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Abstract
Anticipating qualitative changes in the rheological response of complex fluids (e.g., a gelation or vitrification transition) is an
important capability for processing operations that utilize such materials in real-world environments. One class of complex
fluids that exhibits distinct rheological states are soft glassy materials such as colloidal gels and clay dispersions, which can
be well characterized by the soft glassy rheology (SGR) model. We first solve the model equations for the time-dependent,
weakly nonlinear response of the SGR model. With this analytical solution, we show that the weak nonlinearities measured
via medium amplitude parallel superposition (MAPS) rheology can be used to anticipate the rheological aging transitions in
the linear response of soft glassy materials. This is a rheological version of a technique called structural health monitoring
used widely in civil and aerospace engineering. We design and train artificial neural networks (ANNs) that are capable of
quickly inferring the parameters of the SGR model from the results of sequential MAPS experiments. The combination of
these data-rich experiments and machine learning tools to provide a surrogate for computationally expensive viscoelastic
constitutive equations allows for rapid experimental characterization of the rheological state of soft glassy materials. We
apply this technique to an aging dispersion of Laponite® clay particles approaching the gel point and demonstrate that a
trained ANN can provide real-time detection of transitions in the nonlinear response well in advance of incipient changes in
the linear viscoelastic response of the system.

Keywords Medium amplitude · Rheological aging · Soft glassy rheology · Machine learning

Introduction

Identifying incipient changes in the state of engineering
systems is a critical task. This process, which typically
comprises recognizing states of the system characteristic
of sudden qualitative change in performance, is sometimes
referred to as “fault detection” or “health monitoring.” A
prominent example of engineering systems in which incip-
ient changes of state are identified are the mechanical
structures that constitute civil infrastructure, such as bridges
and buildings (Doebling et al. 1998). Structures fatigue over
time, a physical change, and can suddenly lose rigidity result-
ing in a total mechanical failure (Bathias and Pineau 2010).
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Structural healthmonitoring can be accomplished in different
ways, but in the most general sense, these techniques amount
tomethods for nonlinear system identification (NLSI) (Ewins
2009; Doyle et al. 2002). That is, a non-destructive probe of
a system’s structural mechanics is used to construct a non-
linear mathematical model for its structural response, and
the nonlinear components of the model are subsequently
monitored for changes that are empirically correlated with
different modes of failure (Dwivedi et al. 2018).

One of the most common modes of probing structures is
familiar to rheologists: the propagation of acoustic waves
through the structure and the measurement of nonlinear
interactions among the waves (Solodov et al. 2004). These
techniques measure the weak nonlinear response through the
use of special intermodulation tones whose nonlinear inter-
actions can be easily measured (Cheng et al. 2017; Boyd
et al. 1983; Chua and Liao 1989). Although there is limited
rigorous proof that failure modes can be identified first in the
nonlinear response, this kind of structural health monitor-
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ing sees wide applicability in the civil (Brownjohn 2007)
and aerospace (Giurgiutiu 2015) industries. Experimental
studies have demonstrated that harmonic analysis also pro-
vides a useful characterization of fatigue dynamics in soft
materials; for instance, one study applied stress-controlled
oscillatory shear tests for time-resolved monitoring of yield-
ing and fluidization in a colloidal gel (Perge et al. 2014).
More recent work has suggested that harmonic analysis may
also provide sensitive indications of fatigue in brittle poly-
mers and visco–hyper-elastic elastomers (Hirschberg et al.
2018, 2019, 2021).

For complex fluids, methods ofmonitoring certain aspects
of the state of a fluid that are critical for engineering appli-
cations, such as its linear rheology, both online (Covas et al.
2004; Konigsberg et al. 2013; Luger and Miethlinger 2019)
and offline (Mours and Winter 1994) are robust. However,
methods of measurement, either on- or offline, for antici-
pating dramatic changes in the linear rheology do not exist.
Such transitionsmight come about through physical or chem-
ical changes in the material and can be categorized in terms
of many well-known phenomena including gelation and vit-
rification. When certain features of the linear rheology, or
features of the nonlinear rheology that can be correlated
with the linear response (such as the steady flow curve (Cox
and Merz 1958)), are crucial for engineering applications,
anticipating these transitions is essential to the design and
maintenance of products and processes. In this work, we
apply the rheological version of the intermodulation tech-
nique used in structural health monitoring, termed medium
amplitude parallel superposition (MAPS) rheology (Lennon
et al. 2020b), to study incipient changes in a fluid’s rheologi-
cal state (e.g., if it is in a “sol” or “gel” state) as characterized
by its linear viscoelastic response.

Although empirical correlations can be used for this task,
we seek a first principles foundation for such a measure-
ment. To do so, we investigate a well understood model that
is capable of describing the linear and nonlinear rheology of
a broad range evolving and aging viscoelastic materials—
the soft glassy rheology (SGR) model (Sollich et al. 1997;
Sollich 1998). Thismodel is appropriate for describingmate-
rials whose micro- and meso- scale elements must yield in
order to induce flow, such as aqueous dispersions of clay
platelets, hard sphere colloidal glasses, and dispersions of
polymer microgels (Bhattacharyya et al. 2023). It has been
applied to describe dense suspensions (Purnomo et al. 2008),
foams (Höhler and Cohen-Addad 2005), colloidal gels (Yin
and Solomon 2008), emulsions (Mason et al. 1995), and dis-
persions of soft particles (Bonn et al. 2002; Suman and Joshi
2020). Qualitatively, the linear viscoelastic response of this
nonlinear constitutive model exhibits three distinct regimes:
single modeMaxwell behavior typical of simple viscoelastic
fluids (Tschoegl 1989), power-law or fractional Maxwell-
like behavior characteristic of gelling materials (Palade et al.

1996), and age-dependent fractional Kelvin-Voigt behavior
typical of glassymaterials (Papoulia et al. 2010).Which class
of behavior is exhibited by the model is controlled entirely
by a single parameter called the “noise temperature.” The
progressive transition or mutation in time of a given mate-
rial from one regime to another will change the dynamical
characteristics of any flow system employing such a fluid.
Thus, a method of monitoring the “rheological health” of the
fluid for incipient changes in its material response is critical
to any engineering problem involving the rheomechanical
characteristics of these fluids.

The paper is organized as follows. In Sect. 2, we review
the basic formulation for MAPS rheology to provide a foun-
dation for intermodulation techniques in rheology. In Sect. 3,
we solve for the weak nonlinearities in both the scalar form
and a tensorial form of the SGRmodel analytically, and qual-
itatively illustrate how these nonlinearities may be used to
anticipate changes in the linear rheology of an aging or time-
evolving fluid that can be described by the SGR model. In
Sect. 4, we introduce a machine learning method for “invert-
ing” the SGR model, which enables real-time identification
of incipient changes in the state of the fluid. Finally, in Sect. 5,
we demonstrate an implementation of this methodology on
a gelling aqueous dispersion of Laponite® clay platelets—a
material with practical engineering uses that span oilfield and
cosmetic applications (Cummins 2007; Xiong et al. 2019).

Background onMAPS rheology

A version of the intermodulation technique commonly
applied to structural health monitoring of material systems
has recently been developed for measurements of the weakly
nonlinear mechanical response of complex fluids, and we
refer to this as MAPS rheology (Lennon et al. 2020b). In
a MAPS experiment, multiple sinusoidal shear waves are
superimposed in a rheometer, and the time-resolved shear
stress response is measured (Lennon et al. 2020a). For small
strains, the material is homogeneously deformed, and the
state of the fluid can be described in terms of the time-
dependent shear stress and shear strain alone. The analysis
in this scenario is best performed in terms of the Fourier
transformations of the shear stress and shear strain:

σ̂ (ω) =
∫ ∞

−∞
e−iωtσ(t) dt, γ̂ (ω) =

∫ ∞

−∞
e−iωtγ (t) dt .

In the limit of relatively small strain amplitudes, the Fourier
transformation of shear stress is well approximated by a trun-
cated polynomial expansion in the Fourier transformation of
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the strain:

σ̂ (ω) = G∗(ω)γ̂ (ω) (1)

+ 1

(2π)2

∫∫∫ ∞

−∞
G∗

3(ω1, ω2, ω3)δ(ω−ω1−ω2−ω3)

× γ̂ (ω1)γ̂ (ω2)γ̂ (ω3) dω1dω2dω3 + O(γ̂ (ω)5).

This is the frequency-space representation of aVolterra series
expansion for the shear stress in terms of the strain (Lennon
et al. 2020b). The quantity G∗(ω) is the familiar complex
modulus measured in ordinary oscillatory rheometry at very
small strains. Due to time-reversability, the leading order
nonlinearity in the shear stress during homogeneous defor-
mation arises at third order in the strain, and the response
function, G∗

3(ω1, ω2, ω3), is called the third-order complex
modulus with SI units of Pa. This material function encodes
the weakly nonlinear response of the shear stress to a homo-
geneous deformation with arbitrary time dependence. In
previous work (Lennon et al. 2020b), we have analyzed this
function for several constitutive models and showed that the
frequency dependence of G∗

3(ω1, ω2, ω3) is very sensitive
to the details of the general functional relationship between
stress and deformation in each model.

Many soft materials are fragile and can only sustain small
deformations before the imposed flow drives significant evo-
lution of the microstructure (Butler 1999). In such a case,
measurements ofweak nonlinearities under strain control can
be difficult. However, the weakly nonlinear strain response
under an imposed shear stress history can be measured
instead. The Volterra series expansion of the strain in terms
of the shear stress in frequency space is as follows:

γ̂ (ω) = J ∗(ω)σ̂ (ω) (2)

+ 1

(2π)2

∫∫∫ ∞

−∞
J ∗
3 (ω1, ω2, ω3)δ(ω−ω1−ω2−ω3)

× σ̂ (ω1)σ̂ (ω2)σ̂ (ω3) dω1dω2dω3 + O(σ̂ (ω)5).

This stress-controlled mode of experimentation provides
measurements of the linear compliance: J ∗(ω) = 1/G∗(ω)

for the linear response, along with another Volterra kernel,
called the third-order complex compliance, J ∗

3 (ω1, ω2, ω3).
Because the functional relationship between shear strain and
stress is invertible, this material function can be related to the
third-order modulus directly through analysis of Eqs. 1 and
2:

J ∗
3 (ω1, ω2, ω3) = (3)

− G∗
3(ω1, ω2, ω3)

G∗(ω1)G∗(ω2)G∗(ω3)G∗(ω1 + ω2 + ω3)
.

Thus, the third-order complex compliance inherits the same
model sensitivity present in the complex modulus.

In a typical MAPS experiment with characteristic strain
amplitude γ0 � 1, we use a superposition of three particular
sinusoids (Lennon et al. 2020a):

γ (t) = γ0

(
sin(n1ω0t) + sin(n2ω0t) + sin(n3ω0t)

)
, (4)

to measure G∗
3(ω1, ω2, ω3). The particular value of the

amplitude γ0 should be selected based on an analysis of
experimental variance (i.e., noise) and the relative bias gen-
erated by higher order effects in the material under study
(Lennon et al. 2020a). The set of integers {n1, n2, n3} should
be chosen carefully, so that all sums and differences of triplets
selected from the set are unique. In this case, the third-order
complex modulus can be measured directly as distinct har-
monics ofω0 in the shear stress. The data returned by a single
MAPS experiment with three distinct input tones consists of
both the linear response at frequencies: n1ω0, n2ω0, n3ω0

and the nonlinear response function at the frequency triplets
listed in Table 1. Sweeps of the fundamental frequency, ω0,
and different sets of integer triplets, {n1, n2, n3}, can allow
one to probe the third-order MAPS response function in its
entirety. Just as a three-tone strain waveform can be used to
measureG∗(ω) andG∗

3(ω1, ω2, ω3), a three-tone shear stress
waveform can be used tomeasure J ∗(ω) and J ∗

3 (ω1, ω2, ω3).

Table 1 The harmonics of the base tone ω0 at which the Fourier
transformation of the stress shows a spectral contribution to the
three-dimensional function G∗

3(ω1, ω2, ω3) arising from a three-tone,
strain-controlled MAPS experiment

Harmonic Measured stress response /
(
iπγ 3

0 /4
)

ω0(n1 + n2 + n3) 6G∗
3(ω0n1, ω0n2, ω0n3)

ω0(n1 + n2 − n3) −6G∗
3(ω0n1, ω0n2,−ω0n3)

ω0(n1 − n2 + n3) −6G∗
3(ω0n1,−ω0n2, ω0n3)

ω0(n1 − n2 − n3) 6G∗
3(ω0n1,−ω0n2,−ω0n3)

ω0(2n1 + n2) 3G∗
3(ω0n1, ω0n1, ω0n2)

ω0(2n1 − n2) −3G∗
3(ω0n1, ω0n1,−ω0n2)

ω0(2n1 + n3) 3G∗
3(ω0n1, ω0n1, ω0n3)

ω0(2n1 − n3) −3G∗
3(ω0n1, ω0n1,−ω0n3)

ω0(2n2 + n1) 3G∗
3(ω0n2, ω0n2, ω0n1)

ω0(2n2 − n1) −3G∗
3(ω0n2, ω0n2,−ω0n1)

ω0(2n2 + n3) 3G∗
3(ω0n2, ω0n2, ω0n3)

ω0(2n2 − n3) −3G∗
3(ω0n2, ω0n2,−ω0n3)

ω0(2n3 + n1) 3G∗
3(ω0n3, ω0n3, ω0n1)

ω0(2n3 − n1) −3G∗
3(ω0n3, ω0n3,−ω0n1)

ω0(2n3 + n2) 3G∗
3(ω0n3, ω0n3, ω0n2)

ω0(2n3 − n2) −3G∗
3(ω0n3, ω0n3,−ω0n2)

3ω0n1 G∗
3(ω0n1, ω0n1, ω0n1)

3ω0n2 G∗
3(ω0n2, ω0n2, ω0n2)

3ω0n3 G∗
3(ω0n3, ω0n3, ω0n3)
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Previous studies have demonstrated that three-toneMAPS
experiments can provide data that ismore sensitive to distinct
aspects of a material’s nonlinear rheology than other spec-
tral and transient rheometric methods (Lennon et al. 2021b)
and that this sensitivity leads to more precise estimates of
constitutive model parameters when fitting the model predic-
tions to real experimental data (Lennon et al. 2021a). This
sensitivity is critical for health monitoring, because the mon-
itoring system strives to identify small changes in the state
of the material. Three-tone MAPS experiments also pos-
sess an advantage in data density over other experimental
techniques, as evidenced by Table 1. The acquisition time
of such experiments is set by the fundamental frequency
ω0—as is also the case for single-tone small and medium
amplitude oscillatory shear experiments (SAOS and MAOS,
respectively)—but the number of independentmeasurements
is set by the number of input tones, with the three-tone
experiment resulting in nearly ten times more data than its
single-tone counterpart. It has recently been shown that the
data throughput of multi-tone MAPS experiments can be
further increased by implementing signals with more than
three tones, though these experiments require a more com-
plicated experimental design that will not be considered here
(Lennon 2023). As we will demonstrate in Sect. 4, this data
richness enables accurate health monitoring from a single
MAPS experiment, which can facilitate the development of
online rheology health monitoring tools.

Weakly nonlinear response of the SGRmodel

The scalar soft glassy rheology (SGR) model (Sollich et al.
1997;Sollich1998) describes theflowof an amorphousmate-
rial due to local yielding events having a distribution of yield
energies E , denoted ρ(E). For a material subjected to an
oscillating strain history, the relationship in periodic steady
state (the alternance state) between the shear stress, σ(t), and
the strain, γ (t), in the SGR model can be written as follows:

σ(t) =
∫ t

−∞
�(t ′)

(
γ (t) − γ (t ′)

)
G(Z(t, t ′)) dt ′ (5)

with auxiliary equations defining the rate at which yielding
events occur, �(t), and an effective time interval, Z(t, t ′):

1 =
∫ t

−∞
�(t ′)G(Z(t, t ′)) dt ′, (6)

and

Z(t, t ′) =
∫ t

t ′
exp

[
1

2x

(
γ (t ′′) − γ (t ′)

)2]
dt ′′. (7)

The function G(z) is a relaxation modulus, defined as fol-
lows:

G(z) =
∫ ∞

0
ρ(E) exp

(
−ze−E/x

)
dE = �−1

eq

〈
e−z/τ 1

τ

〉
,

(8)

with τ = eE/x representing a dimensionless relaxation time,
which depends on the yield energy E , and the average in
angle brackets being taken over the equilibrium distribution
of yield energies: �eqρ(E)eE/x . The parameter x is a so-
called “noise temperature” setting the scale for the depth of
the local energy minima trapping the yielding elements. In
this model, time is made dimensionless on the inverse of
the attempt frequency for yielding, f −1, and stress is made
dimensionless on the characteristic stiffness of the yielding
elements, k. We note that throughout this section, we use the
symbols σ and G to denote the dimensionless shear stress
andmodulus, respectively, and the symbols t andω to denote
dimensionless time and frequency, respectively.

Although Eqs. 5–8 are an exact solution to the SGRmodel
with periodic straining, computing response functions with
these equations analytically may be impossible in general.
Computing these functions numerically is also quite labo-
rious because of the integral equation describing how the
yielding rate changes in time under flow (Eq.6) (Radhakr-
ishnan and Fielding 2016, 2018; Park and Rogers 2018).
However, asymptotic solutions to this set of equations can be
constructed through straightforward methods (Fielding et al.
2000), and these are all that are needed to extract the weakly
nonlinear response probed in aMAPSexperiment. ToO(γ 2),
the time interval can be written as follows:

Z(t, t ′) = (t − t ′) + 1

2x

∫ t

t ′

(
γ (t ′′) − γ (t ′)

)2
dt ′′. (9)

Similarly, to O(γ 2), the relaxation modulus G(Z(t, t ′)) is as
follows:

G(Z(t, t ′)) = �−1
eq

[〈
e−(t−t ′)/τ 1

τ

〉
(10)

− 1

2x

〈
e−(t−t ′)/τ 1

τ 2

〉 ∫ t

t ′

(
γ (t ′′) − γ (t ′)

)2
dt ′′
]

.

As a final ingredient in this asymptotic analysis, we sup-
ply the ansatz that the yielding rate to leading order is
�(t) = �eq(1 + �̃2(t)) + O(γ 3), where �̃2(t) ∼ O(γ 2).
Substituting these expansions for G(Z(t, t ′)) and �(t) into
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Eq.6 and matching terms up to O(γ 2) shows that

∫ t

−∞

〈
e−(t−t ′)/τ 1

τ

〉
�̃2(t

′) dt ′ (11)

= 1

2x

∫ t

−∞

〈
e−(t−t ′)/τ 1

τ 2

〉 ∫ t

t ′

(
γ (t ′′) − γ (t ′)

)2
dt ′′ dt ′,

which can be solved to give the perturbation to the equilib-
rium yield rate, �̃2(t). With these same expansions, the stress
to leading order in the strain can be written as follows:

σ(t) =
∫ t

−∞
(
γ (t) − γ (t ′)

) 〈
e−(t−t ′)/τ 1

τ

〉
dt ′ (12)

+
∫ t

−∞
(
γ (t) − γ (t ′)

) [
�̃2(t

′)
〈
e−(t−t ′)/τ 1

τ

〉

− 1

2x

〈
e−(t−t ′)/τ 1

τ 2

〉 ∫ t

t ′

(
γ (t ′′) − γ (t ′)

)2
dt ′′
]
dt ′,

where the first line gives the linear response and the remain-
der is the leading-order nonlinearity.

To find a closed form for the weakly nonlinear, time-
dependent response of the SGR model, it is convenient to
work with the stress and strain in Fourier space: σ̂ (ω), γ̂ (ω).
Then, Eq.12 can be written as follows:

σ(t) = 1

2π

∫ ∞

−∞
eiωt γ̂ (ω)

〈
iτω

1 + iτω

〉
dω + (13)

1

(2π)3

[ ∫∫ ∞

−∞
ei(ω1+ω)t γ̂ (ω1)

ˆ̃
�2(ω)

〈
iτω1

1 + iτω1

〉
dω1dω

− 1

2x

∫∫∫ ∞

−∞
ei(ω1+ω2+ω3)t γ̂ (ω1)γ̂ (ω2)γ̂ (ω3)

× 〈X(ω1, ω2, ω3, τ )〉 dω1dω2dω3

]
,

with

X(ω1, ω2, ω3, τ ) =
∫ t

−∞
1

τ 2
e−(t−t ′)/τ (eiω1t − eiω1t ′ )

×
∫ t

t ′

[
ei(ω2+ω3)t ′′ − eiω2 t ′′+iω1t ′ − eiω1t ′′+iω2 t ′ + ei(ω2+ω3)t ′

]
dt ′′ dt ′

= i

τω2(1 + iτω3)
− i

τω2(1 + iτ(ω1 + ω3))
+ 1

(1 + iτ(ω2 + ω3))2

− i − τω2(1 + iτω2)

τω2(1 + iτω2)(1 + iτ(ω2 + ω3))
− 1

(1 + iτ(ω1 + ω2 + ω3))2

+ i(1 + iτ(2ω1 + ω2) − τ 2(ω2
1 + ω1ω2 + ω2

2))

τω2(1 + iτω1)(1 + iτ(ω1 + ω2))(1 + iτ(ω1 + ω2 + ω3))
. (14)

The Fourier transformation of Eq.11 gives the perturba-
tion to the yielding rate as follows:

〈
1

1 + iτω

〉
ˆ̃
�2(ω) = 1

2x

∫∫ ∞

−∞
δ(ω − ω2 − ω3)γ̂ (ω2)γ̂ (ω3)

× 〈Y (ω2, ω3, τ )〉 dω2 dω3, (15)

with

Y (ω2, ω3, τ ) =
∫ t

−∞
1

τ 2
e−(t−t ′)/τ

∫ t

t ′

[
ei(ω2+ω3)t ′′ (16)

−eiω2t ′′+iω3t ′ − eiω3t ′′+iω2t ′ + ei(ω2+ω3)t ′
]
dt ′′ dt ′

= τ 2ω2ω3(2i − τ(ω2 + ω3))

(1 + iτω2)(1 + iτω3)(1 + iτ(ω2 + ω3))2
.

Finally, substituting for ˆ̃
�2(ω) in the transformed stress and

integrating over the frequency variable ω yields the follow-
ing:

σ̂ (ω) = γ̂ (ω)

〈
iτω

1 + iτω

〉
(17)

+ 1

(2π)2

∫∫ ∞

−∞
δ(ω − ω1 − ω2 − ω3)γ̂ (ω1)γ̂ (ω2)γ̂ (ω3)

× G∗
3(ω1, ω2, ω3) dω1 dω2 dω3,

with the third order complex modulus defined as follows:

G∗
3(ω1, ω2, ω3) = 1

2x

(〈
iτω1

1 + iτω1

〉
〈Y (ω2, ω3, τ )〉 (18)

×
〈

1

1 + iτ(ω2 + ω3)

〉−1

− 〈X(ω1, ω2, ω3, τ )〉
)

.

The leading-order term in the Fourier transformation of
the stress can be identified as the linear response, with the
transfer function being the complex modulus of the material.
The leading nonlinearities are identified with the remaining
terms in Eq.17. This nonlinear response is third order and
controlled by the Volterra kernel, G∗

3(ω1, ω2, ω3).
As with other third-order Volterra kernels, the expres-

sion in Eq.18 can be made symmetric without altering
the structure of the response by permuting the variables
ω1, ω2, ω3 and averaging the permutations (Lennon et al.
2020b, a). Appendix 1 contains a non-symmetric formula for
G∗

3(ω1, ω2, ω3) written in terms of confluent hypergeomet-
ric functions. Figure1 plots the real and imaginary parts of
G∗

3(n1ω0, n2ω0, n3ω0) for noise temperatures of x = 4 and
x = 5 and a few distinctive values from the set of integer
triplets: {n1, n2, n3}. The third-order moduli exhibit particu-
lar power-law scaling in the low-frequency limit. The real and
imaginary parts of the third-order moduli also exhibit sign
changes with changes in frequency—a phenomenon that is
known from MAOS studies of other nonlinear viscoelastic
models (Ewoldt and Bharadwaj 2013).

In the SGR model, there are postulates about the dis-
tribution of yield energies necessary to produce a glass
transition (Bouchaud 1992). It is generally assumed that
ρ(E) ∼ exp(−E), so that the equilibrium distribution of
yield energies,�eqρ(E)eE/x , remains integrable up to x = 1,
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Fig. 1 The third-order complex modulus: G∗
3(n1ω0, n2ω0, n3ω0), of

the SGR model with x = 4 and x = 5 as a function of the dimen-
sionless fundamental frequency ω0 for {n1, n2, n3} = {1, 4, 16} (black
symbols), {5, 6, 9} (red symbols), and {1, 1, 1} (blue symbols). The left

panel shows scale-free power-law behavior at low frequency, while the
right shows the expected behavior at third order for a viscoelastic fluid
with a compact spectrum of relaxation times

where the glass transition occurs. This exponential distribu-
tion also gives rise to regimes in which the predicted material
response can be described by a fractional viscoelastic consti-
tutive equation (Jaishankar and McKinley 2013; Rathinaraj
et al. 2021). For the present purposes, we take the distribution
to be exp(−E), so that �eq = (x − 1)/x and evaluate the
averages in the expansion of the shear stress. As noted by Sol-
lich (1998), the linear response produced by this distribution
of relaxation times is as follows:

G∗(ω) =
〈

iωτ

1 + iωτ

〉
= (x − 1)

∫ ∞

1

1

τ x

iωτ

1 + iωτ
dτ (19)

= 2F1(1, x − 1, x,
i

ω
),

which has the well-known (Bonn et al. 2002) asymptotic
scaling in the low-frequency limit:

G ′(ω) ∼
{

ω2 3 ≤ x
ωx−1 1 < x < 3

, (20)

G ′′(ω) ∼
{

ω 2 ≤ x
ωx−1 1 < x < 2

.

The noise temperature in the SGR model thus controls a set
of rheological transitions in the material. For x > 3, the
linear viscoelastic response in both G ′ and G ′′ is that of a
simple Maxwell fluid. For 1 < x < 3, the linear response is
of the fractional Maxwell type (Bonn et al. 2002; Papoulia
et al. 2010). Below the glass transition, 0 < x < 1, the linear
response takes on a fractional Kelvin-Voigt form, which is
also age-dependent (Fielding et al. 2000). We do not explore
this age-dependent regime here, but refer the reader to the
work of Fielding et al. (2000).

The approach to the glass transition at x = 1 is often
analyzed in terms of the phase angle δ(ω) of the complex
modulus, defined by tan δ(ω) = G ′′(ω)/G ′(ω). For large x

(≥ 3), tan δ ∼ ω−1; for 2 < x < 3, tan δ ∼ ω2−x ; and for
1 < x ≤ 2, tan δ ∼ ω0. In this last regime, the phase angle
becomes independent of frequency (at low frequencies). This
is often called the critical gel state (Winter and Chambon
1986), in which the relative viscoelastic characteristic (i.e.,
the phase angle given by the ratio of G ′′ to G ′) is scale-free
(i.e., independent of the observation or deformation time-
scale, in the limit of long time-scales or small frequencies).
Observing this scale-free response in which tan δ(ω) is con-
stant can be a sensitive probe of the gelation time in an aging
soft glass (Keshavarz et al. 2021).

The third-order modulus can be evaluated in a similar
manner so that Eq.18 yields a complex expression involv-
ing hypergeometric functions. We omit the full expression
here as it is not easily simplified or interpreted (see Eqs.A.1–
A.4). However, in the limit of low dimensionless frequencies,
ω = |ω1| + |ω2| + |ω3| � 1, this expression has the asymp-
totic form:

G ′
3(ω1, ω2, ω3) ∼

{
ω4 5 ≤ x
ωx−1 1 < x < 5

, (21)

G ′′
3(ω1, ω2, ω3) ∼

{
ω3 4 ≤ x
ωx−1 1 < x < 4

.

Perhaps unsurprisingly, in the regime just above the glass
transition 1 < x < 2, the third-order modulus is scale-free
just as the linear response. That is, the real and imaginary
parts of the third-order modulus G∗

3(ω1, ω2, ω3) exhibit the
same power-law dependence, or logarithmic slope, at low
frequency. The ratio of G ′

3(ω1, ω2, ω3) to G ′′
3(ω1, ω2, ω3)

should have no systematic dependence on |ω1|+ |ω2|+ |ω3|
in this regime. This is in contrast to a third-order fluid with
a Maxwell-like linear response, such as the SGR model with
x > 5, for which this same ratio grows linearly with ω

(Lennon et al. 2020b). One surprising characteristic of the
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Fig. 2 Logarithmic slopes of the linear and weakly nonlinear response
functions of the SGRmodel in a strain controlled experiment—moduli:
G∗(ω), G∗

3(ω1, ω2, ω3)—in the low-frequency limit: ω, |ω1| + |ω2| +
|ω3| � 1, as a function of noise temperature x . There exists a distinct
regime (shaded) in which the logarithmic slopes of G ′

3 and G
′′
3 serve as

antecedents of a transition in the character of the linear response

third-order modulus in the SGR model is that it becomes
scale-free further from the glass transition at x = 1 than is
the case with the linear response. That is, scale-free behav-
ior appears in the linear response when 1 < x < 2, while it
appears in the third-order complexmoduluswhen1 < x < 4,
which suggests that theweak nonlinearities in the SGRmodel
are more sensitive to the incipient glass transition that is
parameterized by a time-varying and slowly decreasing noise
temperature x(t).

Being able to establish and monitor the rheological state
of a soft material—whether it is presently fluid-, gel-, or
glass-like in characteristic—is critical to use of that fluid in
applications that require a particular rheological response.
Figure2 illustrates how one could potentially use the log-

arithmic slopes of the third-order modulus, d lnG3/d lnω,
as advanced warning of a crossover to a scale-free linear
response. If that scale-free behavior were to correspond to
the process of gelation and x is decreasing along a reaction
coordinate for the sol–gel transition, then the observation of
scale-free response in the third-order modulus (e.g., in the
range 3 < x < 4) could be used to anticipate the transition
to the gelled regimewell in advance of any qualitative change
in the linear response (1 < x < 2).

As with the moduli, the linear and third-order compliance
of the SGR model exhibit distinct power law behaviors at
small frequencies much like the moduli:

J ′(ω) ∼
{
1 3 ≤ x
ω−3+x 1 < x < 3

, (22)

J ′′(ω) ∼
{

ω−1 2 ≤ x
ω−3+x 1 < x < 2

,

J ′
3(ω1, ω2, ω3) ∼

{
1 5 ≤ x
ω−5+x 1 < x < 5

,

J ′′
3 (ω1, ω2, ω3) ∼

{
ω−1 4 ≤ x
ω−5+x 1 < x < 4

.

In Fig. 3, we plot the real and imaginary parts of
J ∗
3 (n1ω0, n2ω0, n3ω0) for the SGR model with x = 4 and
x = 5 obtained from Eqs. 18 and 3, with the same values
of the set {n1, n2, n3} as in Fig. 1. The predicted asymptotic
limits are confirmed.

From these values of the third-order compliance, the loga-
rithmic slopes of the real and imaginary parts can be extracted
and the response tested for scale-free behavior. When the
nonlinear compliance becomes scale-free at low frequency
as indicated in Fig. 4, the material is in the same pre-vitrified
state as shown in Fig. 2 and is about to undergo a rheological
transition.

Fig. 3 The third-order complex compliance, J ∗
3 (n1ω0, n2ω0, n3ω0),

of the SGR model with x = 4 and x = 5 as a function of the dimen-
sionless fundamental frequency ω0 for {n1, n2, n3} = {1, 4, 16} (black
symbols), {5, 6, 9} (red symbols), and {1, 1, 1} (blue symbols). The left

panel shows scale-free power-law behavior at low frequency, while the
right shows the expected behavior at third order for a viscoelastic fluid
with a compact spectrum of relaxation times
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Fig. 4 Logarithmic slopes of the linear and weakly nonlinear response
functions of the SGR model in a stress-controlled experiment—
compliances: J ∗(ω), J ∗

3 (ω1, ω2, ω3)—in the low-frequency limit:
ω, |ω1| + |ω2| + |ω3| � 1, as a function of noise temperature x . There
exists a distinct regime (shaded) in which the logarithmic slopes of J ′

3
and J ′′

3 serve as antecedents of a transition in the character of the linear
response

One practical complication to this picture is that within
these asymptotic power law regimes, the nonlinear response
functions can exhibit changes in sign. Unlike the linear
response, there is no physical constraint that forces the
nonlinear response function to be positive over any given
frequency range. This means that unlike examinations of
processes like critical gelation, the power law slopes cannot
necessarily be readoff a log-logplot of the nonlinear response
function data. In light of limited data sets, a more sophisti-
cated analysis of the data is required and will be examined
in the following section.

An additional consideration in this sort of analysis is
whether theweak nonlinearities that are predicted in the shear
stress of a tensorial SGR model differ significantly from the
scalar model. In the tensorial SGR model, the stress tensor
is written as follows (Cates and Sollich 2004):

σ (t) =
∫ t

−∞
�(t ′)G(Z(t, t ′))Q(E(t, t ′)) dt ′ (23)

with the effective time increment

Z(t, t ′) =
∫ t

t ′
exp

[
1

2x
R(E(t ′′, t ′))

]
dt ′′, (24)

where

E(t, t ′) =
⎛
⎝ 1 γ (t) − γ (t ′) 0
0 1 0
0 0 1

⎞
⎠ (25)

is the accumulated strain tensor between t and t ′, and R andQ
are functions of the accumulated strain tensor. The tensorial

SGR formulation also gives predictions of normal stresses
and the response of soft glassy materials under other kine-
matic deformation histories. In their work, Cates and Sollich
(2004) noted that the normal stresses of the tensorial SGR
measured in a step strain experiment change their behavior
qualitatively at a different noise temperature than the shear
stress. This is a subtle historical precursor to the predictions
for the MAPS response we have made here. Normal stress
differences are notoriously difficult to measure accurately in
experiments (especially in soft gels and polymer solutions),
whereas intermodulation responses such as the ones mea-
sured in a MAPS experiment are straightforward to detect
in simple shear with standard instrumentation and offer the
additional benefit of spectral noise filtering in the Fourier
domain.

The function R(E(t, t ′)) must be zero with no accumu-
lated strain and can only depend on the scalar invariants of
E(t, t ′). Therefore, for simple shear and small strain ampli-
tudes, an appropriate functional is as follows:

R(E(t ′′, t ′)) = c(γ (t ′′) − γ (t ′))2. (26)

The function Q controlling the stress generated by yielding
elementsmust be traceless and respect the same time-reversal
symmetries as the macroscopic stress. At small strain ampli-
tudes, Q, should be proportional to just the accumulated
strain in order for the tensorial SGR model to return a linear
response. A natural small strain amplitude expansion for the
shear component of Q is thus as follows:

Q(E(t, t ′)) : e1e2 = γ (t) − γ (t ′) + d(γ (t) − γ (t ′))3. (27)

The coefficients c and d are free parameters and are mate-
rial specific. Adding a tensorial character to the SGR model
changes the MAPS response, G̃∗

3(ω1, ω2, ω3) in two key
ways by mixing the nonlinearities arising from R and Q:

G̃∗
3(ω1, ω2, ω3) = cG∗

3(ω1, ω2, ω3) (28)

+ d

⎧⎪⎪⎨
⎪⎪⎩
G∗
⎛
⎝ 3∑

j=1

ω j

⎞
⎠−

3∑
j=1

⎡
⎢⎢⎣G∗

⎛
⎜⎜⎝

3∑
k=1
j �=k

ωk

⎞
⎟⎟⎠− G∗ (ω j

)
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

.

First, the MAPS response of the scalar SGR model is
reweighted by the coefficient c, which reflects the fraction
of energy stored in the yielding element that is used as work.
Necessarily, c > 0, and ought to be an O(1) quantity. Sec-
ond, the leading order nonlinearities in the stress produced
by a yielding element create an additional contribution to the
MAPS response that is time-strain separable andproportional
to the stress nonlinearity coefficient, d. If this term arises
purely kinematically as in Larson’s model of foam rheology
(Larson 1997), then the coefficient takes the value d = −1/8.
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If, however, there are othermodes of nonlinearity in the stress
generated by an element, d could potentially deviate from
this value in both magnitude and sign. Although the MAPS
response of the tensorial SGR model has an additional con-
tribution when compared with the scalar SGR model, this
time-strain separable part exhibits the same power law scal-
ing in the low-frequency limit. Consequently, Figs. 2 and 4
apply to the tensorial SGR model as well, while Figs. 1 and
3 are just qualitative descriptors.

Machine learning to accelerate solution of
the inverse problem

Recall that the scalar SGR model has three unknown param-
eters: the attempt frequency f on which frequencies are
made dimensionless, the characteristic stiffness of yielding
elements k, on which moduli are made dimensions, and
the noise temperature x . These appear in both the linear
response and the leading order nonlinearities. The tensorial
SGR introduces another two parameters: c and d, that appear
in the nonlinearities alone. For low oscillatory frequencies,
at which the SGRmodel is expected to be valid, a fit to linear
response data cannot accurately determine the three param-
eters: k, f , and x , independently. From Eq.20, we see that
in the scale-free regime (1 < x < 2), the sensitivity of the
linear response in the limit that ω → 0 to the parameter x ,
given by ∂G∗(ω)/∂x , diverges (note that for the remainder
of this work, we return to the convention that ω represents
dimensional frequency and G∗

3 represents the dimensional
third-order complex modulus). The diverging sensitivity to
x results in an ill-conditioned problem of inverting the model
to find x , k, and f simultaneously. In the regionwhere x > 3,
one can determine two unique combinations of k, f , and x ,
but cannot find all three independently as the model adopts a
single modeMaxwell form, which possesses just two param-
eters: a characteristic modulus and a time scale. Parameter
estimation for the SGR model with the linear response alone
is thus ill-conditioned.

If we instead consider the weakly nonlinear case, we find
that the MAPS response functions are parameterized by k,
f , and x as well as the coefficients c and d. Although these
functions also possess a scale-free region, that region encom-
passes the one covering the linear response. Therefore, a
combination of the linear response and nonlinear response
data can be used to determine each of the five parameters
independently. Unlike the case for the linear response alone,
parameter estimation when combining linear response and
MAPS data is well conditioned across a broad range of
parameter values.

One approach to this parameter estimation problem is
regression. An estimate of the parameters is formed from
minimization of an objective function, which is given by

the difference between measured and modeled values of
the linear and nonlinear response functions at several differ-
ent frequencies. A global minimum of this difference could
be identified by varying the model parameters systemati-
cally through the use of schemes like simulated annealing
(Kirkpatrick et al. 1983) and parallel tempering (Earl and
Deem 2005). One challenge with this approach is that the
model for the nonlinear response functions is computation-
ally expensive to evaluate. The process of searching for a
global minimum from a given set of experimental data could
become very time consuming. Repeating that process over
and over is impractical, especially if one wants to learn this
parameterization across a wide variety of samples or in an
online fashion during an industrial process.

An alternative approach is to use an artificial neural
network (ANN), trained on synthetic data, to learn the
inverse functional relationship between the linear response
and MAPS data and the model parameters k, f x , c, and
d. Artificial neural networks are powerful tools for super-
vised regression problems, in which the objective is to learn
the relationship between input variables and one or more
continuous output variables from a data set containing exam-
ples with known inputs and known outputs (Ferguson 2018).
Neural networks have demonstrated success in learning
inverse solutions to other constitutive models when trained
on synthetic data (Mahmoudabadbozchelou and Jamali 2021;
Mahmoudabadbozchelou et al. 2022). Here, we use a multi-
layer perceptron to learn this inverse relationship within the
SGR model for a data set that combines the linear response
and weakly nonlinear response measured in a single three
tone MAPS experiment. Schematically, this inverse function
gives the relationship (k, f , x, c, d) = f (y), with

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

G∗(n1ω0)

G∗(n2ω0)

G∗(n3ω0)

G∗
3(n1ω0, n2ω0, n3ω0)

...

G∗
3(n3ω0, n3ω0, n3ω0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

or

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J ∗(n1ω0)

J ∗(n2ω0)

J ∗(n3ω0)

J ∗
3 (n1ω0, n2ω0, n3ω0)

...

J ∗
3 (n3ω0, n3ω0, n3ω0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

depending on whether strain- or stress-controlled MAPS
experiments are performed. The ellipses describe the 17 other
weakly nonlinear response functions measured in a MAPS

123



Rheologica Acta

experiment. The 19 strain-controlled functions are described
in Table 1, and the corresponding stress-controlled response
functions (third order compliance) are measured at the same
sets of frequencies.

Artificial neural networks of sufficient size are capable
of learning arbitrary functional relationships between their
inputs and outputs (Hornik et al. 1989). They do this by com-
posing a set of “layers” in series,with a single layer consisting
of a nonlinear (and typically non-parametric) activation func-
tion, a(.), and a set of linear equations parameterized by
weightsW and biases b. The state stored by layer n, denoted
yn , is therefore related to the state stored by layer n − 1 by
the following:

yn = an(Wnyn−1 + bn). (31)

For an ANN with N layers, n = 0 represents the model
inputs (the “input layer”), and n = N represents the model
outputs (the “output layer”), with 0 < n < N typically called
the “hidden layers” of the model. The size of y0 and yN is
set by the shapes of the model inputs and outputs, while the
size of the hidden states yn may be selected arbitrarily or
by a set of heuristic rules. Denoting the size of state yn as
ln , the weight matrix for layer n is ln × ln−1, and the bias
vector is ln ×1. The trainable parameters of the ANN, which
are updated to optimize an objective related to the true and
predicted outputs, are the combined set of weights and biases
from each layer. Figure5 presents a schematic depiction of
the structure of an ANN. Note that like the size of the hidden
layers, the total number of layers in the network N is typically
chosen arbitrarily or heuristically.

Although we may apply the ANN architecture described
above to an arbitrary set of input data, including data from
MAPS experiments with arbitrary {n1, n2, n3}, in the present

Fig. 5 Schematic depiction of the ANNs used to learn the relationship
between data collected in a single three-toneMAPS experiment and the
SGR model parameters. The network is composed of an input layer,
one or more hidden layers, and an output layer. With the exception
of the output, the states stored in successive layers are related by the
composition of a (non-parametric) nonlinear activation function and a
linear model parameterized by a set of weights and biases

work, we apply ANNs to inputs from stress-controlled three-
toneMAPS experiments with {n1, n2, n3} = {5, 6, 9}. As we
will discuss in Sect. 5, this set of input tones and the mode
of stress control is optimal for a stress-controlled rheome-
ter with inertial limitations at high frequency. However, the
same limitations may not apply to other experimental sys-
tems; thus, we explore the application of ANNs to other
experimental protocols in Appendix 2.

To assess whether the combination of three-tone MAPS
experimental data and machine learning can overcome the
limitations of health monitoring from linear rheology alone,
we construct and train two ANNs: one whose inputs are
only the three values of the linear compliance—J ∗(n1ω0),
J ∗(n2ω0), and J ∗(n3ω0)—obtained from a three-tone exper-
iment and one whose inputs are the entire data set (three
linear response measurements and 19MAPSmeasurements)
obtained from this experiment. Because these response func-
tions are complex and vary over orders of magnitude, the
ANN inputs are constructed by concatenating the logarithm
and sign of both the real and imaginary components of the
raw input data (Eq.30) into a single 88-element vector. In
both cases, the network outputs are the five parameters of
the tensorial SGR model. The full architectures of these net-
works are presented in Table 2. These networks are trained
using a set of 9000 synthetic experiments generated from
the analytical predictions of the tensorial SGR model, with
parameters selected uniformly at random from the follow-
ing intervals: log10 k ∈ [−1, 5], log10 f ∈ [1, 5], x ∈ [1, 6],
c ∈ [0, 10], and d ∈ [−1, 0]. The networks were constructed
using the Keras interface for Tensorflow and trained to min-
imize the mean squared error between the predicted and true
SGR parameters. This criterion was optimized using the root
mean squared propagation (RMSprop) optimizer.

The trained ANNs were next asked to predict the SGR
parameters for a test set of 1000 synthetic MAPS experi-
ments. Figure6 presents parity plots of the predicted versus
true parameters for this test set. The results are in agreement
with many of the qualitative statements made throughout this
work. Specifically, the ANN trained on linear response data

Table 2 The activation function an(.) and size of each layer ln for the
two ANNs explored in this section, for MAPS experiments with a tone
set {5, 6, 9}
n (layer) Activation an Layer size ln

Full LR

0 (input) 88 12

1 ReLU 88 12

2 ReLU 46 9

3 (output) Linear 5 5

The “Full” ANN is trained on the entire MAPS data set, while the “LR”
(linear rheology) ANN is trained only on the linear data from a single
MAPS experiment
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Fig. 6 Parity plots for the predicted versus true values of the SGR
model parameters (ln k, ln f , x , c, and d) for both the ANN trained on
linear response data alone (red triangles) and theANN trained onMAPS

and linear response data (blue circles) from synthetic three-tone stress-
controlled experiments with {n1, n2, n3} = {5, 6, 9}. Parity between
predictions and ground truth is depicted by a dashed black line

only (red triangles) is able to predict the parameters k, f ,
and x for x < 3, but with substantial variability indicative of
an ill-conditioned problem. For x > 3, only k and f can be
determined by this network, consistent with the qualitative
predictions made by investigating the asymptotic scaling of
the linear response functions. Neither c nor d can be pre-
dicted by the linear response function, as neither affect the
linear rheology of the SGR model.

Conversely, the ANN trained on both linear and MAPS
data (blue circles) provides more precise predictions of k and
f , as the inclusion of MAPS data improves the conditioning
of the problem. Moreover, this network is able to accurately
track the noise temperature x well beyond x = 3, with par-
ity observed to at least x = 5 as predicted by the qualitative
scaling analysis summarized in Figs. 2 and 4. The parameters
c and d are still difficult to ascertain, most likely due to the
observation that the time-strain separable component of the
response gives rise to the same asymptotic behavior as the
non-separable component. Therefore, while the inclusion of
the tensorial SGR formulation ultimately does not affect our
ability to monitor the state of a soft glassy fluid usingMAPS,
the observation thatMAPS data is insufficient to fully param-
eterize this model is interesting, as the limitations of MAPS
rheology are not yet fully understood. However, the conclu-
sion that x may be determined by this network for values of
x > 3 is most significant, as x represents the reaction coor-
dinate for gelation or vitrification that is the target of health

monitoring. Evidently, it is possible to monitor this coordi-
nate using a single three-tone MAPS experiment well before
changes are evident in the linear rheology of the SGRmodel.

That these accurate predictions of the noise temperature
in the SGR model may be obtained from a single MAPS
experiment is noteworthy. To obtain the same amount of
data from other well-known medium amplitude probes, such
as MAOS, would require nearly ten times the number of
experiments, because a single three-tone MAPS experiment
measures the complex-valued third-order response function
at a set of 19 intermodulation and third harmonic frequencies,
while a single-tone MAOS experiment excites nonlinearities
only on the first and third harmonic (i.e. two measurements
of the third order response function). For online health mon-
itoring applications, this amount of experimentation may not
be feasiblewithin process time constraints. Such applications
are facilitated by the high data density ofMAPS experiments,
which substantially reduce the time needed to acquire exper-
imental data sufficient for health monitoring. However, the
application of machine learning techniques is equally impor-
tant to these rapid predictions of material health that are
necessary for online applications. As previously discussed,
the parameters of the SGR model could have been recovered
from MAPS data by other means, such as global optimiza-
tion. In a five-dimensional parameter space, this would likely
require thousands of evaluations of the model predictions,
which are computationally burdensome. In fact, we find that

123



Rheologica Acta

each evaluation call requires O(1 s) to compute on a sin-
gle computer (2019 MacBook Pro, 2.4 GHz 8-Core Intel
i9 processor, 64 GB RAM); thus, direct optimization could
take minutes or hours to converge, which precludes real-time
monitoring of the fluid’s evolving rheological state. In the
machine learning approach, these expensive evaluations are
performed only during training data generation, in an offline
setting, and only evaluation of the trainedmodel is required in
the online setting.Moreover, the trainedmodel needs only be
evaluated once to estimate the noise temperature, and infer-
ence takes only O(1ms) on a single computer. Thus, with
machine learning, the monitoring timescale is limited only
by the data acquisition time.

Experimental demonstration on a
Laponite® dispersion

The previous section demonstrates that, within the frame-
work of the SGR model, MAPS rheology and machine
learning may be combined to provide advanced monitoring
of the rheological state of a material undergoing a glass tran-
sition.Although the SGRmodel qualitatively describesmany
real fluids, such fluidsmay not quantitatively agreewith SGR
predictions and may be influenced by other effects not cap-
tured by the SGRmodel.Moreover, true experimentalMAPS
data may not be as precisely determined as the synthetic data
used in the previous demonstration. Whether the method-
ology outlined above extends to physical systems requires
independent validation on real experimental data.

In this section, we apply the rheological health monitor-
ing methodology to an aqueous dispersion of Laponite® clay
platelets. Hectorite clays such as Laponite® and bentonite are
employed in a variety of industrial and commercial applica-
tions, such as the base component of drilling muds utilized in
oilfields, and as cosmetic products (Cummins 2007; Xiong
et al. 2019). Numerous studies have investigated the linear
rheology of these dispersions as they undergo gelation, show-
ing a transition that is well described by the scaling features
of the SGR model outlined in Sect. 3 (Bonn et al. 2002;
Suman and Joshi 2020).However, researchers have not inves-
tigated whether these transitions in the linear rheology may
be anticipated by transitions in the nonlinear rheology of the
dispersions.

Materials

The Laponite® clay powder (Laponite® RD supplied by
BYK) was dissolved in deionized water at 3 wt.% under
ambient conditions and mixing at 1000 rotations per minute.
The system was mixed for 10min, at which point a homo-
geneous, slightly opaque dispersion was produced. This

dispersion was immediately transferred to the rheometer for
measurements. Fresh samples were prepared for each time-
resolved set of gelation measurements.

Experimental methods

All experiments were performed in a DHR-3 Discovery
Hybrid Rheometer from TA Instruments using a smooth
concentric cylinder geometry (cup diameter of 30mm and
a gap of 1mm) maintained at 25 ◦C, with data collected and
analyzed using TRIOS v5.2.2. Frequency sweeps were per-
formed in stress control with an amplitude of σ0 = 0.01
Pa. Three-tone MAPS experiments were performed in stress
control using the arbitrary wave feature, with amplitudes of
σ0 = 0.1 Pa and σ0 = 0.05 Pa, and a fundamental frequency
of ω0 = 0.2 rad/s, with a sampling rate of 30 points/s that is
sufficiently above the Nyquist rate for the anticipated third-
order response. As previously noted, this stress-controlled
mode of experimentation is particularly suitable for materi-
als that develop a weak yield stress during aging, such as this
clay dispersion, where a fixed strain amplitude may even-
tually induce microstructural yielding. The MAPS response
functions were obtained from the raw time-series data using
the data analysis routines outlined in Lennon et al. (2020a).

Results

We first perform a series of small amplitude oscillatory
frequency sweeps to monitor the linear response of the
Laponite® dispersion as it approaches the gel transition. We
sweep frequencies from 10 to 0.5 rad/s, with five frequencies
per decade. At each frequency, the linear complex modulus
is computed from two oscillation cycles. A single frequency
sweep takes slightly less than 5min to complete; thus, we run
frequency sweeps every 5min to monitor the material. We
find that the material enters the scale-free regime at approxi-
mately 45min after the cessation ofmixing; thus, we conduct
frequency sweeps until 50min after mixing to monitor the
linear rheology up to the point where noticeable changes
are observed. Figure7 depicts the measured loss modulus
(G ′′(ω)) for each frequency sweep. The storage modulus
(G ′(ω)) formany experiments is below the noise floor, result-
ing in negative values. Thus, we exclude the storage modulus
from the present analysis.

We similarly conduct three-tone MAPS experiments with
{n1, n2, n3} = {5, 6, 9} for a freshly prepared sample. The
fundamental frequency of ω0 = 0.2 rad/s was selected to
remain in the low-frequency regime, while not requiring
unduly long experiments. Data was collected for eight peri-
ods with respect to this fundamental frequency, resulting in
experiments just under 5min in duration. These MAPS tests
were run every 5min, with a stress amplitude of σ0 = 0.1 Pa.
This amplitude was selected via a separate stress-controlled
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Fig. 7 The loss modulusG ′′(ω)measured for the Laponite® dispersion
using small amplitude oscillatory shear. Experiments are conducted
every 5min beginning at 5min aftermixing, and continuing until 50min
after mixing. The lighter points with higher transparency represent data
taken at earlier times, with data points connected by dashed lines to aid
in readability

amplitude sweep at ω = 0.2 rad/s, in order to mitigate the
effects of variance due to noise and bias due to the growth

of higher-order effects. The tests were repeated with a fresh
sample for an amplitude of σ0 = 0.05 Pa. For each MAPS
experiment, we truncate the first four cycles of the time-series
data to eliminate transient features in the response, and the
resulting time series are analyzed to obtain the third-order
complex compliance at the coordinates listed in Table 1.

We do not visualize the response functions computed
using the MAPS experiments here, as previous work has
noted the difficulty in visualizing such high dimensional data,
and our previous visualization schemes rely on a sweep of the
fundamental frequency ω0. However, the raw and processed
MAPS data are included in an online repository associ-
ated with this work (https://github.com/krlennon/rheology-
health-monitoring), and an examplewaveformand frequency
spectrum of the MAPS stress-controlled protocol and shear
strain response are shown in Fig. 8. We see from this figure
that the input tones, first harmonic response, and multiple
intermodulation effects are visible above the floor of the data.
However, many features of the frequency spectra in particu-
lar make direct interpretation of the high frequency content
challenging, such as peaks and minima not expected from
the input or output waveforms, and the nonzero floor of the
signals (which can be affected by the signal duration or the
windowing applied during calculation of the discrete Fourier
transform (Rathinaraj andMcKinley 2023)).We also empha-
size that the methods used to obtain the MAPS response

Fig. 8 An example of the three-tone MAPS protocol used to obtain
weakly nonlinear data characterizing theLaponite® dispersion.Thedata
depicted here is for the MAPS experiment run at t = 15 min after mix-
ing, with a stress amplitude of σ0 = 0.1 Pa. a The input three-tone stress
waveform (with an input tone set {5, 6, 9} and ω0 = 0.2 rad/s) and b
the resulting absolute shear strain response (dimensionless), windowed
to exclude the transient response associated with starting the deforma-

tion protocol. c The real and d imaginary components of the discrete
Fourier transform of both the stress (red) and strain (blue) waveforms.
Solid lines depict the absolute value of the frequency spectrum. Peaks
associated with the input tones and first harmonic response are marked
with squares, and peaks associated with third-order intermodulation
are marked with circles, with filled and unfilled symbols representing
positive and negative values, respectively
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function uses the observed stress signal, rather than simply
assuming that the commanded input is achieved exactly, and
therefore, any deviations from the expected input waveform
are accounted for during data processing. Figure8, along
with a figure depicting the corresponding MAPS test with
σ0 = 0.05 Pa, is also included in the GitHub repository
associated with this work.

The set of input tones used for the MAPS experiments
was {n1, n2, n3} = {5, 6, 9}. These tones result in distinct
sums and differences for all triplet sets—a requirement for
maximizing the data density of the experiment. This specific
tone set was chosen to ensure that the highest frequency com-
ponent of the weakly nonlinear response, occurring at three
times the highest input frequency (3n3ω0 = 3 × 9 × 0.2
rad/s = 5.4 rad/s), remained below the high-frequency iner-
tial limit of the controlled stress rheometer fixture, which
was observed to be 10 rad/s. Thus, this triplet set and the
selected fundamental frequency ensure that experiments are
rapid enough to enable real-timemonitoring, while still oper-
ating within the capabilities of the instrumentation.

During data acquisition, we observed that the ampli-
tudes required to distinguish the nonlinear features of the
in-phase component of the strain response were large enough
to disrupt the gelation process and fluidize the dispersion.
This difficulty likely stems from the relatively weak fluid
response, combined with spectral leakage from the linear
response. Thus, only the out-of-phase MAPS response (cor-
responding to the imaginary component of J ∗

3 ) was retained
in subsequent analysis. Similarly, because themeasured stor-
age modulus (and compliance) was below the noise floor,
resulting in unphysical negative values, for many experi-
ments, only the loss compliance J ′′ was retained.Wenote that
the storage modulus does eventually become significant, and
in the glassy state eventually dominates the linear response.
This regime has been thoroughly characterized by otherwork
(Rathinaraj et al. 2023); however, it is outside of the scope
of the present study.

Following the methodology outlined in Sect. 4, we trained
ANNs to predict the parameters of the SGRmodel from both
linear response andMAPS data. For theANN trained on only
the linear response, the network was trained using 10,000
synthetic frequency sweeps,with inputs consisting of the log-
arithm of the loss modulus at the eight measured frequencies.
This ANN contained 3 hidden layers with 16 neurons each.
For the ANN trained onMAPS data, the network was trained
using 10,000 synthetic MAPS experiments, with inputs con-
sisting of the logarithm of the absolute value of the linear
response and MAPS response measured on each of the 22
output channels (three linear and 19 intermodulation). This
ANN contained only a single hidden layer with 8 neurons.
These network sizes were selected by conducted a brief
hyperparameter optimization survey to determine the mini-
mal network size to sufficiently resolve themodel parameters

from synthetic data (similar to the L-curve method). The net-
works were trained using the same optimizer and criterion
described in Sect. 4.

In the previous sections,we have noted thatmodels trained
to invert the SGR model from linear response data provide
no (or very limited) sensitivity to x for x > 3. The same lack
of sensitivity occurs for MAPS-trained models when x > 5.
Predictions in these regimes should be taken as highly uncer-
tain, but the machine learning approach described in Sect. 4
provides no quantification of this uncertainty. Thus, we train
additional neural networks to parameterize a distribution over
x for each input data set. Because we expect networks to be
biased towards lower values of x , we choose a Gumbel distri-
bution (Gumbel 1941), which has a natural skew to account
for a longer tail at higher x . The probability density function
for this distribution is given by the following:

p(x;μ, β) = 1

β
exp (−z − exp(−z)) (32)

z = (x − μ)/β.

We take the output value of x from the former neural net-
works as the mode μ of this distribution and the outputs of
the second set of neural networks as the scale parameter β,
trained to minimize the negative log-likelihood of the Gum-
bel distribution.

Figure9a depicts the SGR noise temperature inferred by
the ANNs for SAOS and MAPS experiments as a function
of the elapsed time between initial mixing of the dispersion
and the beginning of the experiment, with symbols represent-
ing the mode μ of p(x;μ, β) and bars spanning the lower
and upper quartiles: 0.25 < p(x;μ, β) < 0.75. At 45 and
50min, when the dispersion transitions to a critical gel, the
fixed amplitude of the MAPS experiments begins to drive a
strongly, rather than weakly, nonlinear response, resulting in
the prediction of unphysical values of the noise temperature.
Thus, these experiments are discarded, as measurements of
the linear rheology alone (as shown in Fig. 7) are sufficient
to monitor the material beyond this point.

Before 45min, we observe that the linear viscoelastic data
alone (red) are only sufficient to monitor values of x below
approximately 3.5. This is consistent with the qualitative
predictions of the SGR model. Before 35min, the predicted
values of x from linear response data are highly uncertain,
with a 50% confidence interval typically spanning values of
3 < x < 5. No substantial change in the linear viscoelastic
response is detected until between 35 and 40min, at which
point the noise temperature transitions into the x < 3 regime,
wherein the linear rheology becomes qualitatively consistent
with that predicted by the fractional Maxwell model. Using
the measured MAPS signature, however, the noise tempera-
ture can be monitored to values exceeding x = 5. In fact, we
observe that substantial changes in the noise temperature can
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Fig. 9 a The noise temperature inferred by ANNs from experimental
data characterizing an aqueous dispersion of Laponite® clay platelets.
Values inferred from linear response (LR) data alone are shown in red,
and values inferred from bothMAPS and linear response data are shown
in blue. A transition to a fractional linear response (x < 3, c.f., Fig. 4)
occurs between 35 and 40min, while a transition to fractional MAPS
behavior (x < 5) occurs between 25 and 30min, providing the early

detection of the glass transition by 10min (0.2tg). Symbols represent the
inferred mode μ of a Gumbel distribution for x , p(x; μ, β), with error
bars spanning the lower and upper quartiles, 0.25 < p(x; μ, β) < 0.75.
b The Gumbel distributions inferred by ANNs at two times: t = 30 min
(dashed lines) and t = 40min (solid lines), for both the LR- andMAPS-
trained ANNs (red and blue, respectively)

be detected between 25 and 30min, a full 10min (approx-
imately 0.2tg , with tg ≈ 50 min) earlier than transitions in
the linear rheology. That the behavior of the noise temper-
ature inferred from MAPS experiments appears to follow
our expectations from physical considerations, and eventu-
ally converges onto the well-characterized behavior inferred
from linear rheology, alsoprovides confidence that theMAPS
tests have indeed measured intrinsic nonlinearities from the
clay dispersion and that the tests do not disrupt the delicate
aging microstructure.

In addition to the earlier detection threshold, the values
of x predicted using MAPS data have smaller uncertainty
than those predicted using linear response data alone, even
for x < 3. Thus, monitoring the state of the fluid using
the MAPS protocol is apparently more robust, even in the
regime where linear data does exhibit some sensitivity to the
noise temperature of the system. This is particularly clear in
Fig. 9b), which depicts the Gumbel distribution inferred by
each ANN for two times: t = 30 min and t = 40 min. In
the case of the distributions inferred from the linear response
alone (red curves), although at t = 40 min the mode falls
below the detection threshold of x = 3, there remains sub-
stantial overlap at that time with the distribution at t = 30
min. It is therefore difficult to state with certainty that the lin-
ear response of the system has undergone a transition. The
MAPS-inferred distributions, on the other hand, are much
narrower and exhibit very little overlap between t = 30 min
and t = 40 min. This provides a high level of confidence in
the detection of the rheological transition, which evidently

cannot be achieved with such certainty using linear measure-
ments alone.

The results presented in Fig. 9 represent a significant
advance for potential health monitoring applications in rhe-
ology. Not only does it indicate that weak nonlinearities
can be used in practice to anticipate transitions in the lin-
ear response of complex fluids, but this realization is also
based on first principles models rather than on empirical evi-
dence alone. Thus, one might expect the same conclusions
to hold true for other materials undergoing phase transitions
that are qualitatively described by the SGR model, and the
combination of MAPS rheology and machine learning may
be similarly applied to health monitoring or fault detection in
those systems. These results also represent the development
of machine learning tools that may be employed in future
onlinemonitoring of gelling dispersions such asLaponite® or
other discotic clays. Indeed, all that is required to implement
this method in practice is the online experimental capabil-
ities to conduct two MAPS (at distinct stress amplitudes),
alongwith the analysis software to obtain theMAPS response
functions and to infer x from a trained ANN. We provide
an example of this software, which was used to obtain the
results in thiswork, onGitHub (https://github.com/krlennon/
rheology-health-monitoring). Although MAPS experiments
have only been conducted in a laboratory setting at present,
the recent development of devices such as immersed micro-
electromechanical oscillators may enable online measure-
ments of intermodulation effects within complex fluids
(Gonzalez et al. 2018). With these tools, it may soon be
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possible to continually monitor the evolution of gelling or
vitrifying materials within industrial processes.

Conclusions

Wehave demonstrated that the weak intermodulation nonlin-
earities measured byMAPS rheology are sensitive predictors
of a qualitative change in the linear response of soft glassy
materials. The sensitivity to model parameters in the weakly
nonlinear response is strong enough that an artificial neural
network is able to robustly learn an inverse functionmapping
the results of a three-tone MAPS experiment onto the model
parameters x , f , and k with high confidence. In the weakly
nonlinear limit, where the effects of the parameters c and d
are nearly indistinguishable, the three parameters x , f , and
k fully specify the behavior of the tensorial, frame-invariant
SGR framework. This suggests that a minimal data set col-
lected non-destructively which probes both the linear and
weakly nonlinear response of soft glassy materials could be
used to fully characterize the rheological response, not just
to simple shear, but to any medium amplitude deformation
protocol.

A more modest application of using ANNs to learn the
inverse mapping between MAPS data and the SGR model
parameters is the identification of incipient transitions in the
qualitative features of the linear viscoelastic response of the
gelling material by classification of the rheological state of
the fluid in terms of the noise temperature, x . We have shown
how robust inference of x allows one to identify clearly
the boundaries for the transition to a gel-like rheological
regime—from Maxwell-like to fractional Maxwell-like—as
well as the transition to a vitrified rheological regime—from
fractional Maxwell-like to fractional Kelvin-Voigt-like. We
finally applied this inference to a real fluid system—an aque-
ous dispersion of Laponite® clay platelets—and successfully
identified transitions in the nonlinear rheology 10min (≈
0.2tg) in advance of measurable changes in the linear rhe-
ology. This demonstrated ability to correctly identify the
rheological state of a fluid non-destructively may prove use-
ful for deciding whether a soft glassy material meets the
specifications for a particular field application.

While the perspective taken in thiswork is oriented around
detailed analytical calculations with a well-known, if spe-
cific, constitutive model, it suggests broader opportunities
for the characterization of viscoelastic fluids in rheology. As
indicated by the present study, there likely exists a similar
sensitivity to changes in rheological state in many distinct
sub-classes of soft materials. For example, careful study of
the leading order of a power-law expansion in weakly non-
linear tests on capillary suspensions provides insight into the
force laws connecting the bridging particles (Natalia et al.
2020, 2022). Although the underlying constitutive behavior

may not always be known precisely formanymaterials, mon-
itoring of the weakly nonlinear response coupled to purely
data-driven methods of regression or classification may be
able to accomplish the same tasks performed in this work
with ANNs trained purely on synthetically generated model
data.

Outlook onmachine learning in rheology

The role ofmachine learningmethods—here, artificial neural
networks—in thiswork has been to learn an approximation of
the inverse of a computationally expensive rheological con-
stitutive equation from synthetic data, thereby allowing one
to rapidly infer model parameters from experimental data.
Model inversion and acceleration are well-studied applica-
tions of machine learning in many fields, including recent
endeavorswithin thefield of rheology (Mahmoudabadbozch-
elou and Jamali 2021; Mahmoudabadbozchelou et al. 2022).
A number of previous approaches have employed physics-
informed neural networks (PINNs), which seek a machine
learning surrogate for a constitutive model by augmenting
the traditional data residual error with the residual between
the neural network predictions and the predictions of the con-
stitutive equations. This technique essentially produces an
accelerated solver for the constitutive equation. Recent work
has adapted these PINN approaches for parameter identifi-
cation (Saadat et al. 2022); however, this requires repeated
evaluation of the model equations during inference. As we
have discussed, off-loading the computational burden to the
training of amachine learningmodel, rather than the repeated
evaluationof an expensivemodel duringparameter inference,
may enable the online and real-time rheological monitor-
ing of soft materials in industrial environments. Similarly,
machine-learning (ML)–accelerated scientific simulations
may expedite the design and engineering of materials and
industrial processes.

In such applications of machine learning, however, we
must recognize that the accuracy of either the inferred mate-
rial properties (in this work, presented in the form of learned
model parameters) or the scientific simulations is limited
by that of the underlying constitutive equations describing
the material. More robust engineering predictions of soft
material systems often require the models themselves to be
more accurate. Here, rheology stands to make substantial
gains from the adoption of machine learning—in particular
because rheological constitutive equations that are simple
enough to be embedded within engineering pipelines tend
not to be highly accurate, while the most accurate models
are often too complex to evaluate numerically within simu-
lation or inference workflows.

However, simply replacing rheological constitutive equa-
tionswith “end-to-end”machine learningmodels, eschewing
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well-established rules and domain knowledge regarding the
structure of admissible constitutive equations, is likely insuf-
ficient to generate accurate models in the face of limited
rheological data. While imposing such knowledge at train-
ing time, for instance, by embedding physical laws as terms
within the loss function (Raissi et al. 2019), can lessen the
data burden, it does so at the expense of an increase in the
training required for convergence and does not guarantee that
themodel will obey these lawswhen presentedwith test data.
Instead, it is the current authors’ view that the synthesis of
machine learning methods and existing frame-invariant con-
stitutive equations will facilitate the most rapid and robust
advancements in rheological constitutive modeling. For
instance, by embedding neural networks within differential
constitutive equations—a so-called “universal differential
equation”—rheologists can develop extensible surrogates
that accelerate known constitutive equations (Rackauckas
et al. 2020). Such frameworks can be automatically con-
structed to followwell-known rheological principles, such as
the concepts of rheological invariance establishedbyOldroyd
(Oldroyd 1984; Lennon et al. 2022), and computational effort
may therefore be dedicated to learning the nonlinear features
particular to a certain material. This paradigm in machine-
learning–augmented rheological modeling produces models
that are at once computationally efficient and highly accu-
rate, while remaining general enough to suit the many goals
of soft materials science and engineering.

Appendix 1. Equilibrium average
expressions

The analytical values of the equilibrium averages needed to
build up G∗

3(ω1, ω2, ω3) for the scalar SGR model are listed
below:
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where 2F1(a, b; c; z) is the Gaussian hypergeometric func-
tion, defined by the following power series:

2F1(a, b; c; z) =
∞∑
0

(a)n(b)n
(c)n

zn

n! (A.5)

with the rising Pochhammer symbol defined by the follow-
ing:

(q)n =
{
1 n = 0

q(q + 1) · · · (q + n − 1) n > 0
. (A.6)

Appendix 2. ANNs for other MAPS protocols

Previous work has explored experimental design within
the MAPS rheology framework, with investigations of the
relative merits of stress- versus strain-controlled experi-
ments and the effect of the input tone set {n1, n2, n3}. The
stress-controlled mode with tone set {5, 6, 9} was selected
in this work due to practical considerations, such as the
high-frequency inertial limitations of the stress-controlled
rheometer; however, other experimental setups may admit
other protocols. Here, we demonstrate that the same MAPS
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Fig. 10 Parity plots for the predicted versus true values of the SGR
model parameters (ln k, ln f , x , c, and d) for both the ANN trained
on linear response data alone (red triangles), and the ANN trained on

MAPS and linear response data (blue circles) from synthetic three-
tone strain-controlled experiments with {n1, n2, n3} = {5, 6, 9}. Parity
between predictions and ground truth is depicted by a dashed black line

Fig. 11 Parity plots for the predicted versus true values of the SGR
model parameters (ln k, ln f , x , c, and d) for both the ANN trained on
linear responsedata alone (red triangles), and theANNtrainedonMAPS

and linear response data (blue circles) from synthetic three-tone stress-
controlled experiments with {n1, n2, n3} = {1, 4, 16}. Parity between
predictions and ground truth is depicted by a dashed black line
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Fig. 12 Parity plots for the predicted versus true values of the SGR
model parameters (ln k, ln f , x , c, and d) for both the ANN trained on
linear responsedata alone (red triangles), and theANNtrainedonMAPS

and linear response data (blue circles) from synthetic three-tone strain-
controlled experiments with {n1, n2, n3} = {1, 4, 16}. Parity between
predictions and ground truth is depicted by a dashed black line

and machine learning method used to model the inverse of
the SGR model applies to other MAPS protocols. Figures10
through 12 present parity plots for the following MAPS
protocols: strain control with input tone set {n1, n2, n3} =
{5, 6, 9}, stress control with tone set {1, 4, 16}, and strain
control with tone set {1, 4, 16}. In each case, the data gener-
ation, processing, augmentation, and training procedures, as
well as the architecture of the ANNs, are identical to those
described in Sect. 4(Table2).
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