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ABSTRACT

The present work investigates programmable auxetic surfaces and how they can

be enabled to achieve a general surface shape upon external control. To actively

generate target geometries from an initial geometry, a process of non-uniform

expansion or contraction as well as an alteration of local curvatures are neces-

sary. This implies the alignment of a multiplicity of control factors. The present

work suggests that auxetic mechanisms hold a high potential to achieve and

simplify such alignments. As a key principle for achieving defined target forms

and the required shape transitions, the study identifies the modification of the

local scaling factor and the Gaussian curvature of plane surfaces. Within this

work, such active surfaces are created utilizing multi-layered auxetic tessella-

tions. To control the scaling factor and the curvature of the resulting structure,

we propose different multi-layered auxetic structures comprising rotational

actuators. These concepts are demonstrated for the example of kagome tessel-

lations but can easily be transferred to other auxetic tessellations.

Introduction

Programmable surfaces are flat structures which can

be actuated to actively change their shape. They offer

a wide range of novel applications in architecture,

such as walls that can actively change their geomet-

rical shape and size as well as their shading and

ventilation capabilities.

The control over the shape of planar structures is

predestined for a wide range of new applications in

the field of architectural design and building con-

struction. In the context of this paper, this control is

established by the activation of surface elements,

which means the introduction of possible movements

to an otherwise static structure by, for example,

incorporation of actuators. By this, a programming of

the surface becomes possible, which means precisely

controlling those movements and changes in geom-

etry by actuating the correct actuators needed to

obtain a desired target geometry. This control of

movement can be achieved by multiple ways, for
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example by soft smart materials like hydrogels,

shape–memory polymers or actuator-controlled

mechanisms. For example, Klein et al. [1] created a

systematic study of curvature change in hydrogel

plates. They demonstrated, how a shape change of

flat hydrogel structures can be directed by a change

of humidity and plate thickness. Mao et al. [2]

demonstrated the usage of combined smart hydro-

gels and shape–memory polymers (SMPs) for 3D-

printed reversible shape changing components.

Mailen et al. [3] investigated the usage of localized

heating and shrinking of flat SMP surfaces into 3D

shapes. A review on the topic of smart soft materials

for shape changing surfaces that identified the two

main strategies of bending and buckling responsible

for shape shifting in flat structures and characterized

the underlying mechanisms of material program-

ming can be found in van Manen et al. [4]. Ehren-

hofer and Wallmersperger [5] investigated the

properties of actuated structures combining soft

smart materials and more rigid structural

components.

To obtain a programmable, active surface, we

investigate in this study (i) stacked auxetic tessella-

tion patterns, (ii) their arrangement and (iii) the

interplay between or the number of stacked layers

and the resulting controllability of the structure.

Active responsiveness of spatial structures such as

walls, ceilings and partitioning enables the design of

entirely new working and living environments with

built-in intelligence that can lead to higher user

comfort as well as to resource and energy efficiency.

Interior components such as adaptive acoustic panels

or flexible partitioning walls, as well as elements

which control light, energy consumption or visibility

through the exterior building envelope could provide

a novel type of construction elements for architec-

tural and spatial designs. Their development, how-

ever, necessitates the integration of current

advancements in the fields of smart materials, smart

systems research, mechanical engineering, mathe-

matics and computer science. A review on smart

materials in adaptive architecture applications is

given by Sobczyk et al. [6].

Auxetic mechanisms are applied as metamaterials

in various fields such as medicine, robotics, archi-

tecture and product design, and are proven to be

useful for programmable surfaces. For example,

Naboni and Mirante [7] used synclastic shells to

develop bending-active architectural applications. A

review which discusses the characterization, the

design, modelling and the application of auxetic

materials and structures is given by Saxena et al. [8].

The ability of auxetic mechanisms to expand and

contract with a negative Poisson’s ratio enables many

unusual properties compared to classical materials,

as discussed in Evans et al. [9]. For example, the

auxetic mechanisms exhibit variable permeabilities

and possess the ability to form synclastic or anti-

clastic curvatures. Also, they show large energy

absorption and dissipation abilities. Extensive inves-

tigations on auxetics foams and their Poisson’s ratio

and their dissipation properties were conducted by

Nazari et al. [10] and Jiang and Hu [11]. Similarly, the

dissipation properties of auxetic infill latices were

investigated by Simpson et al. [12]. Auxetic mecha-

nisms, especially the ones comprising scissor link-

ages, have been extensively used in deployable

structures, as they are able to expand or contract into

a desired final shape and are also reconfigurable.

However, the potential of auxetic mechanisms as an

economical (mass-manufactured) solution also in

architectural applications is not fully tapped yet.

Related work

Programmable surfaces using origami tessellations

have been extensively studied in the past by Ron-

Resch and others [13] due to their interesting

geometries and structural flexibility. Here, one driv-

ing concept was the idea to equip hitherto fixed

geometrical shapes with new dynamic capacities,

thus turning them into active ‘‘robotic’’ structures.

Previous research has explored the capacity of

programmable structures to form specific shapes by

programming their scale factor [14–17].

Studies on auxetic mechanisms with rotating ele-

ments have shown that their contraction depends on

the folding angles of the individual hinges, which can

be modified [18] in order to induce shearing, bend-

ing, twisting, etc.

However, these findings only applied to the so-

called ‘‘Diamond Plate’’ mechanism [19, 20], ‘‘Rotat-

ing Squares’’ [21] or ‘‘Rotating Rectangles’’ [22–25],

which do not allow for different scaling factors at

different points. It thus does not allow a higher

diversity of geometries with many variations in

scaling factor, and also disables re-programming

[26, 27]. This means, that these structures can only
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attain one predetermined goal geometry based on

their permanent structural configuration [18, 28].

Other research achieved a non-uniform scaling factor

either by non-uniform shrinking [29, 30] or by non-

uniform expansion [14, 31, 32] across the surface. This

non-uniform in-plane shrinking or expansion led to

internal compression stresses upon which buckling

occurs after exceeding a critical threshold. This

buckling is used to attain the final geometry. In these

approaches, however, it is not discussed how the

direction in which the surface buckles is controlled.

The present paper focuses on using multi-layered

auxetic tessellations in such a way that a structure

with multiple degrees of freedom can be achieved.

Here, the goal is a manipulation of the local scaling

factor and of the local Gaussian curvature along both

the surface and its cross section. With this, a control

of the bending, the buckling, and the direction of

buckling of the entire structure is possible.

Auxetic surfaces

Auxetic materials are materials with a negative

Poisson’s ratio. This means, that a material would

show an increase in thickness upon longitudinal

elongation, compare Fig. 1 (top). Examples for

experimental and numerical investigations on dif-

ferent auxetic materials were conducted by [33, 34].

Analogously, we use the term auxetic surfaces for flat

structures which exhibit auxetic behaviour upon

mechanical deformation. This means, that the struc-

ture will respond to a deformation in longitudinal

direction with an expansion in the transverse direc-

tions, compare Fig. 1 (bottom).

In the present paper, we focus on origami tessel-

lations to create auxetic surfaces. In the following

paragraphs, the structural descriptions and analyses

are given for the example of the kagome tessellation

as a prototype origami tessellation since it is already

well studied [35]. All the conducted steps and anal-

yses can be transferred to most of the common aux-

etic tessellations. In Fig. 2, the kagome tessellation is

shown in its transition from the closed to the open

configuration.

A key goal of this research is to control the shape of

a surface made of auxetic tessellations using actua-

tors. Therefore, some form of actuation device needs

to be implemented—in principle, this could be of

various designs. Here, we want to limit our investi-

gation to actuators controlling the angular displace-

ment between two coaxially connected elements. We

also do not limit the way how this control is accom-

plished, so it could be realized by implementing

electric motors, hydraulic actuators, smart materials,

or others. Here we suggest the application of actuator

structures like the one depicted in Fig. 3.

The proposed structure consists of two stacked

layers—a bottom and a top layer—each comprising

four elements for the investigated kagome tessella-

tion. Each element of one layer is connected to

another element of the other layer by mechanical

interlayer connections, still allowing the rotation of

the elements. Additionally, the tessellation in the top

layer needs to be a mirrored version of the bottom

layer. Only then, a change of the relative angle

Figure 1 Auxetic materials

and structures exhibit a

negative Poisson ratio, and

therefore show an expansion in

transverse direction upon

elongation in longitudinal

direction.
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between an element from the top and from the bot-

tom layer would lead to an opening or closing of the

whole structure. As can be seen, the configuration of

the actuator structure is completely determined for

example by the angle between neighbouring triangles

(angle a in Fig. 3) or by the relative angle between an

element from the top and the bottom layer. This

means that if one controls this angle, one controls the

shape of the whole structure. Here, we denote this

property of a structure as a single degree of freedom

(DOF). It has to be noted, that purely translational or

rotational DOFs (e.g. rigid body movements) of the

whole structure are not considered by this descrip-

tion. Further it is noted that for the investigated

structures with a single degree of freedom, the Pois-

son’s ratio is m ¼ �1.

One simple way to control the relative angle

between an element from the top and the bottom

layer would be by utilizing servo motors or other

rotational actuators.

In the following, we want to investigate how an

auxetic surface can be controlled by actuators to

change its global shape to a desired target shape. To

control the shape of a general surface, it is necessary

to control the scaling factor k and/or the Gaussian

curvature K of local points on the surface.

The scaling factor k is a quantity used to describe a

linear scaling transformation of an arbitrary object in

which only the size of the object is changed, but not

the local angles. Therefore, the scaling factor

describes an equal local expansion or contraction of

the structure in all directions within the plane. As an

example, the scaling factor between the fully closed

configuration and the fully opened configuration of

the kagome tessellation equals two, compare Fig. 2.

The Gaussian curvature K is another important local

quantity, which describes the shape of a curved plane

geometry [36, 37]. To define the Gaussian curvature,

we consider an arbitrary (curved) plane in <3. At

each point of the plane, two principal curvatures are

defined as the minimum and the maximum curva-

ture of the plane at the specific point, denoted as k1
and k2. The Gaussian curvature (or total curvature) K

is then defined as the product of the two principal

curvatures [38]

K ¼ k1 � k2: ð1Þ

Using these two local quantities, it is possible to

describe or determine the overall shape of a surface.

Vice versa, K and k can be determined for any given

Figure 2 Kagome tessellation and its transition from the fully

closed (left) to its fully open configuration (right). The colour code

indicates that the blue elements will rotate in anticlockwise

direction and the red elements will rotate in clockwise direction,

when the structure expands.

Figure 3 Example of an actuator structure. The configuration of

the structure can be completely controlled by a single actuator,

which changes the relative angle between a triangle element from

the top and the bottom layer. The colour code indicates that the

blue elements will rotate in anticlockwise direction and the red

elements will rotate in clockwise direction, when the structure

expands.
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surface. Therefore, a shape change of an arbitrary

surface can be described by a change of K(x,y) and

k(x,y) at each local point. This is true for a continuum

surface but can also be approximated for a surface

which is approximated by finite surface elements, as

depicted in Fig. 4.

The necessary steps to create planar structures with

shape-change capabilities are:

1. Definition of the initial shape and the target

shape(s)

2. Discretization of the surface into finite surface

elements

3. Determination of K and k for each surface

element in the initial and target surface.

4. Creation of the physical surface consisting of a

planar structure, in which K and/or k can be

controlled locally by actuators

5. Mapping of the necessary inputs to the actuators

to achieve a desired local K and/or k.

The first two steps are problem specific and are not

part of this investigation. The third step, the deter-

mination of K and k for the initial and target surface

can be conducted by mathematical descriptions using

conformal mapping, see [36, 39, 40], and other com-

putational methods, see [41]. In the present contri-

bution, we focus on the creation of auxetic structures,

in which we are able to control the Gaussian curva-

ture and/or the scaling factor at local points using

one or more actuators. Step five—mapping the actu-

ator input to the desired local Gaussian curvature

and/or scaling factor—is only dependent on the

actuation device and the used tessellation.

In the following, we will discuss the possibilities of

creating controllable planar structures, comprising

auxetic tessellations. For this, we investigate two- and

three-layered structures. It has to be mentioned that

the structure must consist of at least two layers to

achieve the control mechanisms discussed in this

paper. It should be emphasized that auxetic

structures are particulary suitable for this purpose

because of their inherent negative Poisson’s ratio.

Two-layered structures

As previously mentioned, we investigate the beha-

viour of multilayer auxetic structures based on the

example of the kagome tessellation. To make this

structure controllable using actuators, we propose to

stack two kagome tessellations upon each other.

Depending on how this stacking is performed, the

properties of the structure—for example the number

of DOFs—can be adjusted.

Here, we assume the mechanism to be based on

one of the three variants as depicted in Fig. 5.

The first variant, as depicted in Fig. 5a, consists of

two layers in which the triangular elements in each

layer are connected at their corners (intralayer con-

nections). Additionally, each element from one layer

is connected to an element from the other layer by

axles going through their respective centre points

(interlayer connections). To obtain a moveable

mechanism, the structure in the top layer needs to be

the mirrored version of the bottom layer. This mirror

transformation is explained in detail later in this

section.

The second variant, as depicted in Fig. 5b, is very

similar to the first variant. Here the triangular ele-

ments are also connected at their corners to their

neighbouring elements in the respective layer and the

top layer is again the mirrored version of the bottom

layer. The difference to the first variant is in an in-

plane shift of the bottom layer with respect to the top

layer. This shift transformation is explained in detail

later in this section. In this second variant, some of

the triangular elements from the top and bottom

layer do not have any interlayer connections. This

means that these elements are only connected to

neighbouring elements in their own layer.

The third variant, as depicted in Fig. 5c, is the so-

called Hoberman mechanism [42]. In this mechanism,

Figure 4 Shape change of an

initial (flat) surface to a target

geometry. For this, the

Gaussian curvature K and the

scaling factor k may change at

each local point or at each

discrete finite surface element.
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the triangular elements in each layer are not con-

nected to their neighbouring elements in their own

layer. This means that no intralayer connections exist.

Each element from one layer is connected to an ele-

ment from the other layer by axles going through

their respective centre points. Additionally, there are

interlayer connections at the corners of each element

connecting to the corners from the other layer. For

clarity, these connections are depicted step by step in

Fig. 5c.

The variants in Fig. 5a and c only have a single

DOF meaning they can be controlled with a single

actuator but can attain only one preset target geom-

etry and do not allow a wide range of different target

shapes. The variant in Fig. 5b has a degree of free-

dom of three. The potential means of adding DOFs

are discussed in the respective section further in the

text. The comparison of the variants in Fig. 5a and b

concerning the DOFs is shown in detail in Fig. 8.

Mirror transformation

It was already mentioned, that for the creation of

variant a and b of the kagome-based two-layered

structures (see Fig. 5), the top layer tessellation and

the bottom layer tessellation need to be mirrored. The

process of mirroring a tessellation is explained by

Fig. 6. Here, three axes of rotation are depicted. If a

layer A is rotated around one of these axes by 180�,
the resulting state of the structure is called the mir-

rored layer A0 of the original state (translational shifts

are neglected). An axis of rotation is found by

Figure 5 Basic variants of kagome-based two-layered structures.

In variant a, the top layer and the bottom layer are mirrored, and all

elements of the top have interlayer connections to the bottom layer

at their centres. Variant b is very similar to variant a, but the top

and bottom layer are shifted with respect to each other. Variant c is

the Hoberman mechanism [42].

Figure 6 Schematic explanation of mirroring a tessellation. The

unique axes 1, 2 and 3 are created by the connection of the centre

points of neighbouring elements.
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connecting the centre points of two neighbouring

elements.

Shift transformation

To create variant b of the kagome-based two-layered

structures (see Fig. 5b), the top layer and bottom

layer need to be shifted with respect to each other. In

the kagome tessellation, there are six meaningful shift

vectors, which can be used to obtain a working

mechanism. Based on the initial configuration A of

the tessellation, it is then shifted in direction and

magnitude of one of these possible shift vectors, see

Fig. 7. Comparing the results of the shift transfor-

mation, it can be seen, that using shift vectors a~, b~, or

c~ (= Shift1 transformation) would all result in struc-

ture B and that using the shift vectors d~; e~ or f~

(= Shift2 transformation) would all result in structure

C. So basically, there are only these two possible

results (structure B and C) after the shift transfor-

mation applied on the kagome tessellation A. Com-

paring the results B and C, it can be seen, that in

configuration B, the red triangles are shifted to the

position of the voids in the initial configuration A. In

result C, the blue triangles take the position of the

voids of the initial state A. Additional transformation

rules can be found in kagome tessellations:

Applying the Shift1 transformation on structure B

results in structure C:

Shift1 Bð Þ ¼ C ð2Þ

Applying the Shift2 transformation on structure C

results in structure B:

Shift2 Cð Þ ¼ B ð3Þ

Shift1 and Shift2 are inverse transformations in the

kagome tessellation:

Shift1 Shift2 Að Þð Þ ¼ Shift2 Shift1 Að Þð Þ ¼ A ð4Þ

The mirror transformation and the shift transfor-

mation both commutate:

Shift1 A0ð Þ ¼ Shift1 Að Þð Þ0 ð5Þ

and

Shift2 A0ð Þ ¼ Shift2 Að Þð Þ0 ð6Þ

Introduction of additional DOFs

The mechanisms shown in Fig. 5a and c have a single

DOF, with Poisson’s ratio m ¼ �1. This means in

theory, that the whole structure could be actuated by

one actuator. This also means, that—if the tessellation

is uniformly patterned—the scaling factor upon

actuation is always equal at each local point of the

structure [13, 43]. Structures with a single DOF

obviously cannot be used to create versatile shapes,

therefore we need to introduce more DOFs to the

system in order to create structures that can change

their shape to more complex target shapes. In the

following, we will discuss some possibilities to

introduce more DOFs to a two-layered structure.

One way to introduce additional DOFs is by

inserting scissor linkages. This leads to the possibility

of having a different scaling factor at different points

of the structure, even if the tessellations are uni-

formly patterned [36]. It must be noted, that by

introducing more degrees of freedom, it is possible to

obtain structures with locally varying Poisson’s ratio.

The determination of local Poisson’s ratio is chal-

lenging and beyond the scope of this paper. Investi-

gations on this effect were conducted for example by

Yolcu and Baba [44].

Also, more DOFs for a structure can be obtained if

the second layer experiences a certain shift transfor-

mation before being stacked upon the first layer. For

example, if a layer of configuration B or C is stacked

Figure 7 Schematic explanation of the shift transformation.

Shifting the initial tessellation A in the direction of the vectors in

red (d~; e~ or f~) would give the configuration B; shifting by the

vectors depicted in black (a~, b~, or c~) would give the

configuration C. The given axes 1, 2 and 3 are the same ones as

shown in Fig. 6.
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upon a layer of configuration A (see Fig. 7), a struc-

ture with multiple DOFs is formed. The reason for

this is, that the kinematics of the whole structure

changes depending on the configuration of the

stacked layers. The kinematics can be completely

described by the movement of rigid minimum sided

polygons found in the structure of the system. For an

example, in Fig. 8, the rigid minimum sided poly-

gons for two different systems are depicted.

Another possibility to create controllable auxetic

structures with multiple DOFs is by using a complete

kagome tessellation forming one layer with many

DOFs. To make this structure controllable, some of

the elements from this tessellation are used to form

actuator structures as shown in Fig. 3. It must be

emphasized, that if all elements from the kagome

tessellation layer as depicted in Fig. 3 are coaxially

connected to their respective counterparts, this would

end up with a structure with a single DOF. Therefore,

only some of the elements may be used for that

purpose. The creation of actuator structures leads to

an overall structure which is two-layered since the

proposed actuator structures comprise two layers. A

collection of possible patterns is given in Fig. 9. Here,

the triangular elements belonging to actuator struc-

tures are depicted in black, the normal triangular

elements are drawn in white. Grey triangular ele-

ments represent actuator-like structures with a single

DOF, see Fig. 3, but no actuator is placed in it. In

other words, grey elements are connected to the

bottom layer at the centre. White elements have only

intralayer connections and can be inserted into the

structure to reduce the DOFs of the overall structure.

It must be emphasized that the introduction of these

patterns is only needed when the used actuator (and

actuator like) structures have only a single DOF.

Implementing these patterns is in this paper referred

to a ‘‘gridding’’.

A main goal for gridding is to create a well-be-

haved structure: This means that the position and

movement of every element should be determinable

by the current states in which the actuators of the

structure are. In order to create such structures, every

element of the kagome tessellation layer should

(i) belong to an actuated substructure with a single

DOF or should (ii) be connected to two elements of

such substructure. The more distance an element has

from such substructures, the more undetermined its

movement during actuation becomes. This is because

the one-layered kagome tessellation has inherently

multiple DOFs [45].

Variants of actuator structures

A simple actuator structure is shown in Fig. 3. If this

structure is actuated—this means the relative angle

between the elements of the top and bottom layer is

changed by an externally controlled rotational actu-

ator—the structure expands (opens) or contracts

(closes) with a Poisson’s ratio t ¼ �1. This could be

interpreted as a change in the scaling factor for this

structure. Using these actuator structures in patterns

as described in Fig. 9 would lead to an overall

structure in which the scaling factor can vary locally.

If there is a non-uniform scaling occurring in a plane

structure, an internal compression or tensile force

acts within the structure. If the structure is thin and

flat, it can be approximated using plate theory. When

internal compression stresses act, the plate will first

remain flat and be simply compressed. Upon

exceeding a critical compression force, according to

plate theory, buckling occurs—therefore the previous

plane geometry will snap-through to a non-plane

geometry. A demonstration of this behaviour was

shown by Van Manen et al. [4], a numerical investi-

gation on smart material snap-through was con-

ducted by Ehrenhofer and Wallmersperger [46]. For

more information on the principles of buckling in

plates see [47]. In the normal case, the direction of

buckling is random, which limits the use cases. One

possibility to direct the buckling is for example to use

different elastic moduli of the layers. This would lead

Figure 8 Illustration of the DOFs for different systems. On the

left, a system comprising of the layers AA0 is depicted. Its state

can be completely described by the angle a in the shown four-

sided polygon and therefore has a single DOF. On the right, a

system comprising of the layers AC is depicted. Its state can be

completely described by the angles a, b and c in the shown six-

sided polygon and therefore its DOF equals 3.
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to a buckling in the direction of the layer with lower

elastic modulus. Another possibility is to direct the

buckling with the help of external forces like the

gravity force.

A different variant for an actuator structure is

depicted in Fig. 10. This structure is again composed

of two layers, each containing four elements. Each

element is coaxially connected to its counterpart in

the other layer. Different from the first variant, the

elements are not connected to their neighbouring

elements within their own layer by one corner, but

only by a point connection. This point connection

permits the elements to only perform an in-plane

rotation, but to also to perform an out-of-plane dis-

placement. Also, the structure in the top layer and the

bottom layer is both equally arranged. This means

that the top layer is not the mirrored version of the

bottom layer which is the case in the actuator

Figure 9 Schematic representation of controllable auxetic

structures with multiple DOFs in closed and open configuration.

Here, black triangles represent elements which are attached to an

actuator structure, grey elements are attached to actuator-like

structures without an actuator and white elements are triangular

elements without any attachment to a second layer.

Figure 10 3D representation of a two-layered actuator structure AA which will bend upon actuation.

J Mater Sci



structure from Fig. 3. In Fig. 10, both the top and

bottom layer structure (if not connected to the other

layer) expands if the centre element rotates in the

clockwise direction and contracts if the centre ele-

ment rotates in anticlockwise direction.

Upon changing the relative angle between the top

and bottom centre element using an actuator would

therefore lead to an expansion of the top layer and a

contraction of the bottom layer or vice versa. The

overall actuator structure would therefore not

expand or contract, but only bend. This behaviour

has already been demonstrated by using multi-lay-

ered soft gels [4]. Using the proposed actuator

structure allows changing the Gaussian curvature but

not the scaling factor. Since a change of curvature is

always linked to a bending moment, this actuator

structure can be seen as a structural element inducing

a bending moment on its surrounding.

An important difference in behaviour of the

structures depicted in Fig. 10 to the structures in

Figs. 3, 8 and 9 is that if top and bottom layer expand,

for example by external forces, the coaxially con-

nected elements rotate in the same direction. We

denote this relation between the two layers, such as

in Fig. 10, as ‘‘?’’. Whereas, in the previously

described structures in Figs. 3, 8 and 9, coaxially

connected elements rotate in opposite directions

when the top and bottom layer expands. We thus

denote the relation between the two layers as ‘‘-’’.

Thus, the relations ‘‘?’’ and ‘‘-’’ between two layers

describe the direction of rotation of any two coaxially

connected elements, ‘‘?’’ being the same direction,

and ‘‘-’’ meaning opposite directions of rotation

during expansion of both layers, see Fig. 11. These

relations for different layer pairings are summarized

in Table 1. Here, the layers B and C denote shifted

layers of layer A, compare Fig. 7. The notation A0, B0

and C0 denote the mirrored layers of A, B and C,

respectively, compare Fig. 6. With layer pairing we

mean the combination of two layers (‘‘layer one’’ and

‘‘layer two’’ in Table 1) upon stacking.

From Table 1, it can be inferred that two layers

with the relation ‘‘?’’ will behave in a similar manner

as depicted in Fig. 10 and the ones with ‘‘-’’ as

depicted for example in Fig. 3.

A third variant for an actuator structure is depicted

in Fig. 12. This structure comprises three different

layers, arranged in specific patterns. To describe

these patterns, we use the notation AA0A (top left)

and A0AA (top right) for the respective arrangements

shown in Figure. The arrangement A0AA for example

describes that the bottom and middle layer are of

pattern A, and the top layer is of pattern A0. Pattern A

denotes the basic kagome pattern as shown in Fig. 2,

whereas pattern A0 denotes the mirrored version of

pattern A as depicted in Fig. 6. Using these arrange-

ments, it is possible to incorporate two rotational

actuators, each controlling the relative angle between

the respective elements of neighbouring layers. With

these, it is possible to control the Gaussian curvature

and the scaling factors of the actuator structure,

compare Fig. 12 (bottom). It has to be noted that the

movement of these actuator structures also depends

on the thickness d1 and d2 in Fig. 12, which describes

the vertical distance between the point connections of

stacked elements. The intralayer connections within

the middle layer may not hinder the rotation or

transfer a bending moment. This could for example

be realized by ball joints or elastic hinges.

Three-layered structures

As was discussed in the previous section, the simul-

taneous control of scaling factor and Gaussian cur-

vature is only possible for the structures considered

in this work if actuator structures made of three

layers are utilized. In this section we want to inves-

tigate auxetic structures composed of three stacked

layers made of different auxetic tessellations. In these

structures, the mentioned three-layered actuator

structures can be easily incorporated. In Fig. 13, the

stacking of different tessellations is shown, which

results in useful two- and three-layered structures. It

has to be noted that the relations discussed in the

section in two-layered structures listed in Table 1 are

also valid here between any two stacked layers. For

example, the structure AAA will not have a control

over scaling factor as there are no layer combinations

with a ‘‘-’’ relation.

When stacking different layers, the bottom layer

(layer 1) would always be layer A (the standard

kagome tessellation). On top of layer 1, a mirrored

tessellation A0 (see Fig. 6), the same tessellation A, the

shifted tessellation B (see Fig. 7) or the shifted and

mirrored tessellation B’ can be stacked. By incorpo-

rating rotational actuators into these structures

according to the two-layered actuator structures

mentioned before, it is possible to control the scaling

factor or the Gaussian curvature in these structures. If

a third layer is added, it is possible to incorporate
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rotational actuators to form the aforementioned

three-layered actuator structures, which would allow

for a control of both the scaling factor and

the Gaussian curvature. In Fig. 13 only a selection of

useful combinations is given for the three-layered

structures, which are able to change the scaling factor

and the Gaussian curvature at local points.

Conclusion

The goal of this work was to introduce the idea of

general controllable surfaces and to investigate pos-

sibilities on how to create these. With controllable or

programmable surfaces we mean surface structures

which can adapt to a variety of target shapes. For this,

we explicitly investigated origami-inspired tessella-

tions in order to achieve non-developable surfaces.

Within the scope of this work, we investigated

kagome tessellations as a base. This can also be

extended to diamond plate or other tessellations. A

multitude of different active structures could be

developed using this concept.

To achieve the beforementioned goal of creating

controllable surface structures, a multitude of inves-

tigations was performed: first, we identified the cur-

vature and the scaling factor as the necessary local

target variables on the surface. Also, we note that for

achieving general target shapes, there need to be

enough degrees of freedom to perform the necessary

transformation. Possibilities to vary the number of

degrees of freedom are gridding and the variation of

the layer pairings. In the second step, we discovered

that the mentioned target variables can be controlled

by stacking two tessellation layers upon each other.

The layers are connected to each other by interlayer

connections. To control the degrees of freedom of the

overall structure, actuators or acturator structures

need to be incorporated into the overall structure. In

the paper, three possibilities are given on how to

design such structures. It was found that using only

two stacked tessellations, only either curvature OR

scaling can be controlled at one point. Whether scal-

ing or curvature can be controlled depends on the

type of the used layer pairings. Shift and mirror

transformations are introduced to describe these

layer pairings. If only the local scaling factor is

externally controlled, the structure can undergo two

different types of shape transition: if the scaling factor

is changed equally at each point in the structure, this

will lead to an expansion of the structure, without

any bending, so the structure remains in-plane and

only changes its size. If the scaling factor is changed

differently at different points in the structure, this can

lead to compressive stresses in the structure. If the

compressive stresses surpass a threshold, buckling or

snap-through of the structure occurs. The direction of

the snap-through could be guided by external forces

or by designing the structure in a way, that there is a

preferential direction for it. A two-layered structure

Figure 11 Graphic

explanation for the different

types of layer pairings with the

relations ‘‘?’’ and ‘‘-’’, using

the example of AA layer

pairing (top) and AA0 layer

pairing (bottom). If upon

expansion stacked elements

rotate in equal directions, the

layer-pairing relation is ‘‘?’’, if

they rotate in opposite

directions, the layer-pairing

relation is denoted as ‘‘-’’.

Layer pairings with equal

layer-pairing relations show

similar behaviour upon

actuation.
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can also be set up in a way, that only the Gaussian

curvature can be externally controlled. By this, the

out-of-plane movement can be controlled, but the

overall size of the structure cannot be manipulated.

To overcome the shortcomings of two-layered

structures and control scaling and curvature at the

same point, three layers can be used. For this it is

required, that suitable layer pairings are combined.

Then, one layer pairing is used to curvature control,

while the second layer pairing is used for scaling

control. Three-layered structures are more challeng-

ing to manufacture. Especially the interlayer con-

nectors pose another major difficulty in terms of

mechanical/material manufacturing of the

structures.

Outlook

The present work is intended to contribute to a novel

approach in architectural design and engineering. It

understands itself as a part of a more comprehensive

research venture, which brings together different

Table 1 Relation between layer pairings

The relations ‘‘?’’ and ‘‘–’’ between two layers denote the direction

of rotation of two coaxially connected elements, ‘‘?’’ being the

same direction, and ‘‘–’’ meaning opposite directions during

expansion of both layers. Here, the layers B and C are shifted

layers of layer A, compare Fig. 7. The notation A0, B0 and C0

describe the mirrored layers of A, B and C, respectively, compare

Fig. 6. With layer pairing we mean the combination of any two

layers upon stacking

Figure 12 3D representation of a three-layered actuator structure. Here the different colours are used to distinguish between elements of

the three different layers.
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scientific expertise. It aims at spatial structures that

can respond to highly volatile conditions—both in

the rapidly changing human and natural

environment.

Facing several unforeseen disruptions in the

physical and social, global and local context, active,

programmable structures could contribute to ground-

breaking new solutions. These solutions range from

buildings physics (adaptive light control, ventilation,

acoustics) up to proactive structures that provide for

more security, stability, robustness and resilience.

To achieve real-world applications, further

research has to be carried out. For example, the

practical limitation in terms of size and scale and

materiality need to be considered. Since this paper

discusses only the theoretical connections and the

arrangements in multi-layered mechanisms, the

practical ways of applying such procedures in cor-

responding mechanisms with soft/rigid elements

must be studied. The mechanical details and fabri-

cation techniques of the hinges and connections dis-

cussed in the mechanisms in the present paper must

be worked out. The mechanisms discussed in this

paper also demand for computational design and

mapping of multi-layered auxetic mechanisms based

on curvature, scaling factor and interlayer distance,

which is beyond the scope of this paper. Estimating

the rotation angles of individual elements to attain

any geometry is substantial for programming the

geometry onto such surfaces. The description of

dynamic and transformative structures still poses a

Figure 13 Some possibilities of stacking different tesselations/layers in order to obtain controllable auxetic structures for single-, two- or

three-layered systems. Here we show examples of two-layered and three-layered structures in the second and the third row, respectively.
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challenge due to limited analytical and numerical

models.

Controlling the movements of flat structures has

many potential applications in various fields beyond

architecture, for example space- and biotechnologies.

In this paper, we predominately discussed about the

kagome tessellation, but a generalization for all aux-

etic mechanisms needs to be done mathematically.

These auxetic mechanism can also be implemented

into different geometries other than flat structures,

for example for cuboids, fulleroids, rhombododeka-

hedrons and others [48, 49]. We discussed some

possible auxetic tessellations and some of their vari-

ants created by application of different transforma-

tions. It is necessary to further investigate the

resulting structures created by the number of possi-

ble shift transformations and their respective

characteristics.

The investigated auxetic structures involve a large

number of rigid elements and hinges, increasing their

complexity. Such hinges and mechanisms are already

discussed in deployable structures [50–52]. One way

to simplify these mechanisms is the usage of mono-

lithic elastic surfaces with elastic hinges or bodies.

The options to optimize these patterns need to

be further explored. Also, the ways of actuation,

deployment and fabrication need to be investigated.

For this, smart materials might be advantageous over

classic materials.
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