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Abstract 

With a high specific capacity and low electrochemical potentials, metal anode batteries that use lithium, sodium 
and zinc metal anodes, have gained great research interest in recent years, as a potential candidate for high‑energy‑
density storage systems. However, the uncontainable dendrite growth during the repeated charging process, 
deteriorates the battery performance, reduces the battery life and more importantly, raises safety concerns. With 
their unique properties, two‑dimensional (2D) materials, can be used to modify various components in metal bat‑
teries, eventually mitigating the dendrite growth, enhancing the cycling stability and rate capability, thus leading 
to safe and robust metal anodes. In this paper, we review the recent advances of 2D materials and summarize current 
research progress of using 2D materials in the applications of (i) anode design, (ii) separator engineering, and (iii) 
electrolyte modifications by guiding metal ion nucleation, increasing ion conductivity, homogenizing the electric field 
and ion flux, and enhancing the mechanical strength for safe metal anodes. The 2D material modifications provide 
the ultimate solution for obtaining dendrite‑free metal anodes, realizes the high energy storage application, and indi‑
cates the importance of 2D materials development. Finally, in‑depth understandings of subsequent metal growth are 
lacking due to research limitations, while more advanced characterizations are welcome for investigating the metal 
deposition mechanism. The more facile and simplified preparation of 2D materials possess great prospects in high 
energy density metal anode batteries, and thus fulfils the development of EVs.

1 Introduction
Based on the ion-intercalation mechanism, state-of-the-
art lithium-ion batteries (LIBs) have become the most 
reliable energy storage device, dominating the commer-
cial market for over 30 years, since the first realization by 
Sony in 1991 [1]. However, the mechanism of inserting 
 Li+ ions in graphite anode limits the cell capacity, which 

makes the LIBs hard to satisfy the energy demand from 
cutting-edge electronic devices and electric vehicles 
(EVs) [2–4]. Despite developing more advanced cath-
ode materials, which have increased the energy den-
sity of LIBs from 80  Wh   kg−1 (1990s) to 250  Wh   kg−1 
(most ideal case), the improvement is insufficient and 
approaching its theoretical limit [5–7]. Therefore, it is 
imperative to pursue alternative batteries such as metal 
anode batteries. In Fig. 1a, compared to the conventional 
graphite anode with a specific capacity of 0.37 Ah  g−1 and 
electrochemical potential of 0.5 V vs. standard hydrogen 
electrode, lithium, sodium and zinc metal anodes (MAs) 
are regarded as the “Holy Grail” electrodes that receive 
tremendous research attention, due to their attractive 
theoretical capacity (3.86, 1.17 and 0.82  Ah   g−1 for Li, 
Na and Zn, respectively) and the low electrochemical 
potential (− 3.04 V for Li, − 2.71 V for Na, and − 0.76 V 
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for Zn vs. standard hydrogen electrode). Furthermore, 
integration of the MAs with sulfur, oxygen or  CO2 cath-
odes, forms the metal–sulfur [8, 9], metal–oxygen [10, 
11] and metal–carbon dioxide batteries [12, 13], which 
are considered as the next-generation energy storage 
technologies.

However, the deployment of metal anode batteries is 
hindered by the safety concerns, arising from forming 
severe dendrites during the repeating metal ion plating/
stripping processes. Figure  1b illustrates the working 
principles of lithium metal batteries: during the discharge 
and charge process, metal ions are shuttled between elec-
trodes. More specifically, during discharge, metal ions 
are extracted from the metal anode and reduced with the 
cathode materials. The reverse process occurs when the 
cell is being charged. Figure 2 summarizes the main chal-
lenges of dendrite formation in metal anodes. Figure 2a 
shows that the dendrite growth starts from the uneven 
metal nucleation, which is highly depending on the inho-
mogeneity of the substrate surfaces, including anode, 
current collector, and solid-electrolyte interface (SEI). 
Rough surfaces with protrusion, cracks and tips can 
accumulate charges easily and create a nonuniform metal 
ion flux and charge distribution, allowing metal ion to 
deposit faster on those area [14]. The newly formed metal 
nucleation amplifies the surface roughness and thus 
facilitates the metal deposition into more dendritic struc-
tures. The repeating discharge/charge process creates 
huge volume change at the anode surface and damage the 
integrity of the SEI and electrode structure (Fig. 2b). The 
uncontrollable dendrite growth continuously consumes 

organic electrolytes, leading to poor ionic conductivity, 
deteriorating the cell performances. In addition, stripping 
the metal from the dendrite root area may cause exten-
sive loss of active materials, resulting in great capacity 
loss (Fig.  2c). More importantly, the separator penetra-
tion by metal dendrite would cause internal short-circuit, 
inducing the thermal runaway and explosion, as shown in 
Fig. 2d. To overcome the obstacles, strategies, including 
the introduction of electrolyte additives (HF, LiF,  H2O, 
and  Cs2+) [15–17], the design of solid-state electrolyte 
(SSE) [18, 19], separator engineering [20, 21] and anode 
surface modification [22], have been devoted to obtaining 
a uniform metal deposition.

Since the discovery of exfoliated graphene in 2004 
[23], 2-dimensional (2D) materials have been exten-
sively studied and explored during the last decade. They 
are classified as atomically thin nanomaterials in sheet-
like structures, stackable via van der Waals forces. 
2D materials are ideal building blocks for functional 
materials. In addition, the in-plane covalent bonds 
of 2D materials provide strong mechanical strength 
and structural stability. Together with their unique 
physical, chemical and mechanical properties, includ-
ing large surface area, abundant active sites and wide 
range of bandgaps from insulator to superior electronic 
conductor, 2D materials, such as, graphene, hexagonal 
boron nitride (h-BN), transition metal dichalcogenides 
(TMDs), transition metal carbides/nitrides (MXenes), 
transition metal oxides (TMOs) and elemental ana-
logues of graphene (silicene, germanene phsphorene, 
borophene and stanine are promising materials to 

Fig. 1 Opportunities and working principles of metal batteries. a Comparison between graphite anodes in LIBs, lithium, sodium, and zinc metal 
anodes in terms of theoretical specific capacity and redox potential. b Schematic diagram of the Li/Na/Zn metal batteries
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modulate the properties of metal anodes [24–28]. For 
example, the basal plane of 2D large area and mono-ori-
entated  MoS2 demonstrates dendrite-free Zn epitaxial 
electrodeposition and realizes the practical applications 
of zinc-ion batteries (ZIBs) [29].

In this review, we summarize the latest development 
of 2D materials for inhibiting dendrite growth. Firstly, 
a brief overview of 2D material’s properties and syn-
thesis method will be provided. Then, the major strate-
gies for stabilizing metal anodes using 2D materials will 
be discussed with examples from both experimental 
and theoretical points of view in the three aspects of (i) 
anode design, (ii) separator engineering and (iii) electro-
lyte modifications (Fig.  2e). Finally, based on the exist-
ing challenges, future research direction and potential 
advancement in the field will be discussed in detail.

2  Overview of 2D materials
The unique physical and chemical properties of 2D mate-
rials, have made them increasingly popular for electro-
chemical applications, particularly in battery technology 
[30]. Several 2D materials, including graphene [31–33], 
hexagonal boron nitride (h-BN) [34–36], transition metal 
dichalcogenides (TMDs) [37–39], and transition metal 
carbides and nitrides (MXenes) [40–42], have demon-
strated significant potential as metal anodes in batteries, 
highlighting their prospects in various electronic applica-
tions [35].

2.1  Graphene
Graphene is a highly conducting material that consists 
of carbon atoms arranged in a hexagonal shape with sp2 
hybridization. It has garnered significant attention for its 
exceptional and intriguing properties, particularly for its 
ultrathin film characteristics [43, 44]. Over the past few 
years, there has been a growing research interest in using 
graphene as electrode materials for energy devices [45–
47]. Graphene is an electrode material with high energy 
and power capabilities, owing to its exceptional electrical 
conductivity, impressive mechanical flexibility, remark-
able thermal conductivity, and large surface area [48–50]. 
Using graphene as an anode material has the potential 
to enhance battery performance by improving electron 
transport rate and enabling reversible specific capacity. 
Additionally, it is a suitable material for integration into 
flexible battery development due to its compatibility with 
such systems. Particularly, heteroatoms doped graphene 
has illustrated its improvements in electrochemical per-
formance in lithium-ion batteries (LIBs). A strategy for 
boosting the relative specific capacity (900  mAh   g−1) 
and rate performance (250 mAh  g−1) of LIBs was devel-
oped by utilizing the disparity electroneutrality of doped 
N and B heteroatoms [48]. The disturbance of electri-
cal neutrality in graphene effectively benefits the for-
mation of charge points, thus enhancing the oxygen 
adsorption rate and discharge performance in LIBs. 
Coincidentally, another practical approach of phospho-
rus-doped graphene in LIBs has also been investigated 

Fig. 2 Challenges of anode in metal batteries and the summary of strategies to inhibit dendrite growth. Schematic illustration of metal anode 
challenges having a uneven SEI and cracks, b metal volume change, c dead metal detached from anode surface and d dendrite formation touching 
the cathode side causing short circuit. e 2D materials modification from three aspects of anode design, separator engineering and electrolyte 
modification
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and demonstrated a significant enhancement in specific 
discharge capacity of about 460  mAh   g−1 at 0.1  A   g−1 
[32].

2.2  Hexagonal boron nitride (h‑BN)
Similar to graphene, h-BN is also in the form of a lay-
ered  sp2 phase with relatively weak bonding in the out-
of-plane direction and a robust bonding in the in-plane 
direction, featuring a honeycomb lattice structure. Inter-
estingly, the remarkable chemical stability of 2D h-BN 
layers, attributable to their strong intralayer bonds and 
ultrathin thickness, provides excellent interfacial pro-
tection for metal anode, leading to a smooth deposi-
tion process that eliminates the dendrite formation. An 
effective strategy over the h-BN-protected electrodes 
for metal anodes, showed a significant improvement 
in cycling stability, current density (2.0  mA   cm−2), and 
areal capacity (5 mAh  cm−2) [34]. In addition, it exhibits 
high thermal stability and chemical inertness, enhanc-
ing the durability of the device. With a high theoretical 
capacity, it can store a large amount of energy per unit 
weight, making it highly efficient. It has high electronic 
conductivity, facilitating efficient electron transfer and 
reducing resistance, enhancing overall performance [31, 
42]. Additionally, hBN has a high specific surface area, 
enabling a large contact area between the electrode and 
electrolyte, facilitating ion transfer, and further enhanc-
ing the device’s performance [49–54]. Many studies have 
shown that hBN can act as an effective protective layer at 
the anode/electrolyte interface in energy storage devices, 
improving the overall lifetime of batteries [51, 52]. This 
is due to hBN’s high chemical stability, which helps to 
prevent unwanted reactions between the electrode and 
electrolyte.

2.3  Transition metal dichalcogenides (TMDs)
Transition metal dichalcogenides, compositions of 
 MX2 (M = Mo, W, Cu, Sn, etc. and X = S, Se, Te, etc.), 
is another attractive class of layered 2D materials that 
show huge potentials in the electrochemical field. Intro-
ducing defects and doping creates more active sites 
for metal ion adsorption and storage. TMDs are highly 
promising anode materials, owing to their unique prop-
erties [53, 54]. They exhibit high electronic conductiv-
ity, which reduces resistance, leading to fast and efficient 
electron transfer and better overall device performance 
[50]. TMDs have high surface area and porosity, facili-
tating ion transfer and further enhancing device per-
formance. Additionally, they have excellent mechanical 
properties, such as high flexibility and toughness, mak-
ing them suitable for use in flexible devices [47, 55, 56]. 
A promising approach for improving the performance 
of TMDs as anode materials in metal batteries through 

the modification of their electronic properties was 
developed, as demonstrated by the introduction of high 
valence state Mo species and the construction of Mo–O 
bonding, resulting in improved maintenance in discharge 
capability at about 1225.7 mAh  g−1 after 500 cycles under 
high current density (1 A  g−1) [38]. Moreover, a method 
for synthesizing vertically aligned arrays of 2D ultrathin 
 MoS2-xSex nanoflakes on graphene-like carbon foam was 
developed and demonstrated the exhibition of superior 
long-term cycling stability [25, 53, 57–59].

2.4  Transition metal carbides and nitrides (MXenes)
In recent years, there has been significant interest in 
MXenes as a type of electrode material. The enhanced 
energy and power density are attributed to the fast and 
efficient transfer of electrons, due to the high electronic 
conductivity of MXenes. Furthermore, MXenes are 
highly stable and resistant to degradation, which makes 
them suitable for long-term use in metal batteries [60–
63]. MXene is a class of layered inorganic materials that 
is composed of transition metal carbides/nitrides/car-
bonitrides, firstly reported at Drexel University in 2011. 
The 2D  Ti3C2 was exfoliated from 3D bulk MAX of 
 Ti3AlC2 in hydrofluoric acid to selectively remove the Al 
[64]. The synthesis of  V4C3 MXene from  V4AlC3 through 
ball-milling treatment, that posses a large specific surface 
area with the interlayer spacing well-suited for lithium-
ion storage was reported [40]. As an anode material in 
lithium-ion batteries,  V4C3 exhibits excellent capacity, 
rate capability, and cycling performance, with a specific 
capacity of 225 mAh  g−1 after 300 charge and discharge 
cycles at a current density of 0.1 A  g−1 and 125 mAh  g−1 
at 1 A   g−1. Due to their exceptional metallic conductiv-
ity, MXenes as anode material hold great promise for 
high-rate performance in battery field [65, 66]. Among 
MXenes,  Ti2CTx and  V2CTx have demonstrated out-
standing rate capability for battery applications, owing 
to their ultrahigh metallic conductivity of 2.4 × 105 S  m−1 
[67, 68].

3  Synthesis method of 2D materials
The unique characteristics of 2D materials are attrib-
uted to their dimensions, thickness, and configuration. 
Hence, the techniques utilized to produce 2D materials 
have a crucial impact on their practical utility. Typically, 
there are two approaches to synthesizing 2D nanomate-
rials: the top-down method [69, 70] and the bottom-up 
method [71, 72].

3.1  Top‑down method
The majority of 2D nanomaterials are obtained from lay-
ered compounds held together by van der Waals forces 
[73], making top-down approaches such as mechanical 
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exfoliation and liquid phase separation, effective in pro-
ducing 2D materials with clean surfaces and high quality. 
Researchers have employed the scotch tape or peel-off 
method to produce defect-free graphene, but this results 
in low yields [74]. In contrast, exfoliation of graphite 
oxide or derivatives is more cost-effective and scalable for 
large-scale production. A scalable and environmentally 
friendly top-down approach was reported for the synthe-
sis of graphene with high specific surface area and excel-
lent electrochemical properties [75–77]. The approach 
involved the exfoliation of graphite in a mixture of an 
ionic liquid and water. The resulting graphene exhibited 
a high specific surface area, high electrical conductivity, 
and excellent electrochemical performance as an anode 
material for Li-ion batteries [78]. Exfoliation is also a 
widely used technique to produce TMD nanosheets from 
bulky one. Exfoliation weakens the van der Waals inter-
actions between layers, allowing the easy formation of 
TMD nanosheets.

Liquid exfoliation involves dispersing the bulk materi-
als in solvents to produce 2D materials. This method is 
scalable and can produce large quantities of 2D materials. 
Various solvents such as water, N-methyl-2-pyrrolidone 
(NMP), and dimethylformamide (DMF) have been used 
for liquid exfoliation. Liquid exfoliation can also intro-
duce functional groups onto the surface of 2D materi-
als by adding chemicals during the exfoliation process. 
For example, Gao et al. reported the exfoliation of  MoS2 
using DMF and ammonium persulfate as a chemical 
additive, resulting in the preparation of  MoS2 with oxy-
gen-containing functional groups on the surface [79]. The 
researchers dispersed graphite powder in specific organic 
solvents, including DMF and NMP, and subjected it to 
sonication and centrifugation, which resulted in the 
production of graphene dispersion [80]. This method is 
highly fascinating and provides a new opportunity for 
the cost-effective and large-scale manufacturing of gra-
phene [53]. As a concept, numerous [74, 81] researchers 
have contributed to the attainment of high-concentration 
graphene by extending the sonication duration, aug-
menting the initial graphite concentration, incorporat-
ing surfactants and polymers, utilizing solvent exchange 
techniques, mixing solvents, and so on [82–84]. Two 
reviews have been published that provide a comprehen-
sive overview of the latest advancements in the produc-
tion of graphene assisted by sonication [85, 86].

3.2  Bottom‑up method
The bottom-up method, particularly chemical vapor 
deposition (CVD), is a versatile technique for synthesiz-
ing 2D nanomaterials through chemical reactions. By 
regulating parameters of temperature, pressure, carrier 
gas, time, type of substrate and precursors, the structure 

of 2D nanomaterials can be precisely controlled. Metal 
foils are commonly used as the substrates for preparing 
layered TMD nanomaterials for energy storage applica-
tions because the foils can be directly used as electrodes 
without further transfer processes. For example,  WSe2 
nanowires was synthesized on a W foil as a cathode for 
magnesium-ion batteries using CVD [87]. In addition 
to growing pure layered TMD nanomaterials on metal 
substrates, CVD can be used to grow hybrid electrode 
materials by growing layered TMD nanomaterials on 
other electrochemically active materials, such as carbon 
materials and metal oxides. Choudhary et al. used CVD 
to grow  WO3@WS2 core–shell nanowires on oxidized 
W foil by first growing  WO3 nanowires through oxida-
tion, and then reacting them with S vapor. The resulting 
 WS2 shell was around 7–8 nm thick [88]. However, this 
approach is costly and requires more precise conditions, 
although it allows the large-scale material synthesis. 
There are also some reviews on the CVD growth of 2D 
materials [89–91].

Wet chemical hydrothermal/solvothermal methods are 
also commonly used for synthesizing 2D materials. These 
methods involve the reaction of precursor materials in a 
solvent at high temperature and pressure to produce 2D 
materials. For example, Zhou et  al. reported the hydro-
thermal synthesis of  WS2 nanosheets using tungsten 
hexachloride and thiourea as the precursors [92]. Solvo-
thermal methods have also been used for synthesizing 
2D materials. Additionally, Song et al. synthesized rGO/
WS2 composites by hydrothermal method [93]. Com-
pared with self-assembled  WS2 nanowire microporous 
spheres  (WS2 nano-MS), the capacity of graphene/WS2 
nanohoneycomb (nano-HC) reached about 800 mAh  g−1 
after the charging and discharging cycle at 1  A   g−1. 
The rate capability of  WS2/rGO nano-HC is also better 
than that of  WS2 nano-MS. The main function of gra-
phene was to transform the morphology of the micro-
spheres into the planar structure of nanohoneycomb. 
Liquid exfoliation and wet chemical hydrothermal/sol-
vothermal methods are commonly used techniques for 
producing 2D materials for use in Li/Na/Zn-based bat-
teries. The synthesis of 1T-MoSe2 nanosheets, which 
were 5–10 nm thick, was achieved by utilizing selenium 
dioxide  (SeO2), sodium molybdate  (Na2MoO4), and eth-
ylenediamine  (NH2C2H4NH2) as precursors through a 
hydrothermal method at a temperature of 200  °C for a 
duration of 12  h. These nanosheets exhibited excellent 
Li ion storage capacity [94]. Behera et  al. synthesized 
1T-VSe2 nanosheets for the application of high-perfor-
mance supercapacitor electrode, through a hydrothermal 
method at 200  °C for 24  h using sodium metavanadate 
 (NaVO3) and  SeO2 as starting precursors [95]. The hydro-
thermal method was primarily utilized to prepare various 
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non-layered TMDs, including  NiSe2 nanosheets [96], 
CoS nanowires [97], CoS nanoparticles [98], and  CoSe2 
nanosheets [99, 100], which are challenging to synthesize 
through the top-down method.

4  2D materials modification for Li/Na/Zn metal 
anode

4.1  Anode design principle with 2D materials
4.1.1  The use of 2D materials as SEI modification layer
In recent years, researchers have been exploring the 
potential of 2D materials to enhance the performance, 
safety, and lifespan of metal batteries. One of the most 
promising applications is to use 2D materials as a modi-
fication layer for the solid electrolyte interphase (SEI), a 
passivation layer that forms on the electrode surface. The 
optimal SEI can help to stabilize the electrode–electro-
lyte interface and prevent further degradation from reac-
tions between the electrode and electrolyte. However, if 
the natural SEI is too thick or fragile, it can lead to elec-
trode degradation and limit battery efficiency. To address 
this issue, researchers have proposed various SEI modi-
fication strategies aimed at forming a strong and robust 
protective layer above the metal anodes. In this part, we 
will discuss three categories of 2D materials that have 
been investigated for SEI adjustment.

4.1.2  Graphene and graphene‑based materials as functional 
anode layer

With the remarkable electrical conductivity, exceptional 
flexibility and chemical stability, graphene and graphene-
based materials have been conformed to be an exciting 
artificial layer for the metal anode surface coatings [16, 
103, 104, 111]. At the early stage, multiwalled carbon 
nanotubes are used to serve as the lithium deposition 
matrix on anode, where the capacity of the graphene 
electrode outperformed owing to the formation of a more 
robust SEI [101]. With more functional groups, graphene 
oxide and the modified graphene were used widely for 
the batteries, such as the N-doped graphene [102], sulfur-
rich graphene [103], p-type dopants [48] or carbonyl, car-
boxyl, and amine groups-modified graphene [104], which 
effectuate more active sites and improve the ions mobil-
ity. A facial spray method was used to fabricate a sponta-
neously reduced graphene oxide coating layer on the Li 
anode, denoted as, SR-G-Li, which significantly improves 
the electron transfer between the electrode and electro-
lyte, the stable protective layer can prevent the degra-
dation of the SEI and prolong the lifespan of the battery 
up to 1000 cycles at the practical cycling condition of 
5 mA  cm−2 [105]. Figure 3 exhibits the examples of gra-
phene-based materials used as the SEI protective layer for 
efficient dendrite prohibition. As illustrated in Fig. 3a, the 
Li plating behaviour of the bare Li and SR-G-Li anodes 

were shown, where the smoother surface achieved above 
the SR-G-Li after cycling and Fig. 3b, c exhibit the differ-
ent cross-sectional SEM images of deposited surface with 
these two different anodes. Moreover, Manthiram’s group 
[106] found that the conducting polymer PANI deco-
rated graphene exhibited excellent electrons exchanging 
and transportation. Commonly, the CVD methods such 
as plasma-enhanced CVD, and chemical vapor reduc-
tion for the graphene synthesis were employed in various 
application area [107]. As for the battery application, we 
emphasized the hard control of the growth conditions for 
high-quality graphene, such as pressure, temperature and 
gas [108]. But some researchers revealed that the exist-
ence of defects or other active sites can facilitate Li dif-
fusion and storage [109, 110]. Some DFT calculations 
suggest that defects and vacancies enable a lower dif-
fusion barrier along the basal plane. Honma et  al. [110] 
discovered that the defects of sulfonate groups on gra-
phene sheets can lower the Li deposition barrier for Li 
accommodation.

Many groups reported the function of silicon-deco-
rated graphene, which can successfully eliminate the 
volume expansion of the lithiation and delithiation. For 
example, the layer of Si–graphene was observed to sta-
bilize the anode interface and enhance the Li exchange 
efficiency with the help of graphene, which is essential 
for the capacity and performance improvement of bat-
tery [111]. From the same perspective, a novel synthesis 
method for growing graphene directly over silicon nan-
oparticles (Fig.  3d–f) was presented by Chang’s group 
[112]. The graphene layers attached to the silicon sur-
face can accommodate the expansion of silicon by sliding 
between adjacent graphene layers (Fig. 3g) and facilitate 
the ions transportation simultaneously. As demonstrated 
in Fig. 3h, Gr–Si NPs get closed to the Au wire surface, 
once interacting, the particles began to swell (Fig. 3i). Fig-
ure 3j explains two expanding structures, which contrib-
uted 972 and 700 Wh  l−1 volumetric energy densities at 
first and 200th cycle, much higher than the commercial 
LIBs, proving that the surface chemistry has been pro-
posed as a contributing factor to the capacity of chemi-
cally driven graphene sheets [113].

In addition to the benefit of ion mobility and active 
sites enhancement, the modified graphene SEI also plays 
a vital role in mechanics improvement. The LiF-graphene 
layer was proposed by Cheng’s group [114]. They put 
forward that LiF-modified graphene served as an elec-
trochemically stabilizer with high shear modulus for the 
high-power LIBs which functionally inhibits the side 
reaction of  LiFP6 decomposition, showing excellent rate 
reversibility and significantly improved cell stability and 
CE [114]. Similarly, they reported the lithiation behaviour 
of layered graphene nanoribbons via in situ transmission 
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electron microscopy (TEM). A  Li2O layer was discovered 
to form on the graphene surface during the lithiation, 
but it cannot be removed on the charging process, which 
indicated the  Li2O/graphene composite layer existed on 
the anode surface serving as the stable SEI layer with the 
great flexibility [115]. In addition, NaF is recognized for 
its chemical stability in electrolyte solvents, which helps 
reduce side reactions for the sodium metal batteries. 
NaF/C-F protective coating was proposed by our group, 
which possesses exceptional mechanical strength that 
hinders dendrite growth, resulting in improved battery 
cycling performance and safety [116].

The first time mentioned the extremely low lattice 
mismatch between graphene and Zn, as demonstrated 

in Archer’s related works [117], the deposited Zn tends 
to from layer-by-layer hexagonal Zn crystal during the 
epitaxial deposition above the graphene interface owing 
to the well lattice match between Zn and graphene. The 
ZIBs with graphene modified electrode achieves rela-
tively high reversibility and stability. Until now, lots of the 
research proposed the epitaxial mechanism with lattice 
mismatch between Zn and artificial layer, which will be 
fully discussed in the TMDs parts below.

Above all, we need to realize some limitations of the 
CVD methods for the large-scale application, such as 
high cost since CVD methods require expensive equip-
ment and controlled environments; hard quality con-
trol since the quality of the graphene-based materials 

Fig. 3 The dendrite prohibition mechanism of several graphene‑based materials as SEI protective layer. a The Li plating behavior on the pure 
Li and SR‑G‑Li anodes. Top‑view of the b bare Li anode and c SR‑G‑Li anodes. Reprinted with permission from [105]. Copyright 2018, Wiley. d 
TEM image of Gr–Si NP. e A higher‑magnification TEM image for the same Gr–Si NP, dashed area in e. f A visualization of the origins (red arrows) 
from which individual graphene layers grow. g The sliding process of the graphene coating layers that can buffer the volume expansion of Si. 
h Gr–Si NPs attached to the surface of Au wire and Li/LiO2 electrode. i After lithiation. j A lithiation process of Gr–Si NPs for both non‑defective 
and defective graphene encapsulation. Reprinted with permission from [112]. Copyright 2015, Springer Nature
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synthesized by CVD methods can be influenced by a 
range of factors, including the growth conditions, the 
choice of substrate, and the quality of the precursor 
materials. This can make it challenging to achieve con-
sistent quality and reproducibility in large-scale batteries 
production.

4.1.3  Typical MXenes as functional anode layer
With abundant functional chemistry surfaces, high con-
ductivity, and the ability to constructure macro-struc-
ture, MXenes also serves as a promising candidate for 
the anode surface modification [118, 120–122]. Several 
studies have shown that the use of MXenes as SEI modi-
fication layers can enhance the performance of various 
types of metal batteries, including lithium-ion batter-
ies and sodium-ion batteries. Briefly speaking, the aim 
for designing the ideal MXene coatings for metal anode 
modification, can be divided into three points [118–
120]. Firstly, MXene layer can improve the lithiophilic-
ity or sodiuphilicity, which guarantees the abundance 
of adsorption sites for metal deposition. Secondly, the 
promising MXene candidates enhance the ions con-
ductivity and homogenous distribution, which help to 
achieve the even deposition morphology. Finally, the 
expandable layers relieve the volume change during the 
repeated cycling and protect the metal anode from con-
tinuous side reaction, resulting in the high capacity of 
the cells and stable cycling. Overall, the new family of 2D 
materials, MXene, also gains great attention and has been 
widely used in the energy storage system.

MXene with active sites plays a vital role in lowering 
the nucleation barriers and improving the metal wettabil-
ity for the metal deposition. For instance, Zn single atom 
decorated MXene (Zn–Ti3C2Clx) layers [118] were pro-
duced in a large scale to enhance the nucleation homo-
geneity and growth of Li seed on the Li anode surface, 
where the lithium tends to grow horizontally around the 
abundant active Zn sites with the lower nucleation bar-
riers. In addition, parallelly aligned  Ti3C2Tx (called PA-
MXene) layers with the inherent fluorine terminations 
can serve as a durable artificial SEI for LMBs. From their 
work, it evidents that the PA-MXene layer facilitates the 
Li horizontal growth during the deposition due to the 
favourable binding between F groups and Li, which will 
guide the uniform nucleation of Li in the electrochemical 
test, as the cells with the decorated MXene layer deliv-
ered a longer life compared with the neat counterpart 
[121]. Besides, thanks to the excellent conductivity and 
expanded space between two layers, Niu’s group utilized 
the self-exfoliated MXene stacks for Li smooth plating/
striping to reveal the homogenous charge distribution. 
Both the full and asymmetric cells exhibited a high and 
stable discharge capacity under the current density of 

10  mA   cm−2 loading [122].  Na3Ti5O12-MXene hybrid 
nanoarchitecture which composed of  Na3Ti5O12 between 
 Ti3C2 MXene nanosheet, was synthesized for the sodium 
metal batteries. The strong chemical interaction between 
 Na3Ti5O12 and Na results in the lower Na reduction bar-
riers and even homeless Na distribution. As a result, the 
hybrid MXene exhibits high CE with 98.8% for over 200 
cycles and stable cycling [119].

As for the ZIBs without a natural SEI, the MXene-
based artificial SEI layer tends to more useful for the Zn 
batteries for the prolonged cycling. As proposed by Niu’s 
researchers, the self-assembly ultra-thin MXene on the 
Zn anode also can lower the Zn deposition barriers and 
provide a well-distributed electric field for uniform Zn 
arrangement, which contributes to the dendrite-free Zn 
anode, the deposition mechanism is illustrated in Fig. 4a 
[120]. In addition, other kinds of MXene like zincophilic 
MXene@oxides [123], Zn@MXene@antimony (Fig.  4b) 
[124], etc. serve the same function for the Zn even 
deposition.

As summary, MXenes show great potential as electrode 
coating materials owing to its intrinsic properties of hav-
ing abundant metal ion adsorption sites, high ion con-
ductivity, and expandable material structure. However, 
there are various limitations still hindering the practical 
limitations that MXenes exhibit poor adhesion to the 
electrode substrate that may result in material delamina-
tion and poor cycling stability. Secondly, the production 
of MXenes is currently limited to laboratory scale syn-
thesis that make it challenging to meet the large quantity 
fabrication in commercial applications. While limited 
understanding of MXenes properties limits their practi-
cal application, despite significant research progress has 
been made in the field of MXenes.

4.1.4  Typical TMDs as functional anode layer
Apart from the graphene-based materials, TMDs which 
are composed of chalcogens (S, Se or Te et al.) and transi-
tion metals, are also widely used as the functional layer 
for the metal anode moderation to achieve the uniform 
metal nucleation. TMDs have been widely considered as 
attractive cathode materials due to the favourable inter-
calation properties, high ionic conductivity and mechani-
cal stability [125–127]. And this part will provide an 
overview of the current state of research on TMDs as 
protective layers on the anode surface in lithium, sodium, 
and zinc batteries, which is also desirable for high-
energy-density batteries with prolonged cycling lifespan.

Cha’s group reported the ultrathin 2D molybdenum 
disulfide  (MoS2) utilized as a functional coating for lith-
ium metal anodes in batteries [126], the sputtering fab-
rication method is presented in Fig. 4c. It was found that 
Li atoms intercalated into the layered  MoS2, the  MoS2 
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coating significantly facilitates the flow of Li and forms 
the stable interface, which delivered a high cycling stabil-
ity and prevented the formation of dendrites on the metal 
anodes. The SEM images from cross-section (Fig. 4d, e) 
and top view (Fig.  4f ) showed the dense lithiated  MoS2 
on Li-metal surface [126]. Vertically aligned Tungsten 
disulfide  (WS2) thin film was constructed on the Al foil as 
the Na anode materials. They found that the  WS2/C film 
enables high ion and electron transportation and serves 
as protective layer, preventing the natural SEI from con-
tinuous cracking [127].

In addition, the adjustable defects or vacancies from 
various etching and post-treatment methods make a dif-
ference to the intrinsic electrical and catalytic properties 
of the TMDs [128]. For example, nitrogen doped  WS2 
ultrathin nanosheets were employed in the lithium anode 
[129]. The synergistic effect of abundant Li attractive sites 
and layered hierarchical structure enhances the specific 
capacity up to 801.4  mAh/g and great capacity reten-
tion of 95.8% after 150 cycles. Another published exam-
ple of TMDs as protective layer, is the use of the  TiS2 due 
to its simple synthesis and high surface area [130]. The 
authors explored one general CVD method to prepare 

thin‐walled tubule of  TiS2 coated current collector. The 
microtubular  TiS2 electrode exhibited lower resistance 
and high electron transference.

Some TMDs were discovered to modify the nuclea-
tion and growth of crystalline Zn metal. The epitaxial 
growth mechanism in batteries have been intensively 
proposed for the SEI-free ZIBs [117]. For instance, 
inspired by the epitaxial growth, the  MoS2-mediated 
interface was used for the Zn batteries [29]. The per-
fect mono-orientated  MoS2 films without defects was 
considered as an effective substrate layer for hexagonal 
Zn formation, suppressing the metal dendrites finally. 
Figure 4g illustrates the competitive reaction pathways 
of Zn electroplating above a well basal plane and edge 
sites of  MoS2 substrate, where the dendritic Zn appears 
a lot at the edge sites, whereas the soother morphol-
ogy appears on the basal plane. Our group induced 
the 1T-VSe2 as the artificial protection layer for the Zn 
metal anode [131], which lessened the side reaction and 
regulate the Zn deposition and nucleation. The DFT 
simulation study have confirmed the lowest adsorption 
energy between  VSe2 and Zn, the classic MD studies 
mimicked the deposition process at the atomic scale, 
proofing that the excellent Zn mobility above the  VSe2 

Fig. 4 The dendrite prohibition mechanism of several MXene, TMD‑based materials as SEI protective layer. a Illustration of Zn plating process 
on MXene‑coated Zn with dendrite‑free deposition, and pure Zn with pronounced intrusions. Reprinted with permission from [120]. Copyright 
2020, Wiley–VCH GmbH; b preparing process of MXene@Zn paper serving as anode. Reprinted with permission from [124]. Copyright 2021, Elsevier; 
c the fabrication process for a  MoS2‑coated Li anode via sputtering and subsequent lithiation. Cross‑section (d) and top view (e) SEM images 
of the as‑deposited  MoS2 on Li metal. f Top view SEM image of the lithiated  MoS2 on Li‑metal surface. Reprinted with permission from [126]. 
Copyright 2018, Nature Nanotechnology. g The possible competitive reaction pathways of Zn deposition on basal plane and edges of  MoS2 
substrate. Reprinted with permission from [29]. Copyright 2022, Wiley–VCH
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which facilitates the regular Zn atom distribution and 
(002) plane formation due to the thermodynamically 
energy minimization. The artificial  VSe2 results in the 
relatively smooth and dendrite-less anode surface.

Although TMDs show promise as protective layers in 
batteries, they are still facing limitations that need to be 
addressed, including optimizing the synthesis and design 
of TMDs for use, and improving their compatibility with 
battery components (Table 1).

4.1.5  3D host design
To alleviate the infinite volume change of metal anodes, 
confining the metallic Li/Na into 3d porous architectures 
to obtain the composited metal anodes is a promising 
strategy. 2D graphene-based materials and MXene are 
the most comprehensive studied materials, owing to its 
effective surface area and abundant function groups [24, 
132, 133]. For example, researchers developed a layered 
reduced graphene oxide (rGO) structure with uniform 
nanoscale gaps to confine the lithium deposition through 
thermal infusion method, as shown in Fig. 5a [134]. The 
final Li–rGO anode was composed of 7 wt% lithiophilic 
layered rGO film and could exhibited a high capacity of 
3390 mAh  g−1, along with low overpotential in a carbon-
ate electrolyte. The layered rGO could not only react as 
a electrochemically and mechanically stable scaffold to 
regulate the lithium deposition and prevent the volume 
change during charging/discharging, but also contrib-
ute to stabilizing the as-formed SEI. Moreover, Cao et al. 
proposed to synthesize controllable assembly 3D  Ti3C2–
MXene–Li arrays with abundant nanometer-scale and 
micrometer-scale interspaces [135]. As shown in Fig. 5b, 
lithium ions travelled fast through plenty of vertical 
short channels in the composite  Ti3C2-MXene host, thus 
homogenizing the current density distribution and lith-
ium flux. The abundant internal channels also provided 
enough space for metallic lithium accommodation and 

could effectively reducing the volume change of Li during 
cycles. More recently, Gao et al. synthesized a lithiophilic 
and conductive framework consisting of 2D molybde-
num nitride (MoN) nanosheets, which is 240 μm in thick 
[136]. Different from the strategies using molten metal 
infusion approach, the MoN nanosheets powder was 
firstly synthesized from a chemical reaction and freeze 
drying. Then, a simple mechanical rolling and folding 
method was applied, that is folding and rolling the as pre-
pared 2D MoN nanosheets with Li foil for several times 
to get the composite metal anode. The MoN nanosheets 
would be embedded and attached strongly with the lith-
ium metal during the repeatedly folding and calendar-
ing process, as shown in Fig. 5c. Meanwhile, the Li was 
confined in the lamellar 2D MoN films integrated struc-
ture with good affinity and rich interfaces. The 2D MoN 
nanosheets in the composite anode was finally evalu-
ated to be about 50 wt%. The 2D MoN nanosheets with 
excellent conductivity could not only endow the whole 
framework with lithiophilic nature, but also inhibit the 
perpendicular dendrite growth due to the negligible lat-
tice mismatch with lithium crystal. The interwoven scaf-
fold also provided large amount of Li nucleation sites so 
that the Li grew axially to fill the nanoscale gaps between 
the 2D MoN nanosheets, thus preventing volume change 
during charge/discharge (Fig. 5d, e). Moreover, the in situ 
formed  Li3N from the reaction between MoN nanosheets 
and Li atoms boosted ionic conductivity and stabilized 
the interface. In all, the Li–MoN anode achieved a planer 
Li plating morphology and excellent cyclic stability for 
over 2500 h at 1 mA  cm−2, as well as high Coulombic effi-
ciency within 650 cycles in full cells.

Similarly, except for Li, in the other metal battery sys-
tems, such as Na, Zn, etc., 2D materials composited 
metal anodes are regarded as an effective way for anode 
protection. In the study of Wang et al., they proposed a 
processable and mouldable composite Na metal anode by 

Table 1 The comparison of electrochemical performances for metal batteries using 2D materials as artificial functional layers on 
anodes

Materials Types of battery Working condition Cycling performance

Graphene‑based nanosheets [103] LIBs 1488 mA  g−1 (4 C) 500 cycles

reduce graphene oxide [104] LMBs 5 mA  cm−2 1000 cycles

Si–graphene [111] LMBs 0.1 C 1307 mAh  g−1; 89% retention after 50 cycles

Ti3C2Clx [118] LMBs 1.0 mA  cm−2 Nucleation overpotential of 11.3 mV; 1200 h

Ti3C2Tx [121] LMBs 1 mA  cm−2 1000 cycles

ILC‑Li [122] LMBs 10 mA  cm−2, 10 mAh  cm−2 Overpotential of 135 mV, 1050 cycles

MAX  (Ti3AlC2) phase [120] ZIBs 0.2 mA  cm−2 47 mV for 400 cycles; 81% capacity retention after 500 cycles

2D  MoS2 [126] LSBs 0.5 C 1200 cycles, CE of ~ 98%

WS2 [127] SIBs 50 mA  g−1 87.5% retention of the initial performance after 50 cycles
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using reduced graphene oxide (r-GO), as shown in Fig. 6a 
[137]. The composite anode, where r-GO only took less 
than 5  wt%, exhibited incredibly improvement in hard-
ness, strength, and corrosion resistance compared with 
pristine metallic sodium. The layered r-GO provided 
space for Na accommodation and was contributed to less 
dendrite growth, while the composite Na metal anode 
maintained the deformation ability to be proceeded to 
different shapes and sizes (Fig.  6b–d). What’s more, the 
cyclic performance of the composite anode was supe-
rior in both ether and carbonate electrolytes. In another 
study, uniform antimony (Sb) nanoarrays were grown on 
 Ti3C2Tx MXene paper to use for dendrite-free zinc-based 
anodes in aqueous zinc batteries, as shown in Fig.  6e, f 
[124]. It was proved that ZnSb alloy would form dur-
ing the cycles originated from the reaction between Zn 
and Sb, which was able to storage Zn ions during alloy 
process as well as provide nucleation sites with high Zn 
affinity to homogenize Zn plating (see Fig. 6g). The free-
standing MXene@Sb electrode could effectively suppress 

Zn dendrite growth and ultimately delivered a long cyclic 
lifespan up to 1000 h.

3D host structured has been explored as one of the 
potential solutions to suppress the dendrite formation in 
metal batteries. Nevertheless, the fabrication complexity 
increases the cost and limits the scalability of large-scale 
manufacturing processes, while the structure compat-
ibility and mechanical stability of the 3D host structures 
remain unsolved. More research efforts are needed in 
this field.

4.2  Separator engineering
The separator is one of the most important cell compo-
nents in batteries that mainly functions in separating 
the electrodes to avoid direct contact and internal short-
circuit, while at the same time permitting the ion trans-
port and remaining electronic insulating. Currently, the 
most widely used separators are polyethylene (PE) and 
polypropylene (PP) in LIBs, glass fibre in LMBs. How-
ever, they can be punctured easily by metal dendrites. 

Fig. 5 2D materials composited Li metal anodes. a Schematic of the material design and the consequent synthetic procedures from a GO film (left) 
to a sparked rGO film (middle) to a layered Li–rGO composite film (right). Reprinted with permission from [134]. Copyright 2016, Nature Publishing 
Group. b Schematic illustration of the stripping and plating states of perpendicular MXene–Li and rGO–Li arrays. Reprinted with permission 
from [135]. Copyright 2020, Wiley–VCH. c Schematical diagram of the fabrication process of the Li‑2D MoN composite anode; SEM images of Li–
MoN anode (d) and Li anode (e) after 30 cycling tests. Reprinted with permission from [136]. Copyright 2023, Elsevier. 2D materials composited Li 
metal anodes can effectively alleviate volume change



Page 12 of 23Wong et al. Nano Convergence           (2023) 10:37 

Functionalizing the separator using 2D materials enables 
a higher mechanical strength, better structure flexibility, 
facile electrolyte permeation and increased chemical and 
thermal stability [138], and therefore inhibits the den-
drite growth by blocking the dendrite growth, regulating 
the metal ion nucleation and deposition and distributing 
the metal ion transport. In this part, we summarize the 
works of using three categories of 2D materials for sepa-
rator modifications.

4.2.1  Graphene and graphene‑based materials as functional 
separator

As illustrated in Fig. 7a, due to the uneven electric field 
distribution of separator, metal ions tend to accumu-
late at the protuberances with high surface energy, 
which are the pores of the membrane, and thus results 
in inhomogeneous metal deposition forming dendrite 
[139–141]. An effective separator coating endows a uni-
form ionic flux on the metal surface, enabling a smooth 
metal deposition. Kim and coworkers introduce the com-
posite of nitrogen and sulfur codoped graphene (NSG) 
on polyethylene (PE) by simple vacuum filtration that 
effectively suppress the Li dendrite growth by maintain-
ing a uniform ionic flux on the anode surface (Fig.  7b, 

c). In addition, the heteroatom doping on the graphene 
enhanced the interfacial interaction between NSG and 
metal surface and the enhanced thermal stability remark-
ably improved the electrochemical performances [142] 
(Fig. 7d). Li et al. [143] subsequently developed the verti-
cal graphene (VG) on commercial glass fiber by Plasma 
enhanced chemical vapor deposition (PECVD) with the 
oxygen and nitrogen doping via air plasma treatment, 
render high surface area with even electric field distribu-
tion, favourable for building up a uniform Zn ionic flux 
and therefore, stabilized the Zn anode and achieved 93% 
cyclic retention over 5000 cycles at high current rate of 
5  Ag−1 for capacitor and energy density of 182 Wh  kg−1 
in the  V2O5/Zn full cell configuration.

Dendrite growth always starts from the random metal 
ion nucleation that happens at the beginning of the 
metal plating process due to the inhomogeneous metal 
ion flux. Materials with high metal affinity could effec-
tively regulate the metal nucleation and therefore enable 
a uniform metal deposition. First principles calculations 
and experimental study verify the lithiophilicity of car-
bon frameworks with various heteroatom-doping [144] 
and defects [145], promoting a uniform Li nucleation for 
safe metal anode. For example, Zhang’s group discovered 

Fig. 6 2D materials composited Na/Zn metal anodes. a Schematic representation of the preparation of Na@r‑GO composites. Densely stacked 
GO films can expand greatly owning to the gas evolved during the reduction reaction. Upon contact with r‑GO, the melted Na can be absorbed 
into the space between the r‑GO sheets. b–d SEM images of GO films with different thickness and their corresponding Na@r‑GO composite films, 
whose thickness are roughly 20‑times of that of GO. Reprinted with permission from [137]. Copyright 2017, Wiley–VCH. e Schematic representing 
Zn deposition behaviour on MXene@Sb‑300 and Ti foil. Reprinted with permission from [124]. Copyright 2021, Elsevier. 2D materials composited 
Na/Zn metal anodes can also homogenize the metal deposition
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that the defects, including single vacancy (SV), double 
vacancies (DV), quadra vacancies (QV) and Stone–Wales 
(SW) as illustrated in Fig.  8a, improve the lithiophilic-
ity of graphene compared to the pristine one (Fig.  8b), 
which helps to break Li bond between Li ion and the 
electrolyte solvent, and thus reduce the nucleation over-
potentials, forming uniform Li deposition. Coating the 
separator with functionalized nanocarbon (FNC) fac-
ing the Li metal electrode surface, as shown in Fig. 8c, d, 
firstly immobilize the  Li+ ions within the FNC composite 
at the lithiophilic sites and then Li grows from the FNC 
towards Li metal surface with reducing potential differ-
ence, �ϕ . The Li deposits grow toward each other and 
eventually merge into dense Li layer between separator 
and Li anode, instead of dendrites. This strategy greatly 
improved the cyclability of the Li-metal cell that enabled 
> 800 cycles with 80% capacity retention [146].

4.2.2  MXenes modification on separator
The unique features of MXenes, including high electrical 
conductivity and mechanical properties, make it attrac-
tive to a variety of applications of energy, catalysis, bio-
medical fields [147]. To suppress the dendrite formation, 
layered graphitic carbon nitride (g-C3N4) was proposed 
and decorated on the cellulose fiber separator (Fig.  9a), 
acting as the ion redistributor to homogenize the zinc ion 
flux, with enhanced mechanical strength of the separator, 

successfully prevent the Zn dendrite formation, improve 
the reversibility of Zn metal anode in cycling perfor-
mance [148]. An et al. [123] fabricated MXene@NiO and 
coated on glass fiber, which also effectively inhibit the Zn 
dendrite growth. In addition, 2D nitrogen doped MXene/
MOF (N–Ti3C2/C) nanosheets were developed to pre-
vent the shuttling of polysulfides and suppress the den-
drite growth of Li anode in lithium sulfur batteries [149]. 
The uniformly distributed MOF particles (ZIF-67) on 
 Ti3C2 act as the spacers to avoid the stacking of MXene 
2D geometry, while the nitrogen doping and the active 
sites from MXene offers sufficient chemical adsorption to 
the polysulfides and  Li+ ions as well as homogenize the 
ion flux, suppressing the dendrite formation in Li anodes.

4.2.3  Boron nitride (BN) coating as functional separator
Noted that the internal temperature rise, induced by 
the uneven electric field and high current density, 
may cause separator’s thermal shrinkage and lead to 
short circuit in the battery. Commercial separators, 
such as, Celgard, are not mechanically strong enough 
and could be easily punctured by metal dendrites dur-
ing the metal plating/stripping processes. Therefore, 
separators with good thermal stability and mechanical 
strength are the prerequisites for safe metal battery. 
Owing to the high thermal conductivity (750 W  m−1 K) 
and mechanical strength (Young modulus of 80 GPa) of 

Fig. 7 Carbon coating on separator to homogenize electric field and ion flux for dendrite‑free metal anodes. a Theoretical simulation of electric 
field distribution in pristine (upper) and modified (lower) separators. Reprinted with permission from [139]. Copyright 2011, Springer Nature. b 
Schematic illustration of separator with NSG coating for suppressing the lithium dendrite growth. c SEM image of lithium electrode with NSG 
separator after 200 cycles, showing smooth lithium deposit. Reprinted with permission from [142]. Copyright 2015, American Chemical Society. d 
Cycling performance of the Li/LiNi0.8Co0.15Al0.05O2 cell at 0.5C rate. Reprinted with permission from [143]. Copyright 2020, Wiley–VCH
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boron nitride (BN) [150]. Hu et  al. proposed to deco-
rate BN nanosheets on the separator to homogenize the 
thermal distribution and lower the risk of dendritic Li 
growth (Fig.  9b). From the infrared camera, a signifi-
cant temperature cut from 50 to 34  °C was observed 
with the BN nanosheets coating, proved the effective-
ness of heat dissipation, elongated the cycle life [151]. 
Furthermore, multifunctional BN-carbon separator was 
employed to provide mechanical stability and uniform 
thermal distribution that enhanced the electrochemi-
cal performance in the Li–S cell [152]. Moreover, a 
thermal shrinkage test was performed in Fig. 9c, d, by 
increasing the temperature from 75 to 150  °C, for 1 h, 
pristine Celgard 2325 owns 40% of thermal shrinkage, 
while only 5.2% of shrinkage was observed with the BN 
modified separator, prove the role of BN in improving 
the thermal stability of the separator [153].

Similarly, separator modification also is facing the 
challenges of fabrication complexity and limited com-
patibility. More importantly, due to the extra coating on 

the separator, the ionic conductivity is reduced that dete-
riorate the battery performance. More research efforts 
should be spent on this topic (Table 2).

4.3  Electrolyte modifications
Apart from working on the anode surface directly, 2D 
materials also have been explored as the additives into 
the liquid or solid electrolyte, which will help to optimize 
the plating morphology to suppress the dendrite forma-
tion [24]. Because of the electron insulating property of 
graphene-analogous, boron nitride (g-BN)’s lone pair 
electron [154], it helps to insulate the contact between 
anode and cathode, and therefore limits the short cir-
cuit. The g-BN was reported as the additive into the 
ionic quasi-liquid solid based electrolyte for LIBs [155]. 
Toward the deep study of the g-BN, researchers found 
that the channels between or outside the g-BN also facili-
tates the smooth transportation of Li ions. Other group 
also revealed that 2D BN nanoflakes helps to inhibit the 

Fig. 8 Separator coating for guiding metal nucleation. a Models of graphene with defects of Stone–Wales (SW), Inverse Stone–Wales (ISW), single 
vacancy (SV), three double vacancies (DV1, DV2, DV3) and quadra vacancies (QV). Reprinted with permission from [145]. Copyright 2011, Wiley–VCH. 
b Theoretical calculation results of binding energy of Li on defective graphene. Schematic illustration of lithium dendrite growth in c blank and d 
FNC cells. Reprinted with permission from [146]. Copyright 2017, Springer Nature
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dendrite formation since the unprecedented character-
istics of high conductivity and  Li+ transference number 
[156].

As a family of layered nanosheets structure, MXenes 
are also emerging as the electrolyte compound in LIBs 
and SIBs. It has been understood that  Ti3C2Tx as a non-
aqueous electrolyte promotes the cycling reversibility 
for sodiation/desodiation process [64]. Owing to the 

pillaring effect on the ions trapping and swelling effect of 
the electrolyte penetration,  Ti3AlC2 was synthesized as 
the part of electrolyte, which contributes to the superb 
capacity retention [61]. Furthermore, polymer/MXene-
based  TiO2 PVA gel electrolyte presents the excellent 
ionic conductivity and better mechanical strength which 
was highly developed in the flexible ZIBs [157]. The cells 

Fig. 9 Stable separator coating for enhanced mechanical strength and thermal stability. a Graphical illustration of the preparation of g‑C3N4 coated 
separator using drop casting for safe zinc metal anode. Reprinted with permission from [149]. Copyright 2019, Elsevier. b Schematic illustration 
of inhibiting dendrite process with the thermally conductive BN‑coated separator. Reprinted with permission from [151]. Copyright 2015, American 
Chemical Society. Thermal shrinkage test of separator of Celgard 2325, PVH, PVH‑BN, PVH‑LaO, and PVH‑Lao//PVH‑BN (Bilayer) after annealing at c 
room temperatures and d 150 °C for 1 h. Reprinted with permission from [153]. Copyright 2019, Elsevier
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with polymer/MXene-based  TiO2 modified-electrolyte 
delivered over 3000 h lifespan under 0.5  mAcm−2.

As for the TMD-based additive, 1T phase  MoS2 with 
high electrical conductivity (10–100 S  cm−1) and intrin-
sic hydrophilicity was tested as the electrolyte compo-
nent. The research group demonstrated that exfoliated 

 MoS2 is acceptable for the high voltage cycling opera-
tion up to 3.5 V, which signs that other metallic phase 
TMDs should also exhibit favourable electrochemical 
performance [158].

Critically speaking, the application of 2D materials 
such as graphene-based additives in the electrolyte of 

Table 2 A summary of electrochemical performances for metal batteries using 2D materials on separator engineering for safe metal 
anode

Material composite Type of membrane Coating method Type of anode Electrochemical performance

Nitrogen and sulfur codoped 
graphene (NSG) [142]

PE Vacuum filtration Li metal Couple with  LiNi0.8Co0.15Al0.05O2, 
200 mAh  g−1 at 1st cycle and 0.5C, 
85% retention after 240 cycles

Oxygen and nitrogen doped verti‑
cal graphene [143]

Glass fiber Plasma enhanced chemical vapor 
deposition (PECVD) + air plasma 
treatment

Zn metal Couple with  V2O5, 75% Capacity 
retention after 1000 cycles

FNC [146] PP (Celgard 3501) Slurry coating Li metal Couple with  LiFePO4, 80% reten‑
tion after 800 cycles, Coulombic 
efficiency > 97%

N–Ti3C2/C [149] PP (Celgard 2400) Slurry coating Li metal Couple with sulfur cathode, 
6.3 mAh  cm−2 with sulfur loading 
over 10 mg  cm−2

MXene@NiO [123] Cellulose fiber Drop casting Zn metal Couple with  V2O5, 275.9 mAh  g−1 
at 0.1 A  g−1

Graphitic carbon nitride (g‑C3N4) 
[148]

Glass fiber Slurry coating Zn metal

BN nanosheets [151] PP/PE/PP (Celgard 2325) Slurry coating Li metal Coulombic efficiency: 92% 
after 100 cycles at 0.5 mA  cm−2

BN powder [152] PP Slurry coating via doctor blading Li metal Couple with sulfur cathode, 
1036.4 mAh  g−1 at 1st cycle 
and 0.5C

PVH‑LaO//PVH‑BN [153] PP/PE/PP (Celgard 2325) Solution coating Li metal Couple with LFP, 158 mAh  g−1 
at 0.5 C after 100 cycles

Fig. 10 Summarized electrochemical performances of 2D material modifiers for metal anodes. Comparison of the overpotential and cycling time 
for all 2D material modified anode, separator and electrolyte for a Li and b Na anodes
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metal batteries is at an early stage. Most of the research 
focus on the ionic conductivity and mechanical prop-
erty improvement of the additives in the electrolyte. We 
consider the further study and discovery of 2D materi-
als-modified electrolyte on the other promising charac-
teristics will be more important.

Typical 2D materials, including r-GO, MXenes, 
TMDs and metal nitrides and carbides, modify the cell 
components of anode, separator, and anodes, success-
fully supressing the dendrite growth. Figure  10a dem-
onstrates the electrochemical performance comparison 
between the three different modification methods, 
anode-based modified, separator typed and electro-
lyte additives for Li anode, while Fig. 10b compares the 
electrochemical performances of various 2D materials 

modifiers for Na anode and the details are given in 
Table 3.

The practical applications of electrolyte modification 
are limited by the compatibility with other battery com-
ponents of electrodes, separator, and current collectors. 
Moreover, the additional of electrolyte components will 
reduce the ionic conductivity, leading to bad battery per-
formance and poor stability.

5  Summary and prospects
As the growing demand for more advanced electricity 
storage devices, Li, Na and Zn metal batteries have been 
studied for decades, but are still facing difficulties for 
commercialization, until resolving the dendrite-driven 
safety issues. In this review, we summarized the recent 

Table 3 Summary of electrochemical performances of 2D materials for modifying anode, separator and electrolyte

2D materials Cycling time (h) Overpotential (mV) References

Li|MXene@Au@Li 650 70 [159]

N‑C‑SS/Li 1800 40 [160]

MXene  (Ti3C2Clx) layers 1200 11.3 [118]

Au@graphene hybrid aerogel 1800 20 [161]

Graphene/Li3N 1000 100 [162]

LiF protected Li/G 2200 40 [163]

F‑rich SEI/Li interface on 3D Li‑MXene anode 360 50 [164]

LiTiO2–Li3N–C 2000 30 [165]

SWA‑MXene–Li 1280 80 [166]

MoN 2500 15 [136]

Mo2C quantum dots (MQDs) anchored N‑doped graphene 800 100 [167]

Holey graphene oxide (HGO) on the surface of polyacrylonitrile (PAN) 
membrane

800 10 [168]

Graphene quantum dots 2000 33 [169]

Mo2N@NG 800 21 [170]

Strontium fluoride graphene  (SrF2‑G) sandwich separator 550 13 [171]

V2C MXene 500 28.4 [172]

M‑HAP@PVHF 1300 13.9 [173]

VS2 flakes 200 26 [174]

Ni–VSe2/rGO‑PP  MoS2‑constructed nanobrushes 500 76 [175]

Graphene oxide (GO) clipped on mesoporous polypyrrole 1100 9 [176]

Glass fiber cloth/poly (ethylene oxide)‑MXene 800 40 [177]

Composite ionogel‑in‑MXene electrolyte (CIME) 800 190 [178]

Fe3O4@CNS 2200 16 [179]

NASICON 1000 0.25 [180]

Bi ⊂ CNs 4000 17 [181]

SnO2/Ti3C2Tx 2000 25 [182]

rGO 600 30 [137]

Ti3C2T2–rGO membrane 1400 26 [183]

Sn/C 4080 16.4 [184]

h‑Ti3C2/CNTs 4000 110 [185]

Na‑C 200 2.63 [186]
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advances of 2D materials for safe Li, Na and Zn metal 
anodes. Owing to the unique properties of 2D materials, 
including high surface area, mechanical strength, tun-
able electronic conductivity and abundant active sites, 
2D materials were used to construct stable SEI layer, act 
as 3D hosts for anodes and modify the separator inter-
face and electrolyte, to suppress the dendrite formation 
by mainly homogenizing the electric field and ion flux, 
enhancing the mechanical strength and ion conductivity 
of the separator and SEI layer and guiding the metal ion 
nucleation direction. Although significant progress has 
been achieved with the 2D material modifications, sev-
eral challenges still hinder the practical applications, with 
our perspectives as stated follows:

Guiding the metal ion nucleation, can manipulate the 
metal deposition direction at the initial stage of the metal 
plating process, which is agreed to be the most critical 
step for inhibiting the dendrite growth. However, limited 
research has been done on the subsequent metal growth 
forming metal cluster, which is also important for under-
standing the underlying reason in suppressing dendrite 
growth from the nucleated site. For example, most of the 
theoretical simulations are calculating the metal atom 
binding strength but not the metal–metal interactions of 
metal electroplating process. In addition, in-depth effects 
of 2D materials in suppressing the dendrite growth 
remains unclear. Currently, very finite analysis methods 
are used to characterize the metal anode using 2D mate-
rials. For instance, to examine the morphology evolution 
of metal anode structure, SEM and in-situ TEM methods 
are the dominating characterization strategies. Twist-
ing and mechanic tests with tensile stress are used to 
check the mechanical stability of the metal anode, while 
Raman spectroscopy, XRD, XPS, Fourier transform infra-
red spectroscopy (FTIR) and Brunauer–Emmett Teller 
(BET) are mainly utilized to examine the anode struc-
ture and composition. More advanced characterization 
techniques, including in  situ TEM and in  situ Raman 
spectroscopy, are useful tools to obtain direct evidence 
and observation for fundamental investigation. Integra-
tion with theoretical simulations, we could gain a better 
understanding of the electrochemical dynamics of metal 
from thermodynamics point of view.

Moreover, the practical use of 2D materials in metal 
anodes also faces the challenges that the material prepa-
ration method is relatively expensive and complicated, 
not favorable for industrial operation. Taking the most 
conventional 2D material of graphene as example, CVD 
grown graphene has a higher quality in terms of crys-
tallinity with less defects and controllable layer num-
bers. However, this method requires a high temperature 
and inert growth environment as well as the time-
consuming transfer process, which limits the practical 

material preparation in large scale. On the other hand, 
the mechanical exfoliated graphene from graphite owns 
the disadvantages of uncontrollable layer number and 
low yields. In contrast, reduction of GO is a more con-
venient approach to obtain large amounts of graphene 
in one pot, however, it is hard to control the degree of 
reduction and products are always bulky. Therefore, 
more efforts are needed to simplify and reduce the price 
for large-scale 2D material fabrication.
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