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Abstract
The rapidly growing wind industry poses a fundamental problem for wind turbine blade (WTB) disposal in many areas of 
the world. WTBs are primarily manufactured from composites consisting of a thermoset matrix and reinforcing fibers. Cur-
rently, there are no economically viable recycling technologies available for such large-scale composite products. Thus, other 
treatment strategies for disposed WTBs have to be considered. This study explores the repurpose of WTBs as a promising 
alternative approach from a processual and technological point of view. For this purpose, the study is guided by the cat-
egorization into four different types of repurposed applications: high-loaded complete structure (T1), low-loaded complete 
structure (T2), high-loaded segmented structure (T3), and low-loaded segmented structure (T4). A three-dimensional CAD 
model of an Enercon-40/500 (E40) wind turbine blade is derived in a reverse engineering procedure to obtain knowledge 
about the actual geometry of the WTB. Based on the design, three ecosystems of product scenarios (S) with different 
manufacturing technologies involved are investigated: a climbing tower (S1), a playground (S2) and the combination of a 
photovoltaic (PV)-floating pontoon, and a lounger (S3). A screening life cycle assessment (LCA) is conducted to evaluate 
the three repurposed scenarios according to environmental aspects. It is shown that the repurpose of E40 WTB composite 
material can reduce the environmental impact and leads to significant resource savings in relation to a reference product 
of similar quality. A particularly high saving potential is identified for the substitution of emission-intensive materials in 
construction applications. Furthermore, it is found that transport processes are the primary contributor to the environmental 
impact of repurposed applications.
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Introduction

To enable the path towards decarbonization of the Euro-
pean energy system (European Commission 2023), the use 
of wind energy has grown significantly in recent years and 

it is expected to continue to increase in the upcoming years 
(Larsen 2009; Liu and Barlow 2017). Among other com-
ponents, wind turbines consist of large-scale blades with a 
high proportion of composite materials (Fingersh et al. 2006; 
Schmid et al. 2020). In most cases, the WTBs are manu-
factured from glass and carbon fiber–reinforced thermoset 
composites, enabling high specific strengths at reasonable 
costs (Mishnaevsky et al. 2017; Witten and Mathes 2019). 
A WTB made of glass fiber reinforced polymers (GFRP) 
has an expected operating time of approximately 20 years 
(Gopalraj and Kärki 2020; Larsen 2009; Marsh 2017). Wind 
Europe estimates that about 14,000 WTBs will be decom-
missioned by 2023 (Schmid et al. 2020). There are various 
predictions in the literature regarding the expected amount 
of WTB composite wastes in the coming years. For example, 
Albers et al. (2009) stated that the quantity of EoL WTBs 
in Europe will rise to 100,000 tons annually until 2034. It 
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becomes evident that EoL WTB composite waste represents 
a rapidly growing global waste stream (Gopalraj and Kärki 
2020; Lahuerta et al. 2023 (in-Print)).

In 1994, Murphy raised the topic of recycling composites. 
Still, the use of high-performance thermosets makes recycling 
fibers and matrix systems difficult, which is nowadays consid-
ered to be a major problem (Beauson et al. 2022; Joustra et al. 
2021; Larsen 2009; Marsh 2017). The irreversible bonded 
structure of cured thermosets makes recycling composites a 
challenge (Wang et al. 2018), since they cannot be melted and 
reshaped after the curing process (Cromwell et al. 2015). Sus-
tainable and economically viable recycling solutions in indus-
trial applications for GFRP are rare (Beauson et al. 2022).

Given the aforementioned situation of a growing WTB com-
posite waste stream and the difficulty of recycling these mate-
rials, new obstacles arise for the European composite waste 
industry to ensure the principles of a circular economy (CE), 
introduced by Pearce and Turner (1990). The CE focuses on the 
transition from a linear economy model based on take-make-
produce principles to a circular model. If composite waste is 
generated, it becomes a valuable material resource (Smol et al. 
2020). The CE aims to maintain material resources by keeping 
them in the loop (Ellen MacArthur Foundation 2012), allow-
ing the development of new circular value chains by reusing 
materials from EoL composite products in high structural value 
applications (Colledani and Turri 2022). According to the sys-
tematized  R6-strategy (Johst et al. 2023), six possible treatment 
strategies are available for EoL composite materials: Repair, 
reuse, refurbish, remanufacture, repurpose, and recycling; 
which should be considered harmonizing, supportive strate-
gies (e.g., reuse is only effective in combination with another 
R-strategy). These treatment strategies are conceivable to keep 
the integrity of composite products, reduce the consumption 
of natural resources, and minimize waste (Potting et al. 2017).

The treatment strategy of repurposing is a promising 
approach for EoL, WTB from an environmental, economic, 
and social point of view (Beukers and van Hinte 2020; Joustra 
et al. 2021; Ruane et al. 2023). The repurpose of an EoL WTB 
is defined as reuse of composite structures from the WTB in 
a new product with a different function (Potting et al. 2017). 
The repurposed product is designed to fulfill the requirements 
of a structural or semi-structural application (Beauson et al. 
2022). Often, it is of lower structural value than the original 
WTB (Schmid et al. 2020). Several approaches for repurpos-
ing WTBs were presented by the Rewind Network (McDon-
ald et al. 2021; The Re-Wind Network 2023). Some exam-
ples were explored more in detail, e.g., a transmission pole 
(Alshannaq et al. 2021), affordable housing elements (Bank 
et al. 2018; Gentry et al. 2020), and bridges (Jensen and Skel-
ton 2018; Ruane et al. 2022; Ruane et al. 2023; Suhail et al. 
2019). Other projects have also investigated the use of WTBs 
for urban furniture like bike shelters (Schmid et al. 2020) and 
playgrounds (Guzzo 2019; Jensen and Skelton 2018). The 

benefits of repurposed applications are as follows: first, reusing 
the structure and quality of composites without resource-inten-
sive reprocessing (Beauson et al. 2022) instead of downsiz-
ing WTBs to low-value structural components, such as fillers 
(Leahy 2020); secondly, extending the operating time of the 
composite materials; and thirdly, decreasing impacts along 
the product life cycle (Beauson et al. 2022) by keeping large 
quantities of composites out of unsustainable routes, such as 
landfill. Therefore, considering repurposed applications from 
an essential part of the CE (Delaney et al. 2021). In addition, 
repurposing could contribute in achieving various goals of the 
Sustainable Development Goals adopted by the United Nations 
(UNDP 2023).

The primary focus of this investigation is the reuse of 
WTB composites utilizing repurposing options. Summariz-
ing repurposing as a single manufacturing step, however, does 
not demonstrate the complexity of this treatment strategy. 
Various actors and technologies are involved in each of the 
process steps and there exist dependencies between the dif-
ferent processes and stakeholders. The constellation of actors, 
technologies, and institutions that are interdependently con-
nected is referred to as an ecosystem (Aarikka-Stenroos et al. 
2021; Phillips and Ritala 2019). Within this study the focus 
lies on the technological dimension of the ecosystem to manu-
facture a repurposed application made of EoL WTB mate-
rial. The blade of an Enercon-40/500 wind turbine (Enercon 
1995) serves as base material to classify and to quantitatively 
characterize different types of repurposed applications. The 
repurposed applications are classified into various types based 
on the current damage state of the WTB and its measured 
geometry. The types are expanded to scenarios. For each 
scenario, the technological ecosystem is characterized by 
illustrating the flow of composite materials into a particular 
application. The repurposed scenarios are evaluated according 
to environmental aspects using the LCA method according to 
DIN EN ISO 14040 (Beauson et al. 2022; ISO 14040 2006; 
Nagle et al. 2022).

Material and Methods

Types of Repurposed Applications

After the disassembly of WTBs from the wind turbine, a 
damage analysis and sorting of the EoL composite struc-
tures are required. Therefore, non-destructive testing (NDT) 
applied to WTBs based on visual or ultrasonic inspection, 
thermography, radiography, electromagnetic, acoustic emis-
sion technique, acoustic-ultrasonic testing, or shearography, 
among others, enables detection as well as diagnosis of dam-
ages to the blade’s outer shell (Böhm and Hufenbach 2010; 
García Márquez and Peco Chacón 2020). The analysis of 
damaged areas of the WTBs after the operating period is 
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essential. Firstly, it ensures the safe reuse of damage-free 
components because WTBs with damage are not safe in 
high-loaded applications, and secondly, it helps in plan-
ning necessary repair activities (Colledani and Turri 2022; 
Hernandez et al. 2020). With the help of quality thresholds, 
the decommissioned WTBs can be classified as virtually 
undamaged, slightly damaged, or heavily damaged struc-
ture and then assigned to the individual loops of refurbish-
ing, remanufacturing, repurposing, or recycling. Virtually 
undamaged or slightly damaged WTB structures are sorted 
and allocated for the reuse by repurposing (Fig. 1).

In addition to damage analysis, other evaluation criteria 
such as the geographic location of the WTBs must also be 
taken into account for the repurposing strategy. When plan-
ning the transport of EoL composite parts, the current loca-
tion of the dismantled WTB and the intended new operation 
location have to be considered. Especially in cases where 
the complete WTB is repurposed,  CO2 emissions are deter-
mined by the necessary transport of the components. This 
implies to prefer short distances. Another important aspect 
of the repurpose of decommissioned WTBs is the knowl-
edge of the actual geometry. CAD data from manufactures 
can provide valuable information for this purpose, but these 
data are not always available or may differ from the actual 
component dimensions. For this reason, various methods 
for the geometric characterization of WTBs are considered 

in this study. Based on the information collected about the 
current damage state of the WTB, its disassembly location, 
and its geometry, reuse by repurposing can be classified into 
four different types (T):

T1—high-loaded complete structure
T2—low-loaded complete structure
T3—high-loaded segmented structure
T4—low-loaded segmented structure
The repurpose of the complete structure for T1 and T2 appli-

cations is suitable for small WTBs with a length of less than 30 
m (Jensen and Skelton 2018), preventing the processing effort of 
segmentation. Critically damaged parts of the complete repur-
posed structure which are detected by inspections should be 
repaired (Fig. 1). Fragmentary repurposed applications accord-
ing to T3 and T4 can be implemented by cutting segments from 
the EoL WTB (cf. chapter 2.3). Residual materials from the 
cutting process can be sent to other treatment strategies, such 
as mechanical recycling (Zhang et al. 2020). The recyclates can 
be used for the production of new components, such as con-
crete with mechanically recycled WTB filler up to 10% fraction 
(Yazdanbakhsh et al. 2018) or in the worst case as fuel in incin-
eration processes. However, incineration should be avoided if 
possible due to the emission and residues produced. The usage 
of the recyclates in concrete enables an application for further 
decades (Antypa et al. 2022; Kraft et al. 2022). After this time, 
the façade elements obtained can also be reused or recycled as 

Fig. 1  Application of  R6 strategy for the realization of ecosystems for EoL composites (based on (Johst et al. 2023))
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components of construction elements. In this way, composites 
are kept “in the loop” in the sense of a circular economy system 
(compare, e.g., Joustra et al. (2021)).

EoL E40 WTB as Base Material

Geometric Characterization

The CAD software CATIA V5-6R2018 (Dassault Syste-
mes, Velizy-Villacoublay, France) was used to reconstruct 
the 3D model of an E40 WTB in a reverse engineering 
process. For this purpose, the blade was cut into seven seg-
ments with a wire saw (Fig. 2a) for further closer exami-
nation. In order to characterize the geometry of the E40 
WTB, manual measurements were performed on the cross 

sections (Fig. 2b). In addition, 3D LiDAR (3D Laser Scan-
ner Leica BLK360, Leica Geosystems, Heerbrugg, Swit-
zerland) scanning was carried out to provide an overall 
scan of the outer shell of a segment (Fig. 2c).

The geometry of the E40 WTB was designed by cross sec-
tions and quantitative data from technical data sheets (Enercon 
1995). The overall scan was used to check the consistency of 
the designed outer geometry, where a good fit was observed 
between the CAD model and the scan (Fig. 3a and b).

According to Fig. 3a, the E40 WTB consists of three differ-
ent sections: the inboard, the midspan, and the outboard section 
(Jonkman et al. 2009). The largest bending moment is exerted on 
the inboard section, where the WTB is connected to the turbine 
axis (Joustra et al. 2021). This section starts at rotor radius R = 
1.2 m. It is tubular with a circular shape and a wall thickness of 

Fig. 2  a Segment E40 WTB; 
b Cross section E40 WTB; c 
Experimental setup for LiDAR 
scanning of segment

Fig. 3  a E40 WTB geometry; b comparison scan and CAD model
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55 mm (Beauson and Brøndsted 2016). The midspan section 
extends from rotor radius R = 2.4 m and ends at rotor radius R 
= 20 m. The section includes several airfoil profiles and seems 
to offer the best opportunity to provide structurally continuous 
component geometries. The outboard section ranges from rotor 
radius R = 20 m and R = 20.33 m. It has a winglet at the tip to 
meet aerodynamic and structural requirements. The section has 
a relatively flat airfoil profile because it has to resist high air 
speeds (Joustra et al. 2021).

Material Composition

The E40 WTB was manufactured in two partial shell ele-
ments and bonded together at the edges. Shear webs were 
inserted inside the shell element to realize the multi-cell 
structure and to enable the transmission of the shear load. 
The sandwich panels consist of two thin skins and a foam 
core to stiffen the profile cross section. To maintain the 
structural integrity of the profile cross section, spar caps 
are embedded in both shell elements (Bender and Gericke 
2021). All composite materials of the E40 WTB are made 
from GFRP with a thermoset matrix. To simplify the three-
dimensional model, it was grouped into four different mate-
rial components: glass fiber, thermoset resin and adhesive, 
core material (foam or wood), and metal, whereas GFRP 
consists of both glass fiber and thermoset resin (Fig. 4).

Following Fingersh et al. (2006), the mass m (kg) of a 
WTB is a direct function of the rotor radius R (m):

With R = 20.33 m, the mass of an E40 WTB is calculated to 
947 kg. This is also in accordance with data sheets (Bauer 2023; 
Schauer and Szeless 1997). Furthermore, the material composi-
tion of a WTB by weight is given by approximately 60% glass 
fiber, 23% thermoset resin and adhesive, 9% core material, and 
8% metal (Fingersh et al. 2006). The mass of the individual 
material component of the E40 WTB is listed in Table 1.

The mass distribution of the material components of the 
E40 WTB is in line with the created CAD model. The center 

m = 0.1452 ∗ R
2.9158

of gravity given in the data sheet (Enercon 1995) could be 
confirmed in the digitized model (Fig. 3).

Segmentation of EoL WTBs

For repurposed applications that require only a segmented 
structure (T3 and T4) of the WTB, these components have 
to be cut out of the structure. Therefore, heavier processing 
is required, whereas the fiber content of the WTB affects the 
cost of the cutting process (Beauson and Brøndsted 2016). 
During sectioning, the orientation of the fibers in the WTB 
has to be considered. A high fiber content requires additional 
strengthening of the cutting equipment (e.g., diamond-like 
carbon coating). Health and safety precautions are neces-
sary when processing large-scale composite structures and 
handling micro glass particles (Jensen and Skelton 2018). It 
can be difficult to section the WTB due to thick and resist-
ant GFRP walls (Joustra et al. 2021). Various technologies 
are available to cut the WTB, including wire saw cutting, 
circular saw cutting, waterjet cutting, or shear-cutting.

The wire saw is a water-cooled wire made of steel with 
diamond teeth, which is positioned around the outer shell 
of the WTB. It is possible to cut all material components, 
including the core material and metal. The sectioning method 
is not limited to the dimensions of the WTBs outer shell, as 
the length of the wire can be extended. The cutting process 
is fairly environmentally friendly, since the cooling water can 
be recycled and it results in smooth and well-defined cuts. 

Fig. 4  Structure and material 
composition of the E40 WTB

Table 1  Estimated material composition of an E40 WTB by weight 
percentage and mass

Material component Weight (wt.%) Mass (kg)

Glass fiber 60% 568
Thermoset resin and adhesive 23% 218
Core material 9% 85
Metal 8% 76
Total 100% 947
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However, the wire saw cutting process is very time consum-
ing (Hechler 2019; Jensen and Skelton 2018).

There are different sizes of circular saws, which ranges from 
manually operated to hydraulically driven saws with blade sizes 
up to 2 m diameter. Depending on the blade size, the circular 
saws can cut all dimensions of the WTB, although, depending on 
the structure, multiple cuts may be required to section the over-
all WTB. The main advantages of this cutting method are that 
independent cuts can be conducted in all directions. Therefore, 
it is possible to extract selected material sections from the WTB, 
such as the main laminates of the spar caps. A disadvantage is 
that operators are exposed to possible safety hazards (Jensen and 
Skelton 2018).

To address the safety hazards for operators, waterjet cutting 
could be a good alternative. The dust generated is collected in 
the water filtration system. The abrasiveness of this method can 
be increased by adding high hardness sand-like grains, increas-
ing its effectiveness. Furthermore, when compared to circular 
or wire saws that rely on friction between the part and the cut-
ting tool, there is no risk of tooling degradation (Joustra et al. 
2021) as well as no heat-affected zones in the part, increasing 
the quality of the surface finish (Saxena et al. 2018).

Shear-cutters are widely used in decommissioning opera-
tions and take advantage of hydraulic power to segment the 
blade. However, since they operate by deforming and crush-
ing the blade until rupture, they not only provide extremely 
rough edges, but they also lead to an uncontrollable emission 
of dust as well as larger particles, posing serious safety and 
environmental risks. Due to these factors, their use is not 
suitable for repurpose applications, although they can be used 
to easily segment severely damaged blades for mechanical 
recycling processes (Hechler 2019).

Due to the different advantages and disadvantages of 
the segmentation technologies, using wire saws or circu-
lar saws are considered foremost for the manufacturing 
process of the repurposed segmented structures (T3 and 
T4). Within this study, the electrical power of the cutting 
equipment is assumed to be equivalent, independent of 
the specific segmentation technology used.

LCA of Repurposed Scenarios

For the estimation of the potential environmental impact reduc-
tion by repurposing E40 WTBs, the screening LCA method is 
used. The objective of the study is to evaluate the relative envi-
ronmental impact reduction potential between a reference prod-
uct and the substitution of structural components by repurposed 
WTBs (Hauschild et al. 2018; Nagle et al. 2022). In particular, 
the substitution of materials with a high carbon footprint offers 
potentially significant environmental benefits. The scope of the 
screening LCA in this study is the evaluation of necessary mate-
rials and process steps to repurpose the WTBs, corresponding 
process routes as well as required materials and process steps for 

the manufacture and transport of the reference product. The soft-
ware and database LCA for Experts (Version 10.7.0.183, Sphera 
Solutions Inc., Chicago, USA) with the Environmental Footprint 
2.0 life cycle impact assessment (LCIA) methodology is used. 
The LCA data refer to the reference years 2021–2022. Within the 
framework of three specific scenarios, an assessment of the four 
introduced repurpose application types (T1, T2, T3, and T4) is 
carried out. For each repurpose application, an associated refer-
ence application is defined based on its dimensions and function. 
The functional unit of each scenario is defined by the product 
output of the repurpose of two WTBs. The system boundary 
reaches from material sourcing to the final manufacturing at the 
location of the applications (cradle to gate). The subsequent use 
phases are not considered as they are seen as equivalent. Process 
steps for which the difference between the repurposed product 
and the reference product is expected or determined to be low 
are not considered, as they have no influence on the discrepancy 
between the two environmental potentials.

The material of the EoL WTBs is considered using the 
cut-off approach: from collection as a dismantled blade on 
the ground at the wind farm, where all prior environmental 
burdens have been allocated to the initial product. Since the 
processing operations during the setup at the installation site 
of the four considered applications are mainly manual, they are 
assumed to be equivalent. Neither the environmental impact of 
tool wear nor the utilization of the NDT technologies (cf. chap-
ter 2.1) is taken into account due to the expected low influence 
on the total emissions. The disassembly of the WTBs is also 
outside the system boundary, as this is a necessary prerequisite 
for any EoL strategy.

Results and Discussion

Ecosystems of Product Scenarios Based on Specific 
Application Types (T1, T2, T3, and T4)

A possible application for the repurposed type T1—high-
loaded complete structure—is a climbing tower (The Re-
Wind Network 2023). It is expected that two entire EoL E40 
WTBs can be set up for this application (Fig. 5). The manu-
facture, transport and assembly of an operational climbing 
tower constitute scenario 1 (S1). Thus, the climbing tower 
would have a total mass of 1894 kg, consisting of 1136 kg 
of glass fiber material as well as 436 kg of thermoset resin 
and adhesive materials. The dimensions of the application 
are approximately 19.13 m × 3.95 m × 0.96 m.

No segmentation is necessary for the manufacturing of the 
climbing tower, as two entire EoL E40 WTBs are repurposed. 
The outer surface of the WTBs is sanded, primed, and then 
painted. Due to expected high loads, e.g., wind loads, the struc-
tural integrity of the WTB material must be ensured. Therefore, 
NDT technology is needed within the ecosystem of the WTB 
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climbing tower manufacturing (Fig. 6). The reference applica-
tion is a 20-m-high steel lattice tower (foundations 2 × 2 m, 
tapering design, L-shaped steel profiles), covered with texture 
coated boards on four sides. The wood for the boards is not 
produced sustainably. The foundation, the attachment parts, and 
the effort required for set up are assumed to be equivalent for 
the both applications. Both the repurposed WTB tower and the 
reference application are transported for an estimated average 

distance of 500 km. The WTB tower has a less efficient transport 
process due to the reduced utilization of the transport medium 
caused by the high component volume.

The investigated application for T2—low-loaded complete 
structure—is a playground. In accordance with the climbing 
tower, it is assumed that two complete EoL E40 WTBs will 
be repurposed for manufacturing the playground (Fig. 7). The 
manufacture, transport, and assembly of an operational play-
ground constitute scenario 2 (S2). Therefore, S2 has the same 
total mass and dimensions as the climbing tower.

It is not required to use NDT technology in S2, since it is 
assumed that only low loads are expected. However, cutting 
technologies are needed to cut the holes in the WTB structure. 
Similar to S1, the WTB surfaces (both out and inside) are 
sanded, primed and painted. The reference application con-
sists of a laminated spruce wood construction (length 15 m, 
height 2 m) and a 12-m-long crawling tunnel with an inner 
diameter of 0.8 m and an outer diameter of 0.92 m made of 
polyethylene (PE). A geometric stiffening in the form of trap-
ezoidal profile reduces the PE input by approximately 50%. 
A wood waste of 5% is assumed. The wood is not produced 
sustainably. The assembly process is defined as equivalent 
between repurpose and reference application. The transport 
processes within the ecosystem of S2 are modeled analo-
gously to S1 (see Fig. 10 in the “Appendix” section).

Scenario 3 (S3) combines the two introduced segmented 
structure types (T3 and T4; cf. chapter 2.1) and therefore 
uses different elements of a E40 WTB to be able to create 
both products from one blade:

For T3—high-loaded segmented structure—a photovoltaic 
(PV)-floating pontoon is under examination. A long segment Fig. 5  Climbing tower from two repurposed EoL E40 WTBs (S1)

Fig. 6  Manufacturing process of repurposed WTB climbing tower and reference climbing tower (S1)
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of the midspan section of the EoL E40 WTB could be used 
for the pontoon (Fig. 8a). Based on the information from the 
designed CAD model (cf. chapter 2.2), the repurposed WTB 
segment would have a total mass of 416 kg. The dimensions are 
approximately 8.66 m × 1.5 m × 0.3 m.

For manufacturing of the pontoon, the EoL E40 WTB ini-
tially has to be cut in two positions, e.g., by a wire saw. After-
wards, the state of the sectioned segment must be checked by 
NDT to ensure that no damage is present, and the composite 
structure can resist expected loads. After cutting and NDT 
within the ecosystem of S3, the remaining openings are sealed 
with a 2-mm-thick GFRP virgin material laminate. A PE pon-
toon is chosen as the reference application, which is manufac-
tured by blow molding. It is assumed that the attachment parts 
(coupling parts) are equivalent between repurpose and reference 
application. The transport distance via lorry is assumed to be 
250 km and an additional 250 km via ship to the assembly site 
(see Fig. 11 in the “Appendix” section).

A lounger was chosen for T4—low-loaded segmented struc-
ture—of S3. The highest part of the EoL E40 WTB could be 

suitable for this relaxing lounger (Fig. 8b). In addition, two areas 
of the midspan section of the E40 WTB serve as feet. According 
to the designed CAD model (cf. chapter 2.2), the repurposed 
lounger has a total mass of 40.2 kg including 24 kg glass fibers 
as well as 9.25 kg thermoset resin and adhesive materials. The 
dimensions of the lounger are around 1 m × 1.98 m × 0.63 m. 
To manufacture the repurposed lounger, several cuts must be 
performed on the EoL E40 WTB. A circular saw is considered 
for the construction of the feet, because independent cuts must 
be made in different directions. Since low loads are expected 
for the lounger, no NDT is planned during the manufacturing 
process (see Fig. 11 in the “Appendix” section). A lounger made 
of a steel frame with PE rattan covering (weight around 20 kg) is 
chosen as reference application. The paint finish for both prod-
ucts is assumed to be near identical and is therefore not taken 
into account.

As neither the inboard section nor the outboard section 
of the WTB is used for T3 or T4 of S3, the residual material 
is assumed as filler material within the concrete industry. A 
mechanical grinding process of the components is necessary 
(Shuaib and Mativenga 2016). The transport processes of T4 
are modeled analogously to T3 (excluding ship fare).

LCA of the Introduced Repurposed Product 
Scenarios

Figure 9 shows the resulting relative results in the six environ-
mental impact categories: global warming potential (GWP), 
acidification potential (AP), eutrophication potential (EP), land 
use, ozone depletion potential (ODP), photochemical ozone 
creation potential (POCP), resource use, and the ecotoxicity 
potential. The categories are not weighted. In the following, the 
main results of the three different scenarios are summarized:

Fig. 7  Playground from two repurposed EoL E40 WTBs (S2)

Fig. 8  a PV-floating pontoon from repurposed EoL E40 WTB segment; b lounger from repurposed EoL E40 WTB segment and two shell ele-
ment parts (S3)
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S1—Climbing tower: The emissions associated with the 
repurposed climbing tower are primarily influenced by the 
transportation processes and the use of primer material. By 
substituting the materials typically required for a conven-
tional climbing tower, substantial reduction potentials can 
be achieved. The overall savings potential ranges from 79.5 
to 99.6% when compared to the reference application.

S2—Playground: Compared to the climbing tower, additional 
cutting operations are necessary in the manufacturing of a repur-
posed WTB playground. Furthermore, both the inside and out-
side surfaces require treatment, priming, and painting, leading to 
additional energy consumption and consumables. Consequently, 
the environmental impact of the proposed playground exceeds 
that of the proposed climbing tower. Despite this, significant 
reductions in environmental impact can be achieved across 
all impact categories compared to the reference playground. 
The overall savings potential ranges from 14.5 to 99.2%. The 
high potential can be primarily attributed to the substitution of 
wood and PE materials required, as well as the avoidance of the 
energy-intensive extrusion process for the crawl tunnel.

S3—PV-floating pontoon and lounger: Repurposing an E40 
WTB into a PV-floating pontoon requires two segmentation cuts 
and additional material to seal the resulting openings. Manu-
facturing the lounger also necessitates additional segmentation 
processes. Leftover WTB segments are to be processed and used 
as filler material within the concrete industry. Despite these fac-
tors, significant reductions in environmental impacts can still be 

achieved. Overall, the repurposed WTB products demonstrate 
noteworthy reductions in GWP, AP, resource use, and ecotoxic-
ity potential. The impact change for POCP and land use is mar-
ginal, while EP and land use show an increase compared to the 
reference products. The main contributors to the environmental 
impact of the repurposed WTB products are transportation pro-
cesses and the energy required for segmentation. The influence 
of the landfilling process for the unused WTB elements plays a 
subordinate role.

The LCA study reveals that repurposing E40 WTBs can 
effectively mitigate the environmental impact of the applica-
tions examined. While a few supplementary processes are 
necessary for repurposing, the primary contributor to the envi-
ronmental impact is transportation. Notably, substituting EoL 
WTB structures for energy-intensive steel or PE appears to be 
a viable approach for reducing overall emissions, even with 
the requirement for additional surface treatments, primer, and 
paint application. Findings from the study highlight the sig-
nificant potential for reducing environmental impacts through 
the use of repurposed products in each scenario. However, the 
magnitude of total savings varies considerably across the dif-
ferent scenarios. The substitution of high-impact products by 
repurposed alternatives thus enables a more substantial overall 
reduction in environmental impact. Since the analyses of the 
reference applications are estimations based on literature and 
web research, they should not be seen as representatives for all 
possible designs.
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Fig. 9  Results of the LCA in the considered impact categories. Repurposed WTB applications are colored green and the reference applications 
blue
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Conclusions

The presented repurposed applications of an E40 WTB outline 
a new perspective for repurposing composites from the wind 
industry. This investigation highlights that depending on the 
repurposed scenario, different technologies (regarding segmen-
tation and testing) are required for the manufacturing process. 
Thus, the ecosystems differ in the technological dimension.

Using EoL E40 WTBs as structural material potentially 
reduces the environmental impact for the examined scenarios. 
This is due to the displacement of impacts from energy-inten-
sive virgin raw material production avoided by the repurposed 
composite materials. In addition to the reduction of environ-
mental impact, the manufacturing of a climbing tower (S1), 
a playground (S2), a PV-floating pontoon, and a lounger (S3) 
keeps composite material after the first life cycle out of unsus-
tainable routes, such as landfill or incineration. The results of 
the study indicate that the repurpose strategy mostly leads to 
a significant reduction of environmental impacts in relation to 
a reference product of similar quality. Environmental impacts 
are likely to be avoided by the repurpose of WTBs. How-
ever, our study shows that the substitution of material—and 

energy intensive products, which are characterized by high 
emissions—is particularly effective in reducing environmental 
impacts by fully taking advantage of the structural properties 
of the WTB. If additional virgin raw material or energy inten-
sive manufacturing processes are required for the repurposed 
application, the savings potential is reduced.

For the E40 WTB repurpose, transport processes to the 
intended operation location have a major impact. High volumes 
of the transported structures result in less efficient transport pro-
cesses and thus higher emissions. However, the substitution of 
energy-intensive raw materials offers a clearly greater advantage. 
The influence of transportation will increase with larger and thus 
heavier WTBs and needs to be further investigated.

The repurposing strategy may become a promising alter-
native if recycling is still not economical, and incineration 
is not possible due to circular economy efforts. But the chal-
lenge to upscale a repurposed application to mass produc-
tion is still unsolved. Compared to the expected amount of 
EoL WTB composite material, the need for, e.g., climbing 
towers or playgrounds is rather small. Consequently, further 
research is needed to transfer repurposed ecosystems to the 
relevant industries.

Appendix

The icons for the reference application in the manufacturing 
process flows (Fig. 6, Fig. 10, and Fig. 11) are from https:// 
theno unpro ject. com/.

Fig. 10  Manufacturing process of repurposed WTB playground and reference playground (S2)

https://thenounproject.com/
https://thenounproject.com/
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