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Abstract 

Small extracellular vesicles (sEVs) have been identified as a noteworthy paracrine mechanism of intercellular com-
munication in diagnosing and managing neurological disorders. Current research suggests that sEVs play a pivotal 
role in the pathological progression of pain, emphasizing their critical function in the pathological progression of pain 
in acute and chronic pain models. By facilitating the transfer of diverse molecules, such as proteins, nucleic acids, 
and metabolites, sEVs can modulate pain signaling transmission in both the central and peripheral nervous systems. 
Furthermore, the unique molecules conveyed by sEVs in pain disorders indicate their potential as diagnostic biomark-
ers. The application of sEVs derived from mesenchymal stem cells (MSCs) in regenerative pain medicine has emerged 
as a promising strategy for pain management. Moreover, modified sEVs have garnered considerable attention 
in the investigation of pathological processes and therapeutic interventions. This review presents a comprehensive 
overview of the current knowledge regarding the involvement of sEVs in pain pathogenesis and treatment. Neverthe-
less, additional research is imperative to facilitate their clinical implementation.
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Graphical Abstract
Schematic diagram of sEVs in the biogenesis, signal transmission, diagnosis, and treatment of pain disorders. Small 
extracellular vesicles (sEVs) are secreted by multiple cells, loading with various biomolecules, such as miRNAs, trans-
membrane proteins, and amino acids. They selectively target other cells and regulating pain signal transmission. The 
composition of sEVs can serve as valuable biomarkers for pain diagnosis. In particular, mesenchymal stem cell-derived 
sEVs have shown promise as regenerative medicine for managing multiple pain disorders. Furthermore, by modifying 
the structure or contents of sEVs, they could potentially be used as a potent analgesic method.

Introduction
The International Association for the Study of Pain 
(IASP) defines pain as an unpleasant sensory and emo-
tional experience associated with, or resembling that 
associated with, actual or potential tissue damage [1]. The 
sensation of acute pain serves as an imperative biological 
warning mechanism that notifies individuals of poten-
tial threats or damage. However, if the underlying cause 
of the pain signal remains unresolved, it may progress 
into chronic pain over time. Chronic pain is a significant 
contributor to human affliction and disability, necessitat-
ing recurrent medical attention. Current investigations 
categorize chronic pain as nociceptive, neuropathic, and 

nociplastic, based on a novel classification system. This 
revised approach is founded on the concept that pain 
mechanisms can be stratified according to their under-
lying pathophysiology, allowing for more targeted and 
effective therapeutic interventions [2]. The nociceptive 
pain is from tissue injury, including somatic and visceral 
damage, such as osteoarthritis, ischemia, inflammatory 
bowel disease (IBD), and tumor infiltration et al. The sec-
ond category refers to neuropathic pain, which primar-
ily occurs due to nerve damage in either the central or 
peripheral nervous system. Examples of such conditions 
that can cause neuropathic pain mainly include neurode-
generative diseases, spinal cord injury (SCI), and nerve 
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compression, among others [3]. The nociplastic pain is 
caused by a sensitized nervous system, including diffuse 
sensitization, and functional visceral pain et  al. [2, 4]. 
Even though pain has multiple etiologies and taxonomies, 
nociceptive signaling pathways are implicated in most of 
them. It is crucial to understand the mechanism behind 
pain signal transduction to understand the origins of 
pain; and how it progresses from acute to chronic. Recent 
research has identified small extracellular vesicles (sEVs) 
as essential mediators of paracrine signaling between 
cells during pain transduction. The presence of extracel-
lular vesicles (sEVs) released by cells is widely observed 
in diverse intercellular communication processes. These 
sEVs originate from various sources, including the nerv-
ous system (neurons and glial cells), peripheral tissue 
cells, body fluids, and immune cells. Moreover, these 
vesicles display discernible attributes and exert various 
impacts in diverse physiological and pathological con-
texts. These vesicles possess distinctive characteristics 
and exert diverse effects in both physiological and path-
ological contexts. The production and characteristics of 
sEVs are also influenced by varying conditions [5].

sEVs are primarily sourced from cellular secretion and 
function as ubiquitous forms of paracrine communica-
tion among cells. They have emerged as a promising 
mode of biomolecule transportation for the modula-
tion of gene expression or function, both over short and 
long distances. The transfer of cargo molecules between 
injured and recipient cells via sEVs holds immense 
potential in reprogramming the phenotype of the lat-
ter, thereby enabling them to acquire new functions. 
The release of sEV-associated signaling molecules from 
different cellular sources enables long-range transporta-
tion to remote target tissues via systemic circulation or 
lymphatic drainage. Thus, this network of sEV-mediated 
molecular signaling plays an indispensable role in main-
taining homeostasis and the proper functioning of mul-
tiple organ systems. Selective encapsulation of specific 
cargo molecules within EVs facilitates precise regulation 
of inter-tissue interactions, thus achieving fine-tuned 
control over physiological and pathological processes. 
Moreover, the protective nature of sEVs shields their 
cargo molecules from degradation and dilution, facili-
tating efficient transmission of molecular information 
between cells and tissues.

The distinctive attributes of sEVs have rendered them 
a subject of immense exploration across diverse fields of 
physiological and pathological processes, such as cancer, 
neurodegenerative diseases, and cardiovascular disorders 
[6]. More recently, there has been a notable increase in 
attention paid to sEVs in the pain process. In line with 
this, the objective of this review is to deliver an exhaus-
tive coverage of the progressions made in deciphering the 

role of sEVs in pain mechanisms, coupled with their pro-
spective utility in clinical applications for diagnostic and 
therapeutic purposes.

The biogenesis, characteristics, and isolation of sEVs
The biogenesis of sEVs
SEVs encompass a variety of subtypes, defined by their 
biogenesis and size. They have previously been catego-
rized into three separate types, namely exosomes (Exos), 
microvesicles (MVs), and apoptotic bodies (ABs) [7]. 
Among them, Exos range in size from 30 to 150 nm, while 
MVs span from 50 to 1000 nm [7]. In comparison, apop-
totic bodies, which arise from programmed cell death, 
exhibit significantly larger diameters exceeding 1000 nm 
[6]. The formation of these sEVs is mediated by distinct 
mechanisms involving intracellular membrane trafficking 
pathways. The biogenesis of exosomes is accomplished 
by the invagination of the plasma membrane or Golgi 
apparatus, resulting in the formation of intraluminal 
vesicles (ILVs) within multivesicular bodies (MVBs) in a 
sequential manner. It is worth mentioning that the mem-
brane of EVs is derived from either plasma or endosome 
membranes, with plasma-derived EVs being reported to 
exhibit a 5-fold increase in efficiency compared to those 
originating from the endosome membranes [8]. These 
MVBs subsequently merge with the cellular membrane, 
ultimately culminating in the release of exosomes. This 
process requires several steps facilitated by endosomal 
sorting complexes (ESCRT)-dependent and -independ-
ent pathways [9, 10]. The ESCRT machinery, composed 
of four protein complexes (ESCRT-0, -I, -II, and -III) 
and an accessory Vps4 complex, plays a crucial role in 
this process. Conversely, MVs are generated through 
outward pinching of the plasma membrane, enclosing 
nearby biomolecules. The current subtyping methodol-
ogy for EVs falls short of capturing the full spectrum of 
their characteristics. In recognition of this inadequacy, 
the MISEV2018 guideline offers a refined definition for 
EV subtype classification, which takes into account not 
only size but also biochemical composition, surpassing 
the former three-type classification system [11]. Despite 
this, there persists a marked bias towards exosomes in 
research studies, prompting us in this review to employ 
the term “small extracellular vesicles” as a more inclusive 
descriptor of this heterogeneous group. The presence of 
small extracellular vesicles (sEVs) ranging from 30 to 200 
nm is prevalent, primarily consisting of exosomes and 
MVs. These subsets of vesicles are currently the most 
researched population [11].

 SEVs are characterized by their rich and diverse com-
position (Fig.  1). All types of sEVs have been shown to 
encompass a wide range of components including pro-
teins, nucleic acids (such as DNA, microRNA, lncRNA), 
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lipids, metabolites, as well as amino acids derived from 
the parent cells. The identification of distinct subtypes of 
sEVs lacks specificity due to the absence of precise mark-
ers. In this regard, non-tissue-specific membrane mark-
ers such as tetraspanins (i.e., CD63, CD81, CD9), MHC 
molecules, integrin, ligands, receptors, and flotillins are 
commonly used. Meanwhile, lumen proteins including 
TSG101, ALIX, HSPs, syntenin, and RAB GTPases, and 
lipids like ceramide, phosphatidylserine, sphingomyelin, 
and cholesterol have also been identified [12, 13]. Cera-
mide, phosphatidylserine, sphingomyelin, cholesterol, 
and others are among the lipids found in sEVs [12]. The 
generation of ceramide lipids through the hydrolysis of 
neutral type II sphingomyelins is essential for the trans-
port of multivesicular bodies (MVBs) and the biogenesis 
of sEVs [14]. Additionally, phosphoinositides, which are 
membrane phospholipids involved in regulating mem-
brane dynamics, contribute to sEVs release [15]. Despite 
the wide expression of molecules, there is still a lack of 
specific markers that can uniquely identify different sub-
types of sEVs.

The uptake of sEVs
SEVs, upon release from their parent cells, traverse short 
or long distances to deliver their cargoes to target cells. 
These cargoes are instrumental in inducing phenotypic 
changes in the recipient cells, thereby influencing physi-
ological or pathological processes. The internalization of 
sEVs by target cells involves a wide range of mechanisms. 
In particular, the proteins and glycoproteins presented 
on the surfaces of both sEVs and target cells are criti-
cal in determining the uptake mechanism. The proteins 
responsible for the binding process can be broadly cate-
gorized into several groups, namely tetraspanins, lectins, 
integrins, and scaffold proteins. Tetraspanins contrib-
uted to the selective target binding [16]. Integrins serve 
as transmembrane proteins that function as receptors 
for extracellular matrix proteins, including laminin and 
fibronectin [17]. Lectins located along the plasma mem-
branes of cells, as well as proteoglycans present on the 
surface of sEVs, play a role in facilitating the docking pro-
cess of sEVs [17, 18]. On the other hand, there are some 
special molecules that sEVs carried from parent cells, 

Fig. 1  sEVs biogenesis and uptake. sEVs are formed by creating early endosomes, which then progress to late endosomes. Various contents, 
including nucleic acids and proteins, are loaded into the sEVs during this process. MVBs fuse with the cell membrane upon completion 
to release the small EVs, while larger EVs can be directly exocytosed. These sEVs target other cells through diverse pathways, primarily via fusion 
or endocytosis. MVBs: multivesicular bodies; sEV: small extracellular vesicle
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which are capable to combine to ligands on the specific 
targeted cells. The membranes of sEVs contain a diverse 
array of proteins, including a substantial number of G 
protein-coupled receptors (GPCRs). The receptors play a 
crucial role in acting as anchors for sEVs and facilitating 
their internalization through receptor-mediated uptake 
[19]. For example, leukocyte-derived sEVs expressed 
B1-kinin receptors in patients with vasculitis. These sEVs 
band to functional target cells via the B1-kinin receptor 
[20]. Moreover, the CD200R present on macrophage-
derived sEVs interacts with the iSec1 ligand found on 
neurons, facilitating the transmission of mitochondria 
[21]. There has been more research conducted in the 
field of tumors. For example, the caveolin-1 on the sEVs 
increased and led to lung metastasis by regulating the 
expression of pre-metastatic niche marker genes and 
inflammatory chemokines in lung epithelial cells [22]. It 
was reported that the membrane proteins of sEVs had 
changed in tumor tissues, and the changed membrane 
proteins were able to be biomarkers for the diagnosis of 
the disorder [23, 24]. Moreover, based on the selection 
of these membrane proteins on sEVs, they were engi-
neered to get a therapeutic effect as we have discussed 
in the part of Engineered sEVs. Numerous studies have 
been conducted regarding the engineering modification 
of membrane proteins on sEVs to enhance the targeting 
capability for disease treatment [25]. For a more compre-
hensive understanding of the ligand-receptor interaction, 
the published reviews on sEVs transportation and uptake 
deserve these references [17, 18].

Notably, fusion and endocytosis are the common 
modes of interaction between the EVs and the targeted 
cells [26]. Membrane fusion is believed to be facilitated 
by soluble N-ethylmaleimide sensitive factor attachment 
protein receptor (SNARE) complex. The formation of the 
four corresponding SNAREs establishes a robust link-
age between the two lipid membranes for fusion [27]. 
For example, the SNARE on the membrane of neurons 
regulated the uptake of mesenchymal stem cells (MSCs)-
derived sEVs [28]. Endocytosis, which encompasses 
various pathways including caveolin-mediated uptake, 
clathrin-dependent method, macropinocytosis, phago-
cytosis, and lipid raft-mediated internalization, is also 
significant [29]. The uptake mechanism of sEVs can vary 
depending on the specific cell type being targeted and the 
origin of these vesicles. For instance, it was observed that 
neurons employ selective clathrin- and dynamin-depend-
ent endocytosis to internalize the sEVs derived from oli-
godendrocytes [30]. In contrast, the transfer of sEVs by 
oligodendrocytes to microglia selectively occurred via 
micropinocytosis [31] (Fig. 1).

After internalization by target cells, sEVs can elicit 
alterations in downstream signaling pathways through 

two distinct mechanisms: (1) direct contact via their 
surface receptors/ligands to trigger signaling pathway in 
the cells as mentioned above; (2) the delivery of bioac-
tive molecules into target cells facilitates the alteration 
of expressions of signaling molecules [19]. The ligand-
receptor mechanism and vesicle-loading method have 
already been employed to investigate the impact of sEVs 
on pain, as discussed in the following sections.

The isolation of sEVs
Currently, there is no single gold standard method to 
isolate sEVs. There are numerous methods to isolate 
sEVs, encompassing differential ultracentrifugation 
(DUC), density gradient centrifugation (DC), ultrafiltra-
tion, size-exclusion chromatography (SEC), combined 
multiple methods, commercial isolation kits et  al. [7, 
32–34]. Recent years have uncovered novel or modi-
fied approaches for isolation and purification, like the 
magnetic bead-mediated selective adsorption strategy 
and microfluidics [35]. Nevertheless, differential ultra-
centrifugation, density gradient centrifugation, and 
SEC continue to be the most frequently employed tech-
niques for sEVs isolation and purification. It is worth 
noting that nearly all the above-mentioned separation 
techniques have limitations in achieving high yield 
and purity of sEVs concurrently (Table  1). The DUC 
method is the most commonly used technique for iso-
lating sEVs. This method relies on employing different 
gradients during initial centrifugation steps, ultimately 
leading to ultra-high-speed centrifugation at speeds 
exceeding 100,000 g. The ultra-high-speed centrifuga-
tion technique necessitates the use of a correspond-
ing ultracentrifuge and centrifuge tubes. The process 
of gradient centrifugation resulted in the disruption of 
a portion of the vesicles. This method achieved a mod-
erate purity and production of sEVs from extracted 
samples [36, 37]. The centrifugation process of density 
gradient centrifugation involving a density gradient uti-
lizes separation media, such as sucrose and iodixanol, 
in conjunction with DUC. This method enables the 
acquisition of sEVs that demonstrate improved purity, 
allowing them to segregate within specific gradient 
layers presented in the solution. But the yield is lower 
than DUC [37]. SEC employed the distinct velocities at 
which particles of varying sizes traverse porous poly-
mer gel fillers, thereby facilitating the separation and 
isolation of vesicles according to their respective sizes 
[34]. The ultrafiltration method can obtain much larger 
vesicles by sequential filtration, but the production is 
low purity [38]. Immunomagnetic separation involves 
using antibodies and magnetic beads to capture sEVs. 
This method helps recognize and bind specific target 
antigens on the surface of sEVs to isolate vesicles [39]. 
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Getting highly pure sEVs using this method is effec-
tive but expensive. However, it’s important to note that 
there is a widely accepted specific antigen on the sur-
face of sEVs. Microfluidic technology uses small chan-
nels and fluid dynamics principles to control the flow of 
fluids. It allows for the separation and capture of sEVs 
by manipulating pressure, velocity, and direction within 
these channels [40]. However, the utilization of this 
methodology requires the use of specialized equipment 
to successfully acquire and maintain stable vesicles. 
There also exists alternative commercial kits for the iso-
lation, although comprehensive elucidation of mecha-
nisms remains unknown. These kits are characterized 
by their simple operational procedure. Nonetheless, the 
quality of sEVs obtained using these kits is different sig-
nificantly [41]. The basic methods for characterization 
detection are including morphology by electron micros-
copy, size distribution by nanoparticle tracking analysis, 
protein marker analysis by western blotting, immuno-
fluorescence, or flow cytometry. Moreover, due to the 
inherent heterogeneity of sEVs, the isolation method-
ology can significantly impact their components and 
function. There is an urgent requirement for a compre-
hensive and systematic approach to assessing the yield 

and purity of methods employed for acquiring sEVs, 
while also establishing a universally accepted extraction 
method as the gold standard.

The sEVs in the nervous system for the pain process
Assorted conclusive evidence has illustrated the crucial 
function of sEVs in facilitating intercellular communica-
tion among varying neural cell categories in both physi-
ological and pathological states. An advantage of sEVs is 
their ability to cross the blood-brain barrier (BBB) and 
blood-spinal cord barrier (BSB), thereby enabling access 
to remote targets throughout the nervous system. The 
recent progress in comprehension has illuminated the 
interplay among neurons, glial cells, immune cells, and 
tissue cells, all of which are engaged in managing pain 
signaling and its sustenance [42, 43]. Diverse kinds of 
sEVs derived from both the central and peripheral tissues 
have been associated with these mechanisms (Table  2) 
[44].

Neuron‑derived sEVs
Changes in synaptic plasticity contribute significantly to 
the occurrence and development of chronic pain. The 
roles of neuron-derived sEVs (NDEVs) in synaptic signal 

Table 1  Isolation methods of sEVs

sEVs small extracellular vesicles, DUC Differential ultracentrifugation

Methods Process Advantages Disadvantages Ref.

Centrifugation Differential ultracentrifu-
gation

400×g, 2000×g, 10,000×g 
centrifugation, and then 
ultracentrifugation of more 
than 100,000×g to obtain 
sEVs

Simple process, moderate 
production

Required expensive device, 
impurity, time-consuming

[36, 37]

Density gradient centrifu-
gation

DUC combines with sepa-
ration media

High purity Complicated process, low 
yield

[37]

Vesicle-size separation Size-exclusion chromatog-
raphy

Vesicles of different sizes 
were separated by differ-
ent velocities in the filling 
process of porous polymer 
gels

High purity Suitable for small-volume 
liquid, low yield

[34]

Ultrafiltration Appropriate pore size 
is used to eliminate larger 
cell debris and cells, 
thereby obtaining sEVs 
on the membrane

High yield, simple process, 
rapid

Low purity, larger vesicles [38]

Immunoaffinity isolation Immunomagnetic separa-
tion

The antibodies on beads 
combine with antigens 
on vesicles to capture sEVs

Specific vesicles, high 
purity

Expensive, low yield [39]

Device Microfluidic precise control of samples 
and vesicle collection 
through miniaturized 
devices and microvalves, 
facilitating dynamic 
manipulation and isolation 
of sEVs

Precise control, stable yield, 
automation process

Expensive microfluidic 
device, low-volume 
sample

[40]

Others Commercial kits According to the commer-
cial protocol

Simple process Expensive, unstable quality [41]
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transmission have been widely explored. It was demon-
strated that MVBs, which are responsible for the bio-
genesis of sEVs, were present in the axons, terminals of 
neurons, soma, and dendrites [45]. MVBs were found to 
be 50 times more abundant in the soma and dendrites 
than in the axons. Another research reported that neu-
ronal CD63-GFP+ ILVs in MVBs were primarily local-
ized in soma and dendrites, but not in axonal terminals 
in  vitro and in  vivo by confocal image analysis [46], 
potentially emphasizing the production of MVBs in soma 
and transportation to axons and terminal before sEVs 
release. Moreover, these MVBs exhibited bidirectional 
transport capabilities, enabling them to move in different 
directions, including from axon to terminal and potential 
anterograde direction [45]. Such intricate transportation 
mechanisms contribute significantly to the physiological 
functions of neuronal sEVs.

The irregular secretion of synaptic sEVs by neurons 
has been associated with the development of pain disor-
ders by disrupting the proper transmission of synaptic 
signals. According to observations, glutamatergic activ-
ity promoted the release of NDEVs [47]. The released 
sEVs carried glutamate receptor-2 (GluR2) subunits, 
which resulted in the loss of AMPA receptors in syn-
apses. The presence of GluR2 subunits in NDEVs, cou-
pled with the increased secretion of sEVs following 
glutamatergic synaptic activation, highlighted sEV 
release as a plausible method for local receptor elimi-
nation at synapses undergoing plastic changes [47]. It 

was demonstrated that the involvement of glutamater-
gic synapses has been in the processes underlying pain 
sensation [48]. EVs released in the synapse cleft may 
actively participate in the physiological and pathological 
processes of chronic pain in this way. Long-term poten-
tiation (LTP), a critical cellular mechanism underlying 
chronic pain, is characterized by enhanced synaptic 
transmission due to persistent changes in synaptic effi-
cacy and plasticity. Notably, an increase in the release of 
neurotransmitters encapsulated in presynaptic vesicles 
has been observed during LTP induction. Two hours 
after LTP, there was also an increase in the density of 
vesicles closely associated with the synaptic membrane. 
These structural changes play a vital role in the sus-
tained enhancement of neurotransmitter release prob-
ability observed following LTP induction [49]. It has 
been demonstrated that sEVs were capable of transmit-
ting synaptotagmin 4 (Syt4), a protein involved in ret-
rograde signaling, to postsynaptic cells [50]. Retrograde 
signaling originating from postsynaptic targets is criti-
cal for maintaining synaptic plasticity. In addition to the 
number of sEVs released in the synaptic cleft affecting 
neuronal function, their contents also influence synap-
tic plasticity. In particular, transmembrane protein pro-
line-rich 7 (PRR7) was activity-dependently released by 
neurons via sEVs. sEV-PRR7 was taken up by neurons 
through membrane fusion and eliminated excitatory 
synapses but not inhibitory synapse numbers in local 
neurons [51].

Table 2  sEVs in pain mechanisms

NDEV Neuron-derived extracellular vesicle, SNI Spared nerve injury, SNL Spinal nerve ligation, MDEV Microglial-derived extracellular vesicles, DRG Dorsal root ganglion, 
PWT Paw withdrawal threshold, PWL Paw withdrawal latency, CIBP Cancer-induced bone pain, NP Nucleus pulposus, CFA Complete Freund’s adjuvant, TRPV-1 Transient 
receptor potential vanilloid 1, CLR Calcitonin receptor-like receptorsm NK1R Neurokinin 1 receptor, OPRM1 µ1 opioid receptor, DRG Dorsal root ganglion

Published year Condition sEV type Mechanisms Effects Ref.

2022 Carrageenan-induced pain CD200R+ macrophage-
derived sEVs

CD200R+ sEVs transferred 
mitochondria to neurons 
in DRG

Resolved transient inflamma-
tory pain

[21]

2021 CIBP Cancer cell-derivd sEVs Increased let-7d-5p in sEVs 
inhibited OPRM1 in DRG

Induced bone pain [111]

2017,
2021

DRG neuron culture NDEVs TRPV1 activation promoted 
the release of miR-21-5p 
and miR-23a in NDEVs

Activated M1 macrophages [53, 54]

2020 SNI Serum-derived sEVs Increased serum sEVs con-
tained C5a and ICAM-1

/ [101]

2020 Metastatic cancer pain Cancer cell-derivd sEVs Increased gene expressions 
in sEVs

Induced mechanical 
allodynia and thermal hyper-
algesia

[106]

2017 Lumbar disc herniation NPs Increased miR-223 in NPEVs 
at the acute phase

Attenuated the neuronal 
activity in the pain pathways

[114]

2017 CFA Endosomes Activated NK1R and CLR 
on endosomes

Promoted pain transmission [121, 122]

2016 SNL MDEVs Increased MDEV-IL-1β in CSF 
and spinal cord

Reduced PWT and PWL [59]
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Apart from their role in the synaptic cleft, emerging 
evidence suggests that NDEVs are capable of modulating 
the function of surrounding cells during painful states. 
Specifically, NDEV-mediated communication between 
neurons and other cells, namely glia and macrophages, 
has been shown to play a crucial role in both pain devel-
opment and various neurological disorders. A substan-
tial of NDEVs presenced in the perineuronal space after 
nerve injury, with their origin being synapses, and were 
subsequently transferred to microglia. They also signifi-
cantly contributed to the recruitment and activation of 
microglial cells [52]. TRPV-1, an ion channel known for 
its involvement in pain perception, has been identified 
as an important player in NDEVs production. Activa-
tion of TRPV-1 receptors has been found to promote 
the release of primary sensory NDEVs carrying specific 
microRNAs (miRNAs), such as miR-21-5p [53]. Con-
ditional deletion of miR-21-5p in sensory neurons was 
shown to reduce hypersensitivity and inflammatory 
macrophage recruitment in the dorsal root ganglion 
[53]. Similarly, after nerve injury, miR-23a was upregu-
lated in NDEVs. The NDEV-enriched miR-23a was 

demonstrated to exacerbate neuropathic pain by pro-
moting M1 polarization upon uptake by macrophages 
[54]. Furthermore, NDEVs have been found to exert neu-
roprotective effects on microglia via inhibition of apop-
tosis and inflammation [55]. Hypoxia preconditioning 
has been shown to alter the content of NDEVs, induc-
ing increased miR-126-3p expression in sEVs. Notably, 
miR-126-3p-enriched NDEVs were found to modulate 
inflammatory signaling pathways, ultimately mitigat-
ing ischemia-reperfusion-induced pain [56]. In addition 
to their potential therapeutic applications, NDEVs have 
also been implicated in functional behavioral recovery 
following SCI. The NDEV-miR-124-3p was observed to 
be potentially internalized into microglia and astrocytes 
[46, 57]. It mitigated the activation of microglia and 
astrocytes, thereby facilitating recovery from SCI [57]. 
Furthermore, NDEV-miR-124-3p was found to enhance 
the expression of glutamate transporter-1 (GLT1) by 
repressing miR-132 and miR-218 which hinder GLT1 in 
astrocytes [46, 58]. GLT1 presented on astrocytes partic-
ipates in maintaining the balance of synaptic glutamate 
in tripartite synapses.

Fig. 2  sEVs in pain signal transmission. SEVs are released by various cells within the nervous and immune systems. These vesicles transport miRNAs, 
proteins, or lipids to target cells, facilitating signal transmission during the pain process. sEV: small extracellular vesicle



Page 9 of 30Zhang et al. Biomaterials Research           (2023) 27:78 	

 Overall, these findings shed light on the complex inter-
play between NDEVs and surrounding cells, highlighting 
them as a communication mediator in pain states (Figs. 2 
and 3). Given the difficulties in isolating sEVs derived 
from neurons in  vivo, many studies have resorted to 
ex vivo culture systems for sEV isolation. As increasingly 
sophisticated techniques are developed, future research 
should aim to investigate the functions of sEVs produced 
within the nervous system in vivo.

Microglia‑derived sEVs
Microglia are the resident macrophages of the central 
nervous system (CNS) and spinal cord, acting as sentinels 
to external insults. Recent studies have shed light on the 
function of microglia-derived sEVs (MDEVs) in neuroin-
flammatory responses and pain modulation. The hetero-
geneous origins and complex environmental influences 
have a noteworthy impact on the function of MDEVs 

within the nervous system. Whether these effects are 
beneficial or detrimental remains a subject of intense 
investigation.

In the context of spinal nerve ligation (SNL)-induced 
pain, MDEVs have been found to significantly increase 
in both the cerebrospinal fluid (CSF) and dorsal horn 
of the spinal cord. The process of MDEV shedding was 
regulated by the activated P2 X 7-p38 signaling pathway 
in this model [59]. Interestingly, exposure to these sEVs 
has been found to elicit considerable increases in spon-
taneous excitatory postsynaptic current (sEPSC) fre-
quency and amplitude, regardless of SNL presence [59]. 
Notably, interleukin-1 beta (IL-1β), packaged within 
these vesicles, has been found to partially mediate 
the pain effects of MDEVs [59]. Furthermore, MDEVs 
induced alteration of excitation/inhibition balance. 
The studies have demonstrated that normal microglia-
derived sEVs enhanced glutamatergic transmission 

Fig. 3  sEVs in synaptic plasticity. The sEVs encapsulate neurotransmitters, membrane proteins, RNAs, receptors et al. NDEVs promote 
the expressions of GLT1 on astrocytes and carry out GluR2 to reduce AMPA receptors in synapses. These effects balance glutamate activity 
in the synaptic cleft. Moreover, LTP promotes the production of NDEVs, and the released synaptic vesicles participate in the formation of LTP. MDEVs 
promote the excitation of neurons by enhancing glutamatergic transmission and inhibiting GABA transmission. NDEV-PRR7 eliminates excitatory 
synapse proteins. sEV: small extracellular vesicle; GluR2: glutamate receptor-2; GLT1: glutamate transporter-1; NDEVs: neuron-derived small 
extracellular vesicles; MDEV: microglia-derived small extracellular vesicle; LTP: long-term potentiation; PRR7: Proline-rich 7; GABA: γ-aminobutyric 
acid
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through the promotion of ceramide and sphingosine 
synthesis in excitatory neurons, which was essential 
for modulating synaptic activity [59–61]. On the other 
hand, they modulated the inhibitory neurons. It indi-
cated an association between the generation of MDEVs 
and the release of endocannabinoids (eCBs) [61, 62], 
which was known to modulate nociceptive function in 
all phases of pain processing pathways [63]. Specifically, 
MDEVs were capable of transporting N-arachidonoyle-
thanolamine (AEA), a type of eCB, on their membrane. 
MDEV-AEA activated presynaptic type-1 cannabinoid 
receptors (CB1) on neurons and suppressed the sponta-
neous release of γ-aminobutyric acid (GABA), inducing 
a significant decrease in miniature inhibitory post-
synaptic currents (mIPSCs) frequency but not ampli-
tude [61]. The augmented glutamatergic transmission 
and diminished GABAergic transmission mediated by 
MDEVs imply that the escalated release of MEDVs after 
nerve injury may serve as a mechanism through which 
microglia contribute to excitatory phenomena in the 
context of pain processing (Fig.  3). Intriguingly, sEVs 
isolated from microglia in medicinal leeches’ central 
nervous system exhibited neuroprotective properties 
by augmenting neurite outgrowth in rat neurons [64]. 
Such intercellular communication and sEV-mediated 
signaling may be critical for the effective functioning of 
the nervous system across species.

MDEVs exhibit substantial potential as intercellular 
communicators and their regulatory influence over their 
parent cellular population have been established (Fig.  2). 
Notably, sEVs isolated from inflammatory microglia have 
been found to modulate the gene expression profile of 
recipient microglia. RNA sequencing data confirmed that 
the intake of sEVs originating from normal microglia or 10 
ng/ml TNF-α-prepared microglia led to a notable decrease 
in gene expression levels linked with inflammasome acti-
vation, neuroinflammation, and apoptosis signaling in 
different microglia types [65]. Furthermore, in vitro-gener-
ated sEVs derived from both non-polarized and polarized 
microglia could transfer a protective phenotype to dys-
functional microglia [65, 66]. These studies have explored 
the function of MDEVs in  vitro and suggested that they 
possessed a protective effect on their parent population. 
The potential impact of sEVs derived from distinct micro-
glial states on the modulation of pain remains uncharted 
territory. Moreover, proinflammatory microglia produced 
various miRNAs and cytokines that contributed to the 
promotion of neuroinflammation. Several miRNAs (miR-
375, miR-146a-5p, miR-181a, miR-223, miR-155) [67–69] 
and inflammatory mediators (IL-1β, TNF-α, IL-6) [70, 
71] were identified within the sEVs originating from M1 
microglia, thereby contributing to neuroinflammation. 
These biomolecules contribute to neuroinflammation or 

nerve injury. Studying MDEVs in  vivo poses challenges, 
thus most current research relies on ex vivo cell culture to 
obtain these vesicles. Furthermore, most published stud-
ies have focused on investigating the functional effects of 
sEVs derived from different microglial subtypes on neuro-
inflammation and nerve injury, but investigations into the 
underlying mechanisms remain incomplete.

Astrocyte‑derived sEVs
Astrocytes played a crucial role in the pathophysiology 
of pain disorders, as they altered the microenvironment 
that surrounded neurons [43] (Fig.  2). ADEVs carried 
fibulin-2 on the surface of sEVs, and the activation of 
TGF-β signaling mediated by ADEV-fibulin-2 promoted 
the development of dendritic spines and synapses [72]. 
The recent research has demonstrated that ADEVs car-
rying apolipoprotein D (ApoD), a protein known for its 
neuroprotective properties, can be effectively conveyed 
to neurons. This transfer was found to confer resistance 
to oxidative stress [73]. Experiments involving ApoD-
knockout ADEVs demonstrated partial protective effects, 
whereas ApoD-positive ADEVs provided full neuropro-
tection and enhanced neuronal survival [73]. Moreover, 
ADEVs containing synapsin I, which banded to neural 
cell adhesion molecules (NCAM) and promoted neu-
rite outgrowth, synaptic plasticity, and neuronal sur-
vival [74], exerted a protective effect on neurons. The 
functional state of astrocytes influenced the ability of 
ADEVs to modulate neuronal excitability and maintain 
homeostasis under various microenvironmental stimuli 
[75]. SEVs from ATP or the anti-inflammatory cytokine 
interleukin-10 (IL-10)-primed astrocytes, could pro-
mote dendritic branching, regulate synaptic transmis-
sion, and increase neuronal survival [76]. Conversely, 
ADEVs secreted under the influence of pro-inflammatory 
cytokines, such as IL-1β or TNF-α, modulated periph-
eral immune response and promoted immune cell traf-
ficking into the central nervous system [76]. Exposure to 
ADEV-ATP has been shown to induce heightened spike 
and burst activities in neuronal cultures, while exposure 
to ADEV-IL-1β led to decreased spike and burst activity 
in the same model [76]. Thus, sEVs derived from astro-
cytes are capable of modulating synapse transmission 
and influencing neuronal activity depending on the con-
dition of parent cells.

A recent study has established that the efficacy of anal-
gesic medicine is closely linked to ADEVs, especially opi-
ate abuse. The upregulation of sonic hedgehog signaling 
molecules on these vesicles has been found to induce 
morphine tolerance, thereby reducing the effectiveness 
of analgesic drugs. Further research has demonstrated 
that inhibiting the release of ADEVs could delay the onset 
of morphine tolerance in mice [77]. Moreover, ADEVs 
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containing miR-138 were discovered once exposed to 
morphine. Upon being internalized by microglia, these 
sEVs activated the microglia and provoked neuroinflam-
mation [78]. It is therefore inferred that in vivo produc-
tion of ADEVs may be a crucial factor contributing to the 
tolerance of analgesic drugs, and therefore affecting their 
therapeutic efficacy.

Schwann cell‑derived sEVs
Reprogramming differentiated Schwann cells (dSCs) into 
repair Schwann cells (rSCs) is a crucial factor in restor-
ing functionality following peripheral nerve injury. This 
reprogramming process promoted axonal regeneration 
and tissue homeostasis, as has been reported previously 
[79, 80]. Interestingly, axons specifically internalize sEVs 
released by rSCs (SDEVs), further highlighting the impor-
tance of these reparative cells in the regenerative process 
[80]. Notably, heightened EV-miR-21 expression in rSCs 
was found to be responsible for their pro-regenerative 
capacity. Specifically, the downregulation of PTEN and 
PI3-kinase activation in neurons was linked to the effect 
of SDEV-miR-21 after nerve injury [81] (Fig. 2). Moreo-
ver, it was reported that after mechanical stimulation of 
Schwann cells, the SDEVs contained much more miR-
23b-3p. The miR-23b-3p in SDEVs targeted neuropilin 
1 in neurons to promote peripheral nerve injury repair 
[79]. It is worth noting that proteins in SDEVs may also 
have a significant impact on the process. The proteomic 
analysis of SDEVs revealed that twelve proteins, includ-
ing lotillin-2, neuropilin-2, septin-7, and syntenin-1 et al., 
exhibited close associations with axon regeneration [82]. 
SDEVs also inhibit inflammation in neuroinflamma-
tion [82, 83]. These findings underscore the therapeutic 
potential of rSCs-derived sEVs in promoting peripheral 
nerve repair and recovery. Some issues limit the utiliza-
tion of these sEVs. The culture conditions of rSCs play 
a critical role in achieving the optimal efficacy of sEVs 
[83]. Additionally, a commonly faced problem in utiliz-
ing sEVs arises from the challenges related to isolating 
and addressing their heterogeneity. Furthermore, due to 
technological limitations, sEVs cannot be manufactured 
in substantial quantities.

Satellite glia‑derived sEVs
In ganglia, satellite glial cells (SGCs) envelop sensory 
neurons nearby, ensuring neuronal homeostasis. Upon 
nerve injury or inflammation, SGCs could activate and 
elicit the upregulation of ion channels, gap junctions, 
and receptors on their surface, thereby triggering neu-
ronal excitation and pain development [84]. In a recent 
report, SGCs were found to release sEVs, which exhibited 
a modified protein profile under inflammation stimula-
tion [85], suggesting a potential role of sEV-contained 

proteins in inflammatory pain conditions. Despite these 
breakthrough discoveries, the precise influence of SGC-
EVs on neuronal excitability and pain genesis requires 
further exploration.

Oligodendrocyte‑derived sEVs
Oligodendrocytes, the myelin-producing cells in CNS, 
have long been known for their role in insulating and 
protecting neuronal axons, ensuring efficient nerve con-
duction. According to recent research, oligodendrocyte 
function has been found to have an additional dimension 
involving the release of sEVs that contain a variety of bio-
active molecules. These sEVs were absorbed by neurons 
and played a crucial role in enhancing their metabolic 
health, facilitating axonal transport, and maintaining 
their structural integrity even under stressful conditions 
[86] (Fig.  2). The secretion of oligodendroglial-derived 
sEVs was initiated through the release of the neurotrans-
mitter glutamate in an activity-dependent manner. This 
process was facilitated by the influx of Ca2+ via oligo-
dendroglial N-methyl-D-aspartate receptor (NMDA) 
and AMPA receptors [30]. Once released, these sEVs 
are internalized by neurons, contributing to their main-
tenance [30]. Dysfunction of oligodendrocyte has been 
linked to abnormal neuronal conduction and implicated 
in the pathogenesis of neurological disorders, such as spi-
nal cord injury.

The sEVs of the periphery origin
Macrophage‑derived sEVs
The significant role of macrophages in pain initiation 
and progression has been widely acknowledged [87, 88]. 
SEVs originating from these immune cells have emerged 
as key mediators of intercellular communication between 
peripheral and central tissues. Recent investigations have 
uncovered that sEVs derived from various macrophage 
subsets depicted diverse effects on the nociceptive pro-
cess (Fig. 2).

Delayed resolution of inflammation in acute inflam-
matory pain may contribute to the development of 
chronic pain. Recent studies have shown that M2-type 
macrophages, with an increase in the CD206+ M2-like 
marker observed during pain resolution, play a critical 
role in resolving inflammatory pain. Conversely, treat-
ment with M1 macrophages induced transient hyper-
algesia in normal mice and did not affect resolving 
inflammatory hyperalgesia in models of inflammatory 
pain [21]. sEVs derived from M2 macrophages have been 
shown to mediate the communication between immune 
and neuronal systems, highlighting their potential as 
analgesic agents during the resolution of inflammatory 
pain. It was found that CD206+ M2-like macrophage-
derived sEVs rapidly resolved transient inflammatory 
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pain during the subsiding phase [21]. Furthermore, the 
presence of mitochondria in sEVs derived from M2 mac-
rophages was found to play a critical role in the analge-
sic process. Mitochondrial dysfunction and defects have 
been implicated in the pathogenesis of various chronic 
pain conditions [89–91]. The transplantation of mito-
chondria to neurons will sustain the neuronal function in 
a pathological condition [92]. These macrophages were 
capable of transferring mitochondria to neurons via sEVs, 
thereby maintaining a functional mitochondrial network 
in sensory neurons [21, 93]. Ligand-receptor interac-
tions have been reported to specifically target neurons 
by sEVs. CD200R+ sEVs were found to target iSec1+ 
neurons for mitochondria delivery, and in  vivo studies 
have confirmed the necessity of CD200R expression on 
macrophages and iSec1 expression on sensory neurons 
for effective transport of mitochondria by sEVs during 
the resolution of inflammatory pain [21]. In this study, 
the peak size of sEVs was around 100 nm. However, it is 
worth noting that mitochondria typically have a diameter 
greater than 200 nm. Interestingly, it was reported that 
MVs but not exosomes transfer mitochondria to neu-
rons’ brain slices [93]. Therefore, vesicles may be carrying 
and transporting mitochondrial DNA (mtDNA), RNA 
(mtRNA) [94], or mitochondrial bodies [95]. The transfer 
of such material may promote inflammatory pain resolu-
tion rather than the mitochondria themselves. Further 
investigation is needed to explore this hypothesis.

Based on well-established findings, diverse subpopula-
tions of macrophages have been shown to induce anal-
gesic responses to a certain extent (Table 3). It has been 
reported that naïve macrophages (M0) could reverse 
thermal hyperalgesia caused by Complete Freund’s Adju-
vant (CFA) injection after 48 h, but they were unable to 
relieve mechanical hypersensitivity [96]. Mitochondria-
containing sEVs isolated from M2-type macrophages 
have been shown to rapidly and transiently resolve 
inflammatory pain, while artificial vesicles containing 
mitochondria from M0 macrophage cell bodies also alle-
viated inflammatory pain [21]. In addition to promot-
ing pain self-regression, M2 macrophage-secreted sEVs 
can also serve as effective vectors for delivering nucleic 
acids. SEVs carrying miR-23a-3p from macrophages were 
found to elevate the mechanical allodynia and thermal 
hyperalgesia thresholds in an inflammatory pain model 
[97]. This effect was attributed to the efficient transport 
of miR-23a-3p to microglia by these sEVs [97]. Besides 
the analgesic effect of sEVs from M0 macrophages, M1- 
and M2-type macrophage-derived sEVs also have anal-
gesic effects. It is well established that lipopolysaccharide 
(LPS) stimulation effectively triggers macrophage polari-
zation towards the classically activated M1 subtype. 
SEVs were obtained after the stimulation of RAW 264.7 

cells with 1 µg/ml LPS for a duration of 24 h. These sEVs 
exhibited noteworthy attenuation of thermal hyperalge-
sia but no discernible impact on mechanical allodynia in 
a CFA-induced inflammatory pain model as early as 24 
h post-administration [96]. For longer analgesic effects, 
the administration of sEVs only reversed thermal hyper-
algesia after 48 h of CFA injection [96]. Moreover, sEVs 
derived from LPS-primed macrophages carrying anti-
inflammatory microRNAs (miR-146a, miR-146b, and 
miR-21) have been found to transfer to neurons, astro-
cytes, and microglial cells. Intrathecal administration of 
sEVs reduced mechanical hypersensitivity in formalin-
induced late-phase inflammatory pain, and prophylac-
tic administration of sEVs two weeks before induction 
of pain was effective in attenuating pain hypersensitivity 
in the CFA model [98]. According to these results, sEVs 
from different subtypes of macrophages all have varying 
degrees of analgesic effects.

Blood‑derived sEVs
Accumulating evidence has suggested that sEVs hold 
immense potential for diagnostic and prognostic pur-
poses across multiple disorders [99, 100]. In the context 
of nerve injury and neuroinflammation, alterations in 
sEV composition, markers, and abundance have been 
observed in serum. Proteomics analysis of serum sEVs 
in a spared nerve injury model of neuropathic pain 
revealed significant differences between SNI and control 
samples. Notably, complement component 5a (C5a) and 
intercellular adhesion molecule-1 (ICAM-1) were found 
to be increased within sEVs from the serum of neuro-
pathic pain, whereas they were decreased in the whole 
serum of neuropathic pain compared to controls [101]. 
This suggested that rather than an increase in produc-
tion, neuropathic pain might induce the packaging of 
C5a and ICAM-1 protein into sEVs, thereby indicating 
the potential value of altered sEV content as a diagnostic 
tool [101]. Complex Regional Pain Syndrome (CRPS) is a 
neuropathic pain disorder that is known for its refractory 
nature. In a recent study, researchers revealed significant 
differences in the levels of 17 miRNAs of sEVs between 
responders and poor responders before and after the 
plasma exchange therapy. Among these study partici-
pants, individuals who exhibited a poor response had 
reduced levels of sEV-hsa-miR-338-5p. This miRNA tar-
gets interleukin 6 (IL-6) and modulates IL-6 mRNA and 
protein expression levels [102]. In addition, the research-
ers employed miRNA-based markers to distinguish the 
heterogeneous patient population with CRPS, which 
was considered crucial for identifying suitable treatment 
options. After obtaining serum samples from various 
species, the serum was subjected to a 24-hour incubation 
period at a temperature of 37 °C. It was observed that the 
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conditioned serum exhibited analgesic properties toward 
neuropathic pain via sEVs [103]. The serum with sEVs 
was found to contain higher levels of anti-inflammatory 
and pro-resolving mediators, including IL-1Ra, Tissue 
Inhibitor of Metalloproteinases 1 (TIMP-1), and TGF-β1, 
as well as resolvins D1/D2 [103]. Flow cytometry rep-
resents a potential solution for distinguishing markers 
present on sEVs derived from parent cells, enabling dif-
ferentiation of the various sources of these sEVs.

Tumor‑derived sEVs
Tumor-derived sEVs possess the ability to facilitate peri-
neural invasion and modulate nociceptive response, 
thereby playing a crucial role in cancer pain. Administer-
ing tumor-derived sEVs through intraplantar injection in 
naive mice resulted in heightened sensitivity by sensitiz-
ing C-fiber nociceptors [104]. In pancreatic cancer, these 
tumor-derived sEVs were taken up by dorsal root gan-
glion (DRG) neurons, triggering the expression of nocic-
eptor genes [105]. Furthermore, the enriched-miR-21-5p 
molecule was implicated in contributing to the overall 
impact of these sEVs on pancreatic cancer pain [105]. The 
tumor-derived sEVs also led to hypersensitivity through 
an autotaxin (ATX)-enzyme synthetizing lysophos-
phatidic acid (LPA)-LPA receptor (LPAR)-dependent 
manner in bone cancer pain [104]. In vitro, studies also 
revealed tumor-sEVs evoked dorsal root ganglion (DRG) 
neuron sensitization by ATX-LPA-LPAR signaling [104]. 
Remarkably, depleting sEVs from an oral cancer cell line 
supernatant led to reduced mechanical allodynia and 
eliminated thermal hyperalgesia in  vivo [106, 107]. The 
miR-21-5p and miR-221-3p in sEVs possibly contributed 
to oral cancer pain [107]. Similarly, the other biomol-
ecules that tumor cell-derived sEVs carried like nerve 
growth factor receptor cytokines are able to promote 
immune cell aggregation and lead to neuron sensitiza-
tion [108, 109]. Furthermore, upon uptake of these sEVs 
by target cells, an exacerbation of tissue damage was 
induced through the active vision of intracellular signal-
ing pathways such as mitogen-activated protein kinase 
(MAPK) and nuclear factor κ B (NF-κB) [108].

Intercellular communication by sEVs is a key feature 
of metastasis. They transport bioactive molecules asso-
ciated with tumor progression. Cancer-induced bone 
pain (CIBP) is a typical cancer pain caused by metasta-
sis. It is a pervasive issue that results from the metastasis 
of malignant tumors to the bone. CIBP constitutes over 
50% of chronic cancer pain cases [110]. Recent stud-
ies have provided insights into the influence of sEVs on 
CIBP. SEVs derived from lung cancer cells were found to 
exacerbate pain behavior in mice with CIBP [111]. These 
sEVs carried let-7d-5p, which inhibited the µ1 opioid 
receptor (OPRM1) in the DRG, thereby contributing to 

the heightened pain effects induced by sEVs. It was iden-
tified 40 genes were overexpressed in metastatic tumors 
from individuals reporting high levels of pain compared 
to N0 tumors and normal tissue. These genes have both 
oncogenic and neuronal functions and were presented 
in sEVs. Moreover, cancer cells generally produce more 
sEVs than normal cells, and sEVs derived from cancer 
cells have a strong capacity to modify both local and dis-
tant microenvironments [112, 113]. These findings offer 
valuable insights into the role of sEVs in cancer pain and 
highlight the potential therapeutic benefits of targeting 
sEVs and associated gene expression in the management 
of this debilitating condition.

Other sources‑derived sEVs
Intervertebral disc (IVD) degeneration is a prevalent pre-
cursor of low back pain, a condition that affects millions 
worldwide. The herniation of IVDs also results in height-
ened nociceptive responses in the spinal cord, ultimately 
leading to radicular pain upon exposure of nerve roots to 
nucleus pulposus (NP) tissues. Recent research has dem-
onstrated that sEVs released by NP cells have an impact 
on persistent pain after disc herniation. In particular, 
miR-223 found in NP-derived sEVs (NPEVs) was shown 
to have a potential anti-nociceptive role during the acute 
phase of disc herniation [114]. The increased expression 
of miR-223 during this phase was found to be associated 
with a decreased risk of radicular pain [114]. Addition-
ally, the process of reprogramming NP cells utilizing 
Forkhead box F1 (FOXF1) resulted in the delivery of sEVs 
containing FOXF1 into the IVD. Consequently, this inter-
vention provided a state that was both anti-catabolic and 
anti-inflammatory, which helped to ameliorate the condi-
tion of IVD degeneration [115].

Visceral pain is a distressing sensation that results from 
the activation of nociceptors located in internal organs or 
tissues, such as IBD or endometriosis. A growing body 
of evidence suggests that the gut and nervous system 
are intricately connected through a network of inter-
connections known as the gut-brain axis. Alongside the 
well-known secretion of neurotransmitters, metabolites, 
and pathogen-associated molecular patterns (PAMPs), 
emerging research has uncovered the release of sEVs by 
gut microbiota and intestinal epithelial cells. These sEVs 
could interact with local neuronal and immune cells in 
the gut [116, 117]. These interactions can modulate sig-
nal transmission in the vagal afferent pathways, shedding 
light on the important regulatory role of the released 
sEVs in host physiology and pathology. It was identified 
that miRNA-6769-5p regulated the target gene Ataxin 1 
(ATXN1), which was involved in intestinal sEV-triggered 
activation of neuronal cells [118]. The disruption of gut 
microbiota led to the release of sEVs from intestinal 
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epithelial cells, which caused M1 polarization in mesen-
teric lymph nodes and resulted in an increased level of 
circulating IL-1β. The elevated level of IL-1β promoted 
neuronal damage and apoptosis [119]. On the other hand, 
the nervous system can also regulate intestinal function 
in reverse. Recent literature has reported that gut-inner-
vating TRPV1+ nociceptors regulated the composition of 
the intestinal microbiota to limit inflammation and pro-
mote intestinal tissue protection [120]. These evidences 
suggest that sEVs may play a role in regulation among the 
epithelial cells, microbiota, and nervous system. Given 
their ability to modulate neural activity, it is likely that 
sEVs contribute to both the development and resolution 
of visceral pain.

As mentioned above, the intracellular precursors 
of exosomes are formed in the endosomal pathway. 
Endosomes are vesicular structures present within cells 
before the formation of exosomes. Interestingly, they 
have also emerged as significant players in the dynamic 
intercellular communication network. While the major-
ity of studies highlight the diverse alterations arising from 
cell surface receptor signaling, a cohort of scientists have 
unearthed a notable function of the inner endosomes in 
pain modulation. Specifically, it has been unveiled that 
endosomes, via their surface-expressed GPCRs such as 
calcitonin receptor-like receptors (CLRs) and neurokinin 
1 receptor (NK1R), actively contributed to the pathophys-
iology of pain [121–123]. The utilization of nanoparticles 
that targeted GPCRs on endosomes resulted in profound 
and sustained alleviation of nociceptive, inflammatory, 
and neuropathic pain [124]. It is worth noting that the 
endosomes carrying these GPCRs have the potential to 
undergo a process of exosome formation, whereby they 
release them into the extracellular milieu. These results 
provide insights into the significance of endosomes and 
the process of sEV formation in alleviating pain.

sEVs as biomarkers
Clinical pain disorders are characterized by the presence 
of persistent pain, which is a subjective sensory experi-
ence. This poses challenges for objective assessment, as 
doctors face difficulties in distinguishing between emo-
tional features and somatic sensations using scoring 
systems. Nevertheless, there is potential for diagnosis 
through biomarkers associated with underlying mecha-
nisms, neural activity, and susceptibility [125]. Neuroim-
aging can provide real-time image biomarkers [126], but 
biological markers are better suited to assess the under-
lying pathological mechanisms. The use of sEVs as bio-
markers has been extensively investigated across various 
disorders, with the development of a specific commercial 
test kit for prostate cancer [127]. SEVs, as biomarkers, 

have been extensively studied in numerous disorders 
due to their distinctive advantages. Firstly, sEVs can be 
readily obtained from various liquids. Secondly, they 
possess the capability to traverse both the BBB and the 
blood-spinal cord barrier BSB, enabling them to trans-
port biomolecules originating from the nervous system. 
Thirdly, sEVs encapsulate a multitude of essential com-
ponents such as proteins, DNA, RNA, lipids, and others, 
derived from their parent cells, thereby offering valuable 
insights into pathological tissues. Lastly, aberrant expres-
sion of certain miRNAs and proteins has been linked to 
the development and maintenance of pain conditions. 
These molecules can modulate key pathways and mecha-
nisms involved in pain perception. By targeting specific 
genes involved in these processes, miRNAs and proteins 
can influence the overall pain response. The detection of 
miRNAs and proteins in sEVs offers a unique opportu-
nity for biomarker discovery in pain research. SEVs are 
membrane-bound structures that cells release into the 
extracellular space. One of their primary functions is to 
protect enclosed molecules from degradation, making 
them valuable for identifying novel biomarkers within 
SEVs [127].

In mice with SNL-induced neuropathic pain, there 
was a significant increase in the levels of miR-21 in 
both DRG and blood-derived sEVs [128]. Additionally, 
miR-23a levels in sEVs derived from DRG neurons were 
found to increase after peripheral nerve injury, suggest-
ing that contained-miR-23a sEVs could serve as a pro-
spective biomarker for pain hypersensitivity [54]. These 
findings suggest that sEV-miRNAs from blood or injured 
sites have the potential as biomarkers for neuropathic 
pain induced by nerve injury. Recent research also found 
that following SCI, there were notable changes in circu-
latory CD81+ sEVs expressing, as well as their associated 
miRNAs cargo. These acute alterations hold the poten-
tial to elicit an inflammatory response in the brain cor-
tex through the circulation, with astrocytes appearing 
to play a pivotal role in both the source and response to 
circulating sEVs post-injury [129]. Circulatory CD81+ 
sEVs exhibit a potential role in characterizing the pain 
that results from SCI. The increased expression of sEV-
miR-223 from NPs during the acute phase of disc her-
niation was found to be associated with a decreased 
risk of radicular pain [114]. SEVs also exhibit potential 
as prognostic indicators for pain management, accord-
ing to recent research findings. In particular, following 
therapeutic plasma exchange treatment for CRPS, sig-
nificantly lower levels of sEV-miR-338-5p were observed 
in blood samples from poor responders [130]. Analysis 
of sEV-miR-338-5p may therefore represent a viable 
method for evaluating the clinical efficacy of plasma 
exchange treatment.
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To shed light on the potential of sEVs as reliable bio-
markers for pain diagnosis, further investigations are 
warranted. Specifically, a comprehensive examination 
of the role of sEVs derived from nerve roots, brain, CSF, 
and serum in various pain conditions is required. Such 
investigations would not only allow for a deeper under-
standing of the involvement of sEVs in pain disorders but 
also pave the way for the development of effective pain 
management strategies. The unique properties of sEVs, 
including their ability to carry specific cargoes such as 
proteins, lipids, and nucleic acids, make them attrac-
tive candidates for use as diagnostic tools. By elucidat-
ing the specific molecular contents of sEVs associated 
with different types of pain, it may be possible to identify 
objective biomarkers that can be used to diagnose pain 
conditions and monitor treatment efficacy. However, sev-
eral technological hurdles must be overcome to establish 
the reliable diagnosis based on sEVs: (1) the different 

isolation methods mentioned earlier can lead to varying 
outcomes, affecting the reproducibility and reliability of 
sEV-based diagnosis; (2) distinguishing the subpopula-
tion of sEVs poses a challenge; (3) validating these bio-
markers and establishing their clinical relevance present 
difficulties that require rigorous validation studies, large-
scale trials, and comparison with existing diagnostic 
methods. Nevertheless, recent advancements in single-
vesicle technologies offer promising potential for the 
detection of sEVs as biomarkers, rendering them increas-
ingly noninvasive, convenient, and precise [131].

sEV‑based regenerative medicine for pain relief
Regenerative medicine has emerged as a promising ther-
apeutic approach for an array of neurological disorders 
owing to its impressive potential for regeneration and 
repair, such as spinal cord injury, stroke, Alzheimer’s dis-
ease, and traumatic brain injury [132]. Pain management 

Fig. 4  MSC-sEVs for pain relief. MSC-sEVs can be delivered in various ways. The analgesic effects of MSC-sEVs have been verified in various pain 
models. They promote axonal growth and myelin regeneration, protecting neurons. They alleviate the activation of astrocytes and microglia 
and promote the transition of M1 to M2 macrophages. Additionally, MSC-sEVs inhibit mast cell degranulation and modulate the Th1/Th17 ratio 
while promoting Treg cells. MSC-sEVs: mesenchymal stem cell-derived small extracellular vesicle; DPN: diabetic peripheral neuropathy; OA: 
osteoarthritis; TP: tendinopathy pain; CCI: chronic constriction pain; SNL: spinal nerve ligation; EPA: experimental autoimmune prostatitis; SCI: spinal 
cord injury; SNI: spared nerve injury
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is another area where regenerative medicine has gar-
nered significant attention. MSCs exhibit remark-
able diversity in their origins, ranging from an induced 
pluripotent stem cell (iMSC) to bone marrow (BMSC), 
umbilical cord (UCMSC), adipose tissue (ADMSC), den-
tal pulp (DMSC), and other sources, all of which have 
shown remarkable therapeutic efficacy [133]. A growing 
body of literature suggests that the paracrine effects of 
sEVs are largely responsible for the therapeutic benefits 
of MSCs. MSC-derived sEVs (MSC-sEVs) are a promis-
ing alternative to traditional cell-based therapies due to 
their innate advantages over their parent cells. Notably, 
sEVs offer no immunogenicity and lack neoplastic quali-
ties or differentiation concerns. Additionally, MSC-sEVs 
are abundant in supply, easy to preserve, and possess the 
ability to cross biological barriers with ease, such as BBB. 
Furthermore, sEVs can protect contents against degra-
dation, such as miRNA, and provide multiple delivery 
modes, making them highly versatile. Indeed, various 
administration routes, including intravenous, intrathe-
cal, intranasal, and local delivery, have shown efficacy in 
treatment (Fig. 4) [134–137]. These characteristics dem-
onstrate that MSC-sEVs hold great promise for use in 
therapeutic applications, particularly in pain relief, and 
may serve as a substitute for traditional cell-based thera-
pies (Table 2).

According to a recent study, the continuous local deliv-
ery of MSC-sEVs has shown promising results in miti-
gating tendinopathy-associated acute pain in rats over 
a period of four weeks [137]. The research affirmed that 
this therapy was capable of hindering mast cell infiltra-
tion and reducing the number of positive mast cells 
surrounding nerve fibers [137]. Furthermore, the admin-
istration of MSC-sEVs led to reduced expression of pro-
inflammatory cytokines and lowered activation of mast 
cells through the hypoxia-inducible factor-1 (HIF-1) 
signaling pathway, coinciding with an improvement in 
symptoms [137]. Osteoarthritis (OA) is a typical inflam-
matory pain. At weeks 2, 4, and 6 in the OA model, the 
pain threshold was significantly improved after MSC-
sEVs treatment [138]. The reduced serum inflammatory 
mediators including IL-1β, IL-6, and TNF-α, repaired 
cartilage, and resynthesis of extracellular matrix were 
associated with the analgesic effects after sEVs applica-
tion [138]. Furthermore, the anti-inflammatory response 
and protective effect for chondrocytes were regulated by 
sEV-encapsulated miRNAs, like miR-23a-3p, miR-9-5p, 
and miR-396 [139–141]. MiR-23a-3p was found to tar-
get the suppression of phosphatase and tensin homo-
logue (PTEN) levels while elevating Protein Kinase B 
(AKT) expression in cartilage [141]. Moreover, miR-
9-5p band to the 3’ untranslated region (3’UTR) of syn-
decan-1 (SDC1), effectively inhibiting its upregulation. 

As a result, this inhibition reduced inflammation and 
mitigated osteoarthritis-like damage [139]. Additionally, 
miR-3960 could target and inhibit pleckstrin homology-
like domain, family A, member 2 (PHLDA2), which 
was positively associated with SDC1 and activation of 
the Wnt/β-catenin pathway [140]. It was also reported 
that MSC-sEVs suppressed glial fibrillary acidic protein 
(GFAP) and ionized calcium-binding adapter molecule 1 
(Iba1) in both the spinal cord and DRG of the SNL pain 
model. They promoted the pro-inflammatory microglia 
to restorative type, led to reduced astrocyte activation, 
and inhibited leucocytes and CD8+ T lymphocyte infil-
tration, all of which contributed to the alleviated neuro-
inflammation [142].

Apart from inflammatory pain, MSC-sEVs also 
have the potential ability to alleviate neuropathic pain 
through diverse intervention modalities. UCMSC-sEVs 
have dose-dependent analgesic effects on mechanical 
allodynia and thermal hyperalgesia when intrathecally 
administered following SNL injury [135]. It was note-
worthy that the commencement of action occurred 
within a mere 15 min. In the group administered with 
a dosage of 1.2 mg/ml, the rat model exhibited a res-
toration of normal pain threshold during the initial 
phase and keep steady pain status at day 8 post-sur-
gery. Additionally, the continuous intrathecal infusion 
of UCMSC-sEVs for 7 days (hourly dose: 1.2 µg) pre-
vented the development of neuropathic pain, revealing 
a noteworthy antinociceptive effect [135]. In addition, 
a single intrathecal injection of MSC-sEVs durably 
has an analgesic effect on partial sciatic nerve ligation 
(SNL) and CCI pain model [143–145]. Researchers also 
adopted a novel approach to apply UCMSC-sEVs. The 
UCMSC-sEVs were wrapped by a sponge-like alginate 
scaffold and then the materials were wrapped around 
ligated nerves in the SNL model [146]. This therapeu-
tic method improved the withdrawal threshold and 
latency. It was more important that the wrapped sEVs 
maintained long-lasting antinociceptive effects until 
day 21 after surgery, better than the single injection. 
Similarly, the containing-sEVs materials ameliorated 
the inflammatory microenvironment and promoted the 
regeneration of axons [146]. This reminded us to pay 
attention that the extended release of sEVs will improve 
the therapeutic effects. However, it is noteworthy that 
the cell supernatant of MSCs was centrifuged at 2000 g 
and then passed through a 0.22 μm filter to obtain the 
sEVs [135]. In this study, they found the characteriza-
tion of sEVs in morphology and marker, but there was 
no size-distribution analysis. The isolation and extrac-
tion of sEVs require multifaceted validation.

PKH26-labeled sEVs were taken up by neurons and 
microglia in the dorsal horn of the spinal cord [143–145]. 
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The antinociceptive effects were associated with sup-
pressed neuron and glial activation, as well as reduced 
neuroinflammation. SEVs down-regulated Rsad2 expres-
sion and inhibited TLR2/MyD88/NF-κB signaling activa-
tion in spinal microglia [143]. In addition, according to 
miRNA-seq results, miR-26a-5p was enriched in MSC-
sEVs and miR-26a-5p alleviated the activation of micro-
glia in spinal cord. It significantly suppressed neuropathic 
pain and neuroinflammation by targeted modulation of 
wnt5a in spared nerve injury (SNI) model, contributing 
to the effect of sEVs [144]. Apart from this, MSC-sEVs 
have been demonstrated to ameliorate CCI-induced 
mechanical allodynia and stimulate microglial autophagy 
by inhibiting the activation of the PI3K/AKT/mTOR 
signaling pathway [145]. Furthermore, the transfer of 
miR-99b-3p, miR-190b-5p, and miR-152-3p via sEVs sig-
nificantly suppressed the expression of pro-inflammatory 
cytokines in activated microglia [145]. The included miR-
NAs in sEVs, specifically miR-99b-3p, miR-190b-5p, and 
miR-152-3p, augmented the levels of LC3-II and Bec-
lin-1. Notably, only miR-99b-3p exhibited a substantial 
reduction in the up-regulation of p62 [145]. The presence 
of these miRNAs in sEVs is reported to have considerable 
potential for promoting pain relief by regulating micro-
glia activation. Furthermore, studies have suggested that 
the axonal growth of neurons is partially attributed to the 
presence of encapsulated argonaut 2 (Ago2) protein in 
sEV - a critical effector molecule for miRNAs [28, 147]. 
The involvement of SNARE is vital for the endocytic 
uptake of sEVs by neurons [28]. Additionally, MSC-sEVs 
have regulatory effects on activated astrocytes. Inflam-
mation-induced astrocytes with abnormal calcium sign-
aling and mitochondrial dysfunction were effectively 
reversed by MSC-sEVs [148].

Diabetic peripheral neuropathy (DPN) often elicits 
enduring neuropathic pain. The systemic administra-
tion of MSC-sEVs every week for a duration of eight 
weeks was found to have a significant effect on restor-
ing mechanical and thermal thresholds in DPN and pro-
moting the transition of macrophages from an M1 to an 
M2 phenotype, which in turn curtailed the inflamma-
tory response observed in the sciatic nerves of a murine 
model [136]. Additionally, these sEVs were also found to 
enhance nerve conduction velocity in DPN mice [136]. 
Due to the neuroprotective effect of MSC-sEVs, they 
have been demonstrated to support the survival and 
axonal growth of injured neurons in DPN [149]. Remark-
ably, these sEVs have also been shown to significantly 
enhance the cell viability of ganglion cells, and promote 
axon regeneration, and myelination, thereby prevent-
ing axonal loss and dysfunction [147, 150–152]. In the 
peripheral nervous system, the administration of MSC-
sEVs was found to facilitate the restoration of motor 

function and stimulate axon regeneration [153]. They 
promoted an increase in both the length and number of 
axons [154]. However, it was reported that exosomes with 
sizes ranging from 30 to 100 nm exerted a positive impact 
on neurite outgrowth, while MVs, with sizes between 50 
and 1000 nm, exhibited a suppressive effect on the same 
process [152]. Distinct effects may be observed among 
various types of sEVs. These effects, while potentially dis-
parate, have yet to be fully elucidated.

Recent research has shed light on the remarkable abil-
ity of MSC-sEVs to promote myelination in injured neu-
rons. After being absorbed by Schwann cells (SCs), the 
MSC-sEVs efficiently prompted SCs proliferation, migra-
tion, and release of neurotrophic substances, resulting 
in improved myelin formation [153, 154]. Furthermore, 
except for peripheral chronic pain, neurological condi-
tions such as spinal cord injury, stroke, and multiple 
sclerosis can lead to central pain [2]. To address this chal-
lenge, researchers have explored the potential of MSC-
sEVs as nanomedicines for central diseases. In the central 
nervous system, the application of sEVs has also been 
associated with improved maintenance of myelin. This 
was evidenced by an increase in the expression of genes 
involved in myelin production and a rise in the number 
of oligodendrocytes that actively generated myelin [155]. 
By delivering their contents, sEVs inhibited neuroinflam-
mation, protected neurons, and promoted myelin sheath 
growth [156]. These were crucial steps toward restoring 
neural function and relieving pain in the central nervous 
system. While preclinical studies have shown promising 
results, further research is needed to determine the safety 
and efficacy of MSC-sEVs in central disease use.

MSC-sEVs also appear to be effective in visceral pain. 
In a recent study, sEVs treatment demonstrated notable 
alleviation of chronic pelvic pain in the experimental 
autoimmune prostatitis (EAP) model [146]. Moreover, 
the sEVs intervention led to a remarkable reversal of Th1 
and Th17 cells, alongside an escalation in the count of 
regulatory T cells (Tregs). Additionally, there was a sub-
stantial reduction in COX-2 overexpression which indi-
cated a significant alleviation in the inflammatory state 
[146]. MSC-sEVs exhibit therapeutic potential for pain 
associated with IBD and cystitis. These disorders are 
characterized by sustained inflammatory responses caus-
ing tissue damage and neuronal sensitization. Previous 
research has shown that MSC-sEVs possess anti-inflam-
matory and immunomodulatory properties, thereby 
ameliorating IBD and cystitis symptoms. Specifically, 
MSC-sEVs downregulated the expression of IL-4 and 
IL-12 in dendritic cells, thereby inhibiting their matura-
tion and differentiation while upregulating the expression 
of TGF-β [157]. This regulation of T cells was achieved 
through several mechanisms, including modifying the 
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Th1/Th2 and Th17/Treg ratios [157]. Further studies have 
demonstrated that the mitochondria and miRNAs in 
MSC-sEVs promoted the conversion of M1 macrophages 
to the M2 phenotype, thus contributing to their immu-
nomodulatory effects and potentially mitigating pain 
induced by IBD or cystitis [158, 159].

Modified sEVs for pain relief
 In addition to their therapeutic potential, sEVs can also 
serve as versatile vehicles for optimized molecule deliv-
ery. In recent years, researchers have explored various 
approaches to modify sEVs to enhance both their effi-
cacy and durability. These techniques include engineered 
sEVs, the combination of sEVs with biomaterials, the 
loading of drugs into sEVs, as well as the creation of arti-
ficial EVs. Furthermore, these modified sEVs have shown 
remarkable promise as novel tools for targeted therapy. 
Currently, the employment of modified sEVs is gain-
ing traction in the field of pain management. This novel 
approach holds tremendous potential owing to the ability 
of sEVs to transport bioactive molecules such as proteins, 
RNAs, lipids, molecules, and drugs to targeted cells effec-
tively. By encapsulating specific therapeutic agents within 
sEVs and tailoring their properties, researchers seek to 
optimize the delivery of analgesic factors to dampen pain 
pathways while minimizing off-target effects. Moreover, 
sEVs offer several advantages over traditional drug deliv-
ery systems, including low immunogenicity, high bio-
compatibility, and enhanced stability in circulation. The 
exploitation of modified sEVs in pain management rep-
resents a promising avenue for the development of more 
effective and safer pain therapies (Fig. 5).

sEVs have emerged as promising vehicles for the tar-
geted delivery of drugs and molecules to injured tissues. 
However, their clinical efficacy is limited by the lack of 
specificity and targetability. Engineered sEVs to be more 
specific and targetable can be a feasible solution. On the 
other hand, by manipulating the composition of these 
sEVs, researchers can gain insight into the underlying 
molecular pathways responsible for pain sensation. The 
engineered approaches involve the modification of pro-
ducer cells or isolated sEVs. The goals of these methods 
entail augmenting the generation of sEVs while imparting 
them with distinct biomolecules. Additionally, the objec-
tives include loading internal lumens or external surfaces 
of sEVs with pharmacological agents, nucleic acids, and 
proteins. Furthermore, these proposed modifications aim 
to facilitate a concentrated deployment of sEVs through 
heightened targetability. These multifaceted objectives 
have spurred intensive research efforts toward develop-
ing sophisticated techniques for sEV engineering. Such 
progress is anticipated to enable the design of advanced 
sEV-based therapeutic and diagnostic modalities with 

profound implications for personalized medicine. The 
engineered methods for sEVs can be categorized into two 
main types: endogenous and exogenous ways. The for-
mer method utilizes parent cells as the source of sEVs, 
which are engineered to alter their contents (Fig.  5A). 
In contrast, the latter involves the direct modification of 
isolated sEVs from cells and is commonly employed for 
loading small RNA and drug molecules (Fig. 5B).

The microenvironmental factors exert a considerable 
impact on the condition of parent cells, resulting in a 
modification in the generation of sEVs. This occurrence 
is particularly notable in vivo, where tissues’ sEVs are sus-
ceptible to being impacted by diverse pathological micro-
environments. Moreover, the composition of culture 
media can also affect the quality and quantity of sEVs 
released by cultured cells. To enhance their bioactivity, 
different pre-treatment methods have been employed, 
including exposure to specific biochemical molecules, 
hypoxia, pH, or temperature variations [160–162]. For 
example, priming MSCs with TNF-α has been shown to 
increase the yield of MSC-sEVs and facilitate the polari-
zation of anti-inflammatory M2 macrophages [161]. 
Investigating the impact of microenvironmental factors 
in vivo on the characteristics of sEVs could lead to their 
potential utility as biomarkers for certain disorders, as 
already discussed above. Another endogenous loading 
has been extensively employed in prior studies on the 
use of sEVs for pain disorders. An encouraging approach 
involves the transfection of nucleic acid therapeutics, 
including antagomiR-4450 and miR-140-5p, into MSCs 
via recombinant lentivirus-mediated means. The result-
ing sEVs are then isolated and evaluated for their poten-
tial in alleviating aberrant conditions [136, 163, 164]. 
The miR-4450 was found to upregulate intervertebral 
discs (IVDs), leading to damage of nucleus pulposus cells 
(NPCs) through targeted regulation of ZNF121. To com-
bat this, MSC-sEVs loaded with antagomiR-4450 were 
developed, which improved abnormal gait patterns and 
attenuated IVD damage by suppressing miR-4450 and 
increasing ZNF121 expression in an IVD model [163]. 
Macrophages were transfected with miR-23a-3p after 
which sEVs enriched in this specific microRNA were 
extracted. These sEVs, displaying heightened levels of 
miR-23a-3p, demonstrated remarkable efficacy in miti-
gating inflammatory pain [97]. Given these promising 
results, further investigation into loading sEVs with addi-
tional miRNAs is warranted to explore the full poten-
tial of sEV-based therapies in pain management. On the 
other hand, surface modification of EVs has recently 
emerged as a promising approach to augment their tar-
geting and fusion capabilities. In addition, this strategy 
offers an opportunity to unravel the underlying mecha-
nisms governing sEV functionality. Shedding light on 
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the role of CD200 receptors (CD200r) in sEVs, Michiel 
et al. have ingeniously engineered macrophages deficient 
in CD200r, resulting in the isolation of sEVs from these 
cells for further investigation. Intriguingly, their find-
ings demonstrate that these sEVs were unable to alleviate 
inflammatory hyperalgesia in mice, thereby underscoring 
the significance of CD200r in promoting pain resolution 
by facilitating sEVs’ binding to neurons [21]. The local 
microenvironment of IVD impaired NPCs’ uptake of 
MSC-sEVs, highlighting the need for novel approaches to 
enhance the uptake. Cavin-2 on the membrane was iden-
tified as a key regulator of sEV uptake by NPCs. Cavin-
2-modified MSC-sEVs were generated via gene editing of 
parental MSCs, which effectively ameliorated NPC cell 
death in vitro and delayed IVD progression ex vivo [165]. 
These findings suggest that cavin-2-engineered MSC-
sEVs may hold promise as a more effective treatment for 
low back pain.

Exogenous loading methods involve loading drugs, 
nucleic acids, or proteins into purified sEVs. Physical 
approaches such as electroporation, sonication, co-incu-
bation, freeze-thaw, and extrusion have been employed 
to load a variety of molecules into sEVs. Electroporation 
has been commonly used to load nucleic acid, protein, 
and chemotherapeutics into sEVs. For instance, the use 
of electroporation to load Cas9 RNP protein into hepatic 
stellate cell-derived sEVs has been reported to target spe-
cifically injured liver [166]. Similarly, the miRNA-155 
inhibitor was electroporated into B cell-derived sEVs, 
which showed a significant decrease in LPS-induced 
miRNA-155 levels in macrophages [167]. The aforemen-
tioned molecules, including miR-23a-3p and antago-
miR-4450, can also be encapsulated directly into sEVs 

to improve therapeutic efficiency. Chemotherapeutic 
agents, such as doxorubicin and paclitaxel (PTX), have 
been widely loaded into sEVs for tumor treatment [10]. 
Furthermore, PTX-loaded macrophage-derived sEVs 
engineered with a ligand by sonication targeted overex-
pressed sigma receptors on lung cancer cells, achieving 
a good therapeutic effect for tumors [168]. This targeted 
approach combining drug loading with engineered sEVs 
holds great promise for optimizing sEVs treatment, with 
excellent prospects for much broader and more frequent 
application. Besides tumor treatment, sEVs and other 
vesicle analogs have also shown potential in pain man-
agement. Liposome-packaged morphine has been dem-
onstrated to prolong the analgesic effect and decrease 
addictive side reactions, compared with only morphine 
treatment [169]. The impact of cannabidiol (CBD) as 
an analgesic agent holds promising potential for pain 
management. Using monodisperse lipid nanocapsules 
(LNCs) as biocompatible and biodegradable carriers for 
CBD encapsulation has proven successful. This innova-
tive approach effectively circumvented dosing concerns 
associated with cannabinoids and enabled precise regula-
tion of CBD release [170]. As with these investigations, 
the utilization of sEVs for the encapsulation of analgesics 
also represents a viable prospect for advancing extended-
release drug formulations and reducing the dosage of 
drugs. SEVs ranging in size from 30 to 200 nm can encase 
multiple types of hydrophilic drug molecules, while 
their surface can also be engineered to target neurons or 
injured tissues specifically. The loaded molecules com-
bine with targetable sEVs to optimize the dose and effect 
of analgesics, which could potentially offer a safer and 
more effective approach to pain management. Despite 

Table 4  Modified sEVs for pain relief

NDEVs Neuron-derived EVs, SNI Spared nerve injury, CFA Complete Freund’s Adjuvant, IR Ischemia-reperfusion, SNL Spinal nerve ligation, DPN Diabetic peripheral 
neuropathy, PpyNps Polypyrrole nanoparticles

Published year Model Resources Effects Modified methods Ref.

2022 Carrageenan-induced pain M0 macrophages Resolve inflammatory pain Artificial vesicles from cells [21]

2021 IVD NPs Anti-catabolic and anti-inflammation Loaded with FOXF1 by electropora-
tion

[115]

2021 DPN MSCs Normalized nerve conduction veloc-
ity and compound muscle action 
potential

Hybrid (fusion of EVs and PpyNps-
liposome by freeze-thawing)

[149]

2021 IR-induced pain Neurons Attenuated pain hypersensitivity Hypoxia-precondition induced high 
level of miR-126-3p

[56]

2021 SNI Neurons Reduced neuropathic hypersensitivity Loaded with miR-21 antagomir [54]

2020 CFA M2 macrophages Increased mechanical allodynia 
threshold

Transfection with lentivirus-miR-
23a-3p

[97]

2020 SNL MSCs Upregulated withdrawal threshold 
and latency

Combination with alginate scaffold [172]

2017 SNI Neurons Attenuated neuropathic hypersen-
sitivity

Loaded with miR-23a antagomir [53]
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their potential as a promising platform for targeted drug 
delivery, the loading efficiency of sEVs remains a signifi-
cant challenge. Loading sEVs through various methods 
often leads to damage to the vesicles themselves. This 
factor could potentially account for the limited imple-
mentation of engineered extracellular vesicles as a via-
ble solution for pain treatment. Efforts are underway to 
address this issue by exploring new methods for modify-
ing sEVs that do not adversely affect their integrity. The 
reported modified sEVs for pain treatment was shown in 
Table 4.

sEVs combine with biomaterials
Although therapeutic sEVs have demonstrated posi-
tive effects on various diseases, their administration and 
dosage greatly diverge. To achieve prolonged effects and 
direct tissue targeting, researchers have also explored 
the use of specific biological materials to enhance the 
therapeutic efficacy of sEVs. Recent studies have focused 
on the composite application of sEVs with biological 

biomaterials (Fig.  5C). For instance, photocrosslink-
able alginate hydrogels containing fibronectin have been 
designed to encapsulate, tether, and retain engineered 
sEVs over a period of seven days while maintaining their 
structural integrity and functionality [171]. A novel 
strategy entails the utilization of combinatorial MSC-
sEVs that were enmeshed within a porous alginate scaf-
fold to address pain management. This technique was 
observed to elicit notable analgesic effects in neuropathic 
pain models, exhibiting a sustained efficacy for up to 21 
days. In contrast, single doses of MSC-sEVs were swiftly 
eliminated and only furnished short-term analgesia, as 
evidenced by prior investigations [172]. The alginate scaf-
fold delays the release of MSC-sEVs, thereby extending 
their action time and balancing anti-inflammatory and 
pro-inflammatory mediators in DRG [172]. Similarly, 
PDLLA-PEG-PDLLA triblock copolymer gels (PLEL) 
loaded with circRNA3503-overexpressing MSC-sEVs 
(PLEL@circRNA3503-OE-sEVs) have shown promise in 
treating osteoarthritis, particularly in cartilage tissues 

Fig. 5  Potential application of modified sEVs for pain relief. The engineered modification of sEVs encompasses both endogenous and exogenous 
approaches. The integration of sEVs with biomaterials, artificial NVs, and the hybridization of liposomes with sEVs also demonstrate promising 
analgesic capabilities. sEV: small extracellular vesicle; NV: nanovesicle
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[173]. The PLEL could slowly release the circRNA3503-
loaded sEVs, providing a therapeutic effect [173]. These 
findings suggest that combining sEVs with biological 
biomaterials is a promising strategy for improving their 
therapeutic potential in pain disorders.

Biomimetic vesicles
The task of ensuring consistent and optimal encapsula-
tion of therapeutic agents within sEVs remains a sig-
nificant challenge in the field. Achieving uniform and 
efficient loading of these agents into sEVs remains an 
obstacle of considerable importance that warrants fur-
ther investigation. One of the important reasons is the 
low production volume of sEVs. Hybrid sEVs, resulting 
from the fusion of sEVs with liposomes, have emerged 
as an avenue for addressing this challenge (Fig. 5E). The 
fusion process, which could be activated by co-extrusion, 
freeze-thawing, and polyethylene glycol (PEG), resulted 
in the development of biosynthetic hybrid carriers that 
combined the advantages of both sEVs and functional-
ized liposomes [174]. These hybrid sEVs have been dem-
onstrated to be highly effective in augmenting sEVs with 
exogenous lipophilic or hydrophilic compounds while 
preserving their innate content and biological properties 
[175].

On the other hand, nanovesicles (NVs), also known 
as sEV mimetics, are a type of nanovesicles or nano-
particles that are distinct from sEVs. NVs are obtained 
from physical methods such as extrusion, sonication, 
and freeze-thaw, with most of them being derived from 
cells or liposomes [176, 177]. Recently, microfilters with 
various pore sizes have been employed to produce NVs 
mechanically (Fig. 5D). These NVs typically have a diam-
eter ranging from 100 to 250 nm and possess effects 
that was similar to those of naturally occurring biologi-
cal sEVs. Interestingly, the yield of NVs was more than 
20 times higher than that of sEVs, leading to enhanced 
bioavailability [178]. NVs, akin to sEVs, exhibit analo-
gous traits concerning their capacity for drug encap-
sulation and genetic modification [179]. Furthermore, 
the mechanical stress involved in the extrusion process 
results in better extensibility of NVs, which may contrib-
ute to their improved drug-loading capabilities. It is note-
worthy that there are differences in the protein profiles of 
NVs and sEVs. It was reported that NVs predominantly 
reflect the proteome of their progenitor cells. In contrast, 
sEVs exhibit a distinctive protein profile that accentu-
ates their origin from the endosomal compartment [180]. 
Researchers cultivated 9 different tumor cell lines and 
collected both sEVs and NVs from these cells. The out-
come of sequencing analysis revealed that there was a 
significant intersection of 71% within the population of 
181 membrane proteins presented in both sEVs and NVs. 

Additionally, the small RNA species within the two com-
partments revealed over 95% similarity, with the top 1000 
small RNAs (smRNAs) displaying a 65% concordance in 
their expression levels [181]. Moreover, their functional 
effects are similar. In one study, mechanically extruded 
NVs derived from MSCs were mixed with an extracel-
lular matrix (ECM) hydrogel to mitigate cardiac injury, 
achieving similar outcomes as MSC-sEVs [178]. Another 
study employed microfluidic technology to engineer NVs 
that expressed neural membrane proteins. These NVs 
were then administered to human pluripotent stem cell-
derived neuron cells, neuron organoid-based spheres, 
and trigeminal ganglion in  vivo, where they exhibited 
greater affinity and uptake by neurons [176]. It has been 
demonstrated that artificial vesicles containing mito-
chondria from M0 macrophages are effective in attenu-
ating inflammatory pain, similar to the effects observed 
with sEVs separated from cells [21]. It was also reported 
that MSC-derived NVs displayed neuroprotective prop-
erties against injured neuronal cells [182]. NVs present a 
promising solution for the low yield issue faced by sEVs. 
It is anticipated that these NVs are likely to become an 
alternative to sEVs.

It can be speculated that transportation of NVs load-
ing analgesic drugs or specific membrane molecules can 
effectively promote the repairment of injured neurons 
while providing pain relief. This innovative method pre-
sents a new avenue for therapeutic intervention in the 
context of pain management and neuronal regeneration. 
While the actions of NVs are indeed commendable, there 
remains a need for deeper investigation and comparison 
between NVs and sEVs, including gene expression, mem-
brane ligands and proteins, and other biomolecules. In 
the realm of pain management research, the potential of 
NVs as therapeutic agents remains largely unexplored. 
While previous studies have highlighted the effectiveness 
of sEVs in pain relief, a comparative analysis between 
NVs and EVs is conspicuously absent.

Prospect and conclusion
The current literature surveyed in this overview centers 
exclusively on sEVs. According to the report, the utili-
zation of larger electric vehicles (lEVs) resulted in a sig-
nificant reduction of pain stemming from the TP model, 
while also regulating the heterogeneity of infiltrated 
macrophages and various inflammatory cytokines [183]. 
However, it remains to investigate the other potential 
properties of lEVs in the pain process, including apop-
totic bodies. Further inquiry into the therapeutic ben-
efits of these distinct vesicular populations could provide 
valuable insights into their clinical applications and 
expand our understanding of intercellular communica-
tion mechanisms. In addition, the extraction of different 
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sEV populations is characterized by a lack of standardi-
zation and intrinsic heterogeneity, which in turn results 
in inconsistent therapeutic dosages across the literature. 
Comprehensive quantitative analysis of multiple facets 
of sEVs is crucial following their extraction to facilitate a 
more rigorous approach.

Currently, observing the real-time visualization of 
sEVs’ biogenesis, secretion, transport, and mode of 
action under both physiological and pathological condi-
tions remains a formidable challenge. Imaging of these 
fundamental processes holds tremendous potential to 
corroborate and extensively investigate the alterations 
in targeted tissues in  vivo. Thus, it necessitates imaging 
techniques with high speed, resolution, and sensitivity. 
Remarkably, zebrafish embryos offer an advantageous 
platform for non-invasive imaging of sEVs and vascular 
networks owing to their translucent nature, thereby hold-
ing immense promise for detecting even subtle changes 
[184]. The complexity and heterogeneity of these vesi-
cles present a challenge that requires further exploration 
in vivo. A novel approach to investigating single vesicles 
has emerged as a crucial tool in comprehending the path-
ological under pain condition. The confluence of cutting-
edge methodologies such as single vesicle analysis and 
real-time in vivo observation has opened up new avenues 
for a more exhaustive exploration of the intricate mecha-
nisms of pain due to sEVs. Despite notable progress, our 
current understanding of the role played by sEVs in this 
field is still in its infancy. The study of sEVs has garnered 
much attention due to their potential as a source of novel 
biomarkers and therapeutic targets for pain disorders. 
The mechanisms by which sEVs modulate pain signal-
ing pathways are not yet fully understood, and their use 
as diagnostic tools requires further validation. Nonethe-
less, with the continued investigation and technological 
advancement, we are optimistic that the study of sEVs 
will yield valuable insights into the nature of pain and 
contribute to the development of effective treatments. 
However, the potential of modified sEVs as an analgesic 
therapy remains largely unexplored, despite promising 
initial findings. Further investigation into cargo and tar-
geted modifications are necessary to unlock the full ther-
apeutic potential of sEVs in pain management.

The preliminary establishment of the role of sEVs in the 
pathogenesis, diagnosis, and treatment of pain has been 
observed. However, several significant gaps in knowledge 
still exist, indicating a requirement for a more profound 
comprehension of the underlying mechanisms. Thus, it is 
imperative to carry out extensive research on the effects 
of sEVs on pain to unleash their complete potential. This 
initiative will pave the way for innovative and less inva-
sive therapies for pain management that may be more 
effective than conventional treatments.
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