
record the timing of finer-scale phenophases in the hopes 
that increased detail will provide more useful data. However, 
for many research applications, coarser-scale phenophases 
are sufficient and can save observers and researchers time and 
effort (Ellwood et al. 2019; Pearson 2019; Nordt et al. 2021).

Additionally, “noise” or variability in data can mask 
phenological responses to climate change. This variability 
can be caused by a variety of factors, including differences 
among observers (Best Practice 2), microsite variation, the 
duration of particular phenophases, and extreme weather 
and other environmental events (Casson et al. 2019; Feiner 
et al. 2022). When using climate data to simulate or fore-
cast phenology, linear models can miss nonlinear responses 
to climate that can occur at cold or warm extremes within 
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species tolerances, such as can occur when species fail 
to meet winter chilling requirements (Ibáñez et al. 2010; 
Ettinger et al. 2020). Thus, drawing conclusions from linear 
models or short-term or small-scale studies can risk flawed 
interpretations of findings (Bolmgren et al. 2012).

Best practices

We find that most studies benefit from long-term monitoring 
of major phenophases. Long-term or large-scale data sets gen-
erally provide more accurate estimates of phenological sensi-
tivity to environmental drivers (Primack et al. 2009; Gallinat 
et al. 2018; Bolmgren et al. 2012). However, some research 
questions require finer-scale phenology observations or can be 
addressed by short-term studies that contrast warm and cool 
or wet and dry years, sites along elevational gradients, or sites 
with different land uses (McDonough MacKenzie et al. 2019; 
Berend et al. 2019; Jia et al. 2021). Researchers also have 
access to high quality climate data and phenology data for 
many species, which can help when developing appropriate 
quantitative models to study phenology (Ettinger et al. 2020). 
Researchers may consider power analyses and simulations 
to help identify the appropriate level of detail and duration 
for their research questions and avoid erroneous conclusions 
(Meyer et al. 2010; Bolmgren et al. 2012).

Best practice 4: Utilize citizen science data 
and programs to maximize research benefit

Challenges

Programs focused on citizen science, sometimes called com-
munity science, public participation in science, or other terms 
(Eitzel et al. 2017; Cooper et al. 2021), have dramatically 
increased the geographic and taxonomic breadth of phenologi-
cal observations available for scientific research. These pro-
grams include qualitative narratives (ISeeChange), incidental 
reports (iNaturalist, iSpotNature), and repeated measurements 
of individual plants, plots, or waterbodies (Nature’s Note-
book, Budburst). Researchers also sometimes develop their 
own citizen science projects or campaigns and data collection 
platforms (Young et al. 2021). The variety of methods, levels 
of observer expertise, and other factors can present challenges 
when selecting or designing citizen science programs and ana-
lyzing data (see also Best Practices 1 and 2). With the range of 
options for engaging with citizen science, it can be difficult for 
researchers to identify the best approach to meet their needs.

Best practices

Researchers can reach out to existing phenology networks 
and citizen science associations to help identify citizen 

science approaches most appropriate for their study goals 
(Online Resource 3) (Storksdieck et al. 2016). Research-
ers implementing new citizen science and other monitor-
ing programs can minimize common sources of errors 
(e.g., misidentification or miscounting) by training volun-
teers, providing clear reference materials, having experts 
validate observations, encouraging replication of obser-
vations, and communicating results or otherwise engag-
ing with volunteers (Kosmala et al. 2016; Robinson et al. 
2021). Researchers should carefully plan for the resources 
necessary when designing their own citizen science pro-
jects; projects frequently require more initial resources than 
expected (McKinley et al. 2017). Adapting existing citizen 
science programs—such as iNaturalist, eBird, or iSpot—
or collaborating with phenology networks can be efficient 
approaches for researchers to incorporate citizen science into 
their own research, enhance those programs, and increase 
public engagement in ecological studies of climate impacts 
(Online Resource 3).

Best practice 5: Avoid errors 
when combining or comparing disparate 
data sets

Challenges

As phenology data sets become more accessible, researchers 
frequently combine or compare data from different sources 
(Peng et al. 2017; Gill et al. 2015; Kharouba et al. 2018; 
Keogan et al. 2022). Linking continental-scale phenology 
with the phenology of ecological communities or single spe-
cies is a major challenge for the emerging field of macrophe-
nology (Gallinat et al. 2021). However, problems can arise 
when researchers do not carefully account for the features or 
biases of diverse data at different scales. Such varied data are 
not easy to integrate—satellite data typically integrate phe-
nology of many species within pixels, while ground-based 
observations generally include small numbers of individuals 
at specific sites.

Data sources can also record different phenophases—such 
as the beginning, peak, or end of flowering or breeding—the 
timing of which may be correlated but could be influenced 
by different factors (CaraDonna et al. 2014; Iler et al. 2021b; 
Keogan et al. 2022). For instance, first and last dates can be 
influenced by changes in population size, age, body size, 
or sex (Peer and Miller 2014; Cohen et al. 2018; Dalton 
et al. 2022), while peak dates may be more strongly related 
to environmental conditions (Miller-Rushing et al. 2008b). 
Even data sets using similar methods can be influenced by 
small differences in phenophase definitions employed by 
different researchers and observation networks (Schwartz 
et al. 2006).
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Best practices

Researchers synthesizing data types (e.g., historical observa-
tions, museum specimens, remote sensing, citizen science) 
should become familiar with the specifics of the data and 
metadata (Stucky et al. 2018). It is important to reconcile 
any differences in the terminology that different data sets 
use and the stages of phenology they measure (Stucky et al. 
2018). In general, it is helpful to use data that document 
peaks of phenophases, rather than first or last phenologi-
cal events, which can be influenced by several other fac-
tors (Fig. 2). Investigators can also seek out data sets where 
sample sizes are available to estimate confidence intervals 
in phenology dates, durations, and trends (Puchałka et al. 
2022; Li et al. 2021).

Emerging techniques can help researchers integrate data 
across spatio-temporal scales and multiple species or eco-
logical communities (Online Resource 4). For example, 
cameras or direct observations can capture the phenology 
of individuals or small populations of plants or animals; 
phenocams and drones can capture phenology at landscape 
scales; and satellite imagery can capture phenology at even 
larger landscape, continental, or global scales. Combining 
data across these scales is not trivial (Online Resource 4), 
but the ability to study these scales simultaneously opens 
new opportunities for research (Gallinat et al. 2021).

Best practice 6: Account for long‑term 
changes in the study species

Challenges

Changing population size can affect observations of first 
and last phenological events in a year, such as animal migra-
tions and plant flowering (Fig. 2) (Tryjanowski and Sparks 
2001; Tryjanowski et al. 2005; Miller-Rushing et al. 2008a; 
Koleček et al. 2020; Dalton et al. 2022). Because of variation 
in phenology within populations, first events tend to occur 
earlier and last events tend to occur later as population sizes 
increase, regardless of changes in the average timing of the 
events (de Keyzer et al. 2017; Tillotson and Quinn 2018). The 
reverse happens when populations decline (Miller-Rushing 
et al. 2008b). Detectability of first and last events also tends 
to increase as species become more abundant (Koleček et al. 
2020) or due to within population demographic (e.g., sex 
ratios) changes (Peer and Miller 2014). This issue is generally 
of less concern when monitoring tagged individuals (thus 
avoiding the influence of changes in population size), but can 
be a problem, for example, if tagged plants increase in size, 
increasing the number of flowers and advancing the time that 
the first flowers open each year.

Over long time periods, genetic changes can also influ-
ence the phenology of species, making it difficult or impos-
sible to disentangle the contributions of genetic and plastic 
responses to environmental cues when explaining long-term 
changes in phenology. This is particularly true for species 
with short generation times, such as plankton, insects, and 
annual plants (Colautti and Barrett 2013; Manhard et al. 
2017; Lustenhouwer et al. 2018). Climate-driven behavio-
ral responses in long-lived animals, such as shifts in diur-
nal or seasonal behaviors to utilize different microclimates 
or prey resources, can further complicate detectability and 
interpretation of the mechanisms driving changes in phenol-
ogy (Teitelbaum et al. 2021; Beever et al. 2017; Pendleton 
et al. 2022).

Best practices

Researchers frequently recommend the use of population 
means or entire distributions of phenological events to 
assess changes in phenology over time (Miller-Rushing 
et al. 2008a; Moussus et al. 2010; CaraDonna et al. 2014). 
However, many long-term phenology data sets contain only 
first observations, such as when the first bird of a species 
arrives in the spring (Inouye et al. 2019). Researchers ana-
lyzing changes in first events must consider the influence of 
changes in abundance, demography, and genetic structure, 
which they can do, for example, by including population 
size, sex, or body size as a covariate in statistical analyses. 

Fig. 2  The theoretical effect of changes in population size on changes 
in first dates of phenological events, assuming constant sample 
effort. Dashed curve shows the distribution of phenological event 
dates for a population in a past year. The solid curves show two sce-
narios in which the mean date of the population occurs earlier now 
than it did in the past: the population size has either (a) increased or 
(b) declined. Arrows highlight changes in peak and first dates over 
time. Increases or decreases in sampling effort could similarly affect 
observed dates. Figure is not drawn to scale and is conceptual only. 
Miller-Rushing et al. (2008b) found empirical evidence for this phe-
nomenon in bird populations in eastern Massachusetts, USA
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This is particularly important for studying invasive species, 
rare species, and managed species that are recovering, many 
of which are rapidly increasing or declining in abundance. 
Sometimes it may not be obvious whether changes in abun-
dance are influencing changes in phenology or vice versa, so 
researchers must take care when identifying the direction-
ality of cause and effect (Willis et al. 2008, 2010; Cleland 
et al. 2012; Colautti and Barrett 2013).

Best practice 7: Account for external factors 
that affect the study system

Challenges

A number of external factors, aside from the effects of cli-
mate change, can influence plant and animal phenologies. 
For example, changes in land use, land cover, and habitat 
connectivity—such as those caused by urbanization, dams, 
and restoration—can directly affect local temperatures and 
phenology and can obscure, mitigate, or compound the 
effects of climate change on phenology (Meng et al. 2020). 
Such changes may also affect phenology indirectly through 
changes in population size or altering access to and the qual-
ity of habitats (Miller-Rushing et al. 2008a, b). For example, 
urbanizing areas might warm more rapidly than surrounding 
areas, creating islands of relatively early phenology (Zhang 
et al. 2004; Neil and Wu 2006; Møller et al. 2015; Chick 
et al. 2019). Such islands of early phenology could compli-
cate assessments of landscape phenology, phenology-related 
ecosystem functions, and the potential for phenological 
mismatches.

Barriers to migration could reduce access to microcli-
mates and critical resources such as spawning or breeding 
habitat (Mattocks et al. 2017). Unexpected changes in phe-
nology might also occur if winter chilling requirements are 
not met during a mild winter (Wilson et al. 2016; Pierson 
et al. 2013; Zimova et al. 2020b), if microclimates create ref-
ugia from warming temperatures (Li et al. 2019; Meng et al. 
2020), or if food availability changes in time or location. 
Such changes in climate, microclimate, or food availability 
can create difficult-to-explain variation in studies that do not 
consider winter chilling, assume relatively uniform tempera-
tures across localities, or fail to consider influences of food 
availability or other factors on animal phenology. In other 
cases, areas that were formerly open grazing or woodlands 
have become closed-canopy forests, cooling understories, 
and delaying phenology (Li et al. 2015). These delays in 
phenology would be difficult to explain without understand-
ing the landscape history.

Changes in species composition, which occur through 
succession and restoration, can confound interpretation 
of phenology. For example, when species are difficult to 

distinguish from each other visually or through remote sens-
ing, changes in phenology may simply reflect changes in 
the relative abundance of species with differing phenolo-
gies (Helman 2018). These problems can arise even in areas 
where land use and cover are not changing, such as areas 
where nonnative invasive plants are increasing in abundance 
or when closely related species co-occur in unknown ratios 
(e.g., species of river herring: alewife Alosa pseudoharengus 
and blueback Alosa aestivalis). Many invasive plant species 
differ in phenology from native species, leafing out earlier 
in the spring or senescing later in the autumn (Fridley 2012; 
Reeb et al. 2020), which can challenge efforts to identify 
factors driving changes in vegetation phenology observed 
by remote sensing.

Best practices

In many cases, researchers can take advantage of external 
factors to address questions or species that might otherwise 
be difficult to address. For example, warming in urban areas, 
which is accelerated by the urban heat island effect, may 
allow researchers to anticipate how the phenology of more 
slowly warming surrounding rural areas may be affected by 
future climate change. Narrow migration points, such as fish 
ladders on dams and wildlife overpasses on highways, can 
provide opportunities to monitor mobile species that are oth-
erwise cryptic and difficult to monitor.

Best practice 8: Use statistics and models 
appropriate for the data and questions

Challenges

Researchers commonly use linear regression models and 
growing degree-day models to examine historical changes 
in phenology over time and in relation to climate variables 
such as temperature (Roberts 2012). The results of linear 
regression models (e.g., reported as days/decade or days/°C) 
are easy to interpret, compare, and communicate. However, 
linear models have limitations. For instance, as species reach 
physiological limits under new environmental conditions, 
phenological responses may be nonlinear (Iler et al. 2013; 
Fu et al. 2015; Ibáñez et al. 2010).

Phenological studies often include data from many spe-
cies, and analyses of these data sometimes treat species as 
independent points. However, closely related terrestrial plant 
species often share similar phenology and similar phenologi-
cal responses to climate change (Willis et al. 2008; Davies 
et al. 2013; Panchen et al. 2014). Analyses that treat species 
independently and fail to account for phylogenetic relation-
ships may unintentionally inflate sample sizes and confi-
dence in their results. Conversely, in aquatic ecosystems, 
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phenological responses and drivers may vary widely among 
closely related species or even among populations of the 
same species (Staudinger et al. 2019; Legett et al. 2021; 
Dalton et al. 2022; Walsh et al. 2015). Furthermore, phy-
logenetic signals in response to climate change may be 
absent in some plant communities (CaraDonna and Inouye 
2015). The role of phylogeny in phenological responses to 
climate change appears to vary considerably across taxa and 
communities.

Best practices

Multivariate models can statistically control for confound-
ing factors such as changes in population size and sampling 
effort (Dalton et al. 2022), varying spatial scales of data sets 
(Zimova et al. 2020c) and spatial autocorrelation, account-
ing for phylogenetic relationships, and including broad-scale 
processes such as oceanographic and atmospheric circula-
tion (Staudinger et al. 2019; Thaxton et al. 2020). Circular 
statistics can help analyze changes in phenology in areas 
without clear seasonal transitions, where plants may be con-
tinuously active, such as many tropical or subtropical areas 
(Rafferty et al. 2020). Mechanistic models, including grow-
ing day-degree models, can also highlight factors contribut-
ing phenological shifts and improve out-of-sample predic-
tions (Chuine et al. 2003; Ettinger et al. 2020). Ecological 
forecasting techniques can incorporate statistical and mecha-
nistic approaches to test the accuracy of predictions as new 
observations become available (Taylor and White 2020). 
Ultimately, the appropriate complexities and structures of 
models should be carefully selected according to study goals 
and the need to explain variation, provide accurate predic-
tions, and be straightforward to communicate (Brown et al. 
2016a; Tredennick et al. 2021).

Best practice 9: Ensure appropriate data 
are available when studying phenological 
mismatches

Challenges

In many cases, ecologically interacting species have similar 
phenological responses to climate change. However, pheno-
logical mismatches can occur when the phenologies of inter-
acting species shift in different directions or magnitudes, dis-
rupting ecological interactions. Such disruptions could have 
significant consequences for population dynamics, commu-
nity structure, or ecosystem functioning. For instance, pied 
flycatchers (Ficedula hypoleuca) have experienced popula-
tion declines of up to 90% as a result of temperature-driven 
shifts in the timing of their insect prey (Both et al. 2006). In 
some cases, asynchrony can benefit the fitness and survival 

of one or more of the species involved, such as in plant–her-
bivore or predator–prey interactions.

Most studies of mismatch cite differences in how interact-
ing species or taxonomic groups’ phenologies are respond-
ing to changing climate conditions. These syntheses often 
suggest weaker climate sensitivity in secondary consumers 
compared to other trophic levels (Thackeray et al. 2016) and 
suggest mismatches are more likely in antagonistic interac-
tions than mutualisms (at least in terrestrial ecosystems). 
This is because mutualists sometimes have co-adapted phe-
nological triggers (Renner and Zohner 2018). However, 
few studies have demonstrated links between asynchrony 
and changing population demographics and fitness (Miller-
Rushing et al. 2010; Visser and Gienapp 2019; Johansson 
et al. 2015; Kharouba and Wolkovich 2020).

Best practices

Two recent studies propose rigorous tests for diagnosing 
whether mismatches are occurring, including demonstrating 
that asynchrony is driven by environmental change and that 
asynchrony impacts the fitness and survival of the populations 
involved (Kharouba and Wolkovich 2020; Samplonius et al. 
2021). Demonstrating causal links between environmental 
changes, shifts in phenology, and changing population dynam-
ics requires extensive data that are not readily available for 
most species’ interactions. However, these data requirements 
can help researchers focus on systems where such data do 
exist or where appropriate experiments are possible. Despite 
the importance of advancing connections between phenologi-
cal mismatch and population responses, researchers should 
not have so strict a definition of mismatch that it is impossible 
to explore when important asynchronies occur—overly nar-
row definitions may hinder progress in the field.

Best practice 10: Base new phenological 
theories on more comprehensive evidence

Challenges

The vast majority of phenological research is based in 
temperate regions of North America, Europe, Australia, 
and increasingly East Asia because of the concentration 
of research capacity, funding, and long-term data in these 
regions (Wolkovich et al. 2014; Cohen et al. 2018). Phenol-
ogy is understudied in other regions and systems, including 
marine, tropical, and arid ecosystems. In temperate terres-
trial ecosystems, seasonal differences in temperature gen-
erally lead to distinct phenophases with noticeable begin-
nings—e.g., spring flowering and leaf out, insect emergence, 
and bird migration—that are generally advancing as tem-
peratures warm. Methods and findings from these regions 
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are not necessarily transferable to other regions or to marine 
systems, where organisms may exhibit different annual pat-
terns, respond to different environmental cues, or exhibit 
seasonal lag-effects (Staudinger et al. 2019; Dalton et al. 
2022; Henderson et al. 2017). In the tropics, for example, 
plant leafing and flowering cycles can occur more than once 
in a year or once every several years (Sakai and Kitajima 
2019). The lack of phenological research in many regions 
makes it difficult to predict future changes in phenology and 
to understand the impacts changes in phenology are having 
on local ecology and on Earth systems (Cook et al. 2012; 
Staudinger et al. 2019; Gallinat et al. 2021).

Best practices

New phenology projects and networks should be initiated in 
less studied regions and ecosystems. Even in well-studied 
temperate systems, researchers should challenge assump-
tions about factors that drive phenology, as some existing 
generalities are biased towards certain taxonomic groups, 
habitats, regions, and environmental factors (Brown et al. 
2016a; Cohen et al. 2018). For instance, Zani et al. (2020), 
using a combination of data from experiments and the Pan 
European Phenology Project, proposed that an annual limit 
on carbon sequestration of tree leaves can limit growing sea-
son length; however, this new theory has been challenged 
using other data sets (Lu and Keenan 2022).

Conclusions

Best practices in phenological research will continue to 
evolve with new research (Pearse et al. 2017; Iler et al. 
2021b). New technologies and increased data availability—
including from new and underused sources—will undoubt-
edly lead to the development of new data and analytical tools. 
For example, machine learning technology holds great poten-
tial for evaluating digitized museum specimens and images 
collected from camera monitoring (Zimova et al. 2020a); 
eDNA and other molecular techniques can capture occur-
rences of migratory and cryptic species (Ogden 2022; Yama-
saki et al. 2017); and remotely sensed images can describe 
global phenological patterns (Xin et al. 2020; Pearson et al. 
2020; Friedland et al. 2018). Work in regions where phe-
nology is understudied (e.g., tropical, arid, and marine eco-
systems) will also provide new insights. However, analyses 
of these data sets must be accompanied by good research 
practices such as those detailed here. These best practices 
are not always obvious, but when followed can significantly 
improve the conclusions and impact of phenological research.
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