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ABSTRACT
Constitutive modeling of anisotropic plastic material behavior traditionally fol-
lows a deductive scheme, relying on empirical observations that are cast into ana-
lytic equations, the so-called phenomenological yield functions. Recently, data-
driven constitutive modeling has emerged as an alternative to phenomenological 
models as it offers a more general way to describe the material behavior with no 
or fewer assumptions. In data-driven constitutive modeling, methods of statistical 
learning are applied to infer the yield function directly from a data set generated 
by experiments or numerical simulations. Currently these data sets solely consist 
of stresses and strains, considering the microstructure only implicitly. Similar to 
the phenomenological approach, this limits the generality of the inferred mate-
rial model, as it is only valid for the specific material employed in the virtual or 
physical experiments. In this work, we present a new generic descriptor for crys-
tallographic texture that allows an explicit consideration of the microstructure in 
data-driven constitutive modeling. This descriptor compromises between general-
ity and complexity and is based on an approximately equidistant discretization 
of the orientation space. We prove its ability to capture the structure–property 
relationships between a variety of cubic–orthorhombic textures and their aniso-
tropic plastic behavior expressed by the yield function Yld2004-18p. Three differ-
ent machine learning models trained with the descriptor can predict yield loci as 
well as r-values of unseen microstructures with sufficient accuracy. The descriptor 
allows an explicit consideration of crystallographic texture, providing a pathway 
to microstructure-sensitive data-driven constitutive modeling.
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Introduction

Machine learning (ML) or, more generally, data sci-
ence-based approaches to solve boundary value prob-
lems in continuum mechanics have emerged as a pop-
ular research topic within materials science in recent 
years. In a comprehensive summary, Bock et al. [1] 
order various approaches along the process–struc-
ture–property–performance (PSPP) chain and assign 
them to various subproblems and application fields. In 
this work, we focus on the application field of constitu-
tive modeling, which is the decisive link between stim-
ulus and response, i.e., between stresses and strains, 
by a set of material laws.

The material model of interest in this work is the 
yield function of anisotropic, polycrystalline metals. 
In classic plasticity theory, the yield function is asso-
ciated with a plastic potential. It describes whether a 
certain load leads to elastic or plastic material defor-
mation and defines the direction of the plastic flow, in 
case of an associative flow rule. Considerable research 
has been directed toward the development of such 
phenomenological yield functions for anisotropic 
materials, where the yielding depends on the load-
ing direction. To capture directional dependency, a 
linear transformation of the stress tensor has proved 
to be an essential step in formulating these advanced 
yield functions [2]. This transformation introduces a 
number of material-specific coefficients that have to be 
determined by experimental tests or numerical simu-
lations. The number of required coefficients is deter-
mined by the particular formulation, which in turn 
depends on the degree of anisotropy in the material 
and the stress space applied to. It varies between six 
for less anisotropic materials [3] and plane stress for-
mulation to 27 for profound anisotropy and full stress 
formulation [4]. As analytical material laws, phenome-
nological yield functions are numerically efficient and 
have proved to be accurate material models, which 
are widely employed in continuum-scale FEM simula-
tions, e.g., in the sheet metal forming industry.

On the other hand, they rely on user experience 
and detailed knowledge of the material [5], show 
difficulties in the parametrization due to the non-
uniqueness of the material coefficients [6] and face 
potential limitations to the class of materials they 
have been developed for. Data-driven constitutive 
modeling approaches to circumvent these shortcom-
ings have recently become an active research topic. 
They can be ordered according to how profoundly the 

data paradigm replaces the established relationships 
and concepts. On the one end of the spectrum stands 
the model-free approach by Kirchdoerfer and Ortiz [7] 
and the extensions by Eggersmann et al. [8]. Their 
approach, referred to as data-driven computing, com-
pletely bypasses the empirical constitutive model and 
determines the material response by a closest point 
search in a data set of prescribed experimental and/or 
simulated states. In a similar way, Chinesta et al. [9] 
describe the plastic material behavior by constitu-
tive manifolds, also purely based on data. While their 
approaches arguably represent the most consistent use 
of the data paradigm to solve continuum mechanics 
problems, they also require an extremely large amount 
of mechanical data from experiments or simulations, 
which limits them in scenarios where only sparse data 
are available.

To reduce the amount of data needed and to recover 
the computational efficiency of analytical yield func-
tions, researchers have started to use trained ML mod-
els as yield functions. To derive the constitutive behav-
ior, the models are trained on data obtained from 
experiments or crystal plasticity (CP) simulations and 
are then used as predictive material models, for exam-
ple inside the integration points of an FEM calcula-
tion. The use of CP simulations offers an efficient way 
for hierarchical materials modeling as the constitutive 
behavior on the continuum scale is coupled to CP cal-
culations on the microscale. Lefik and Schrefler [10] 
present a neuronal network approach to describe the 
nonlinear stress–strain relationship in superconduct-
ing fibers and implemented it into an FE model. In a 
more recent approach, Huang et al. [11] employ a deep 
neuronal network (DNN) based on proper orthogonal 
decomposition to describe history-dependent plas-
tic behavior. Vlassis and Sun [12] address the well-
known interpretability issues of DNNs by proposing 
a level-set approach to cover also complex harden-
ing phenomena. Nascimento et al. [13] automate the 
critical step of network design by applying Bayesian 
optimization to obtain optimal network architectures 
that learn convexity and iso-sensitivity. Although the 
majority of research focuses on DNN-based consti-
tutive models, also other ML function classes have 
been employed recently to address the shortcomings 
of DNNs. Hartmaier [14], Shoghi and Hartmaier [15] 
formulate the yield function as binary classification 
problem and apply support vector machines (SVR) 
in combination with an effective data sampling strat-
egy to reduce the amount of required training data. 
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Rocha et al. [16] apply Gaussian process regression 
(GPR) to derive constitutive relationships in a model-
free approach. Fuhg and Bouklas [17] extend this con-
cept and include physics-based principles to the model 
such as the preservation of the stress-free undeformed 
configuration, material frame indifference or thermo-
dynamic consistency.

However, as with phenomenological yield func-
tions, all of the approaches presented above treat the 
microstructure implicitly in a black-box fashion. The 
database required for parametrization or for training 
consists purely of stress–strain data, obtained from 
experimental tests or CP simulations where the micro-
structure is modeled by a representative volume ele-
ment (RVE). Although this enables computationally 
efficient hierarchical materials modeling, no micro-
structural degrees of freedom are explicitly taken into 
account. The motivation for introducing microstruc-
tural degrees of freedom to data-driven constitutive 
modeling is twofold. On the one hand, this enables the 
description of microstructural evolution, and on the 
other hand, more general models can be trained that 
are able to describe the constitutive behavior of mate-
rials at different microstructural states. If only stresses 
and strains are used as degrees of freedom, changes 
in the material and the microstructure would require 
the generation of a completely new data set to infer the 
material model, which can be costly.

If one accepts the advantages of explicit micro-
structural description, the question arises which 
microstructural features should be considered and 
how they should be described. Of all microstruc-
tural features, texture, i.e., the orientation of grains 
within the polycrystalline microstructure, is the main 
source for anisotropic plastic behavior in metals [18]. 
Ali et al. [19] present a DNN approach for plane 
stress applications, where besides the strains also the 
individual orientations of all grains are incorporated 
into the input layer of the network by their Euler 
angle triplet. Fuhg et al. [5] use a component model 
similar to Luecke et al. [20], Pospiech et al. [21] in 
their neuronal network input space, where the tex-
ture is described by pairs of central orientation and 
spread. In both approaches, the descriptor lacks gen-
erality. In the prior, it directly depends on the num-
ber of grains used in the CP simulations. If larger 
RVEs are used, the input dimension and hence the 
architecture of the whole network change. In the lat-
ter, the descriptor is directly related to the number 
of peak orientations in the texture. A texture with 

multiple maxima will require different, i.e., higher-
dimensional descriptors then a texture with less 
maxima. Deformation-induced texture evolution 
cannot be described by this descriptor since the 
architecture of the network cannot be changed on 
the fly.

These concerns motivate the formulation of a dif-
ferent texture descriptor for data-driven constitutive 
modeling to allow a generic description of crystal-
lographic texture. The necessary condition for such 
a descriptor is that it is able to capture the struc-
ture–property (s–p) relationship between texture 
and anisotropic plastic material behavior. It should 
further allow the description of a variety of different 
textures with a sufficient degree of accuracy. On the 
other hand, its dimensionality should not be too high 
to reduce the computational complexity in the data-
driven models it is used in. In this work, we propose 
such a descriptor for cubic–orthorhombic textures, 
which are frequently observed in sheet metal form-
ing industry. We prove the descriptor’s ability to 
capture the desired s–p relationship by relating the 
coefficients of the phenomenological yield function 
Yld2004-18p to the crystallographic texture. To infer 
the s–p relationship, we extend the scheme presented 
in an earlier work [22] where we determined the s–p 
relationship between the yield function and simple 
one-dimensional Goss and copper textures.

The paper is structured as follows: In Sec-
tion “Methods,” we introduce the data-driven frame-
work that is employed to find the s–p relationship. 
The subsections introduce the texture descriptor 
(Section “Texture descriptor”), recall the phenom-
enological yield function (Section “Anisotropic yield 
function”), describe the parametrization procedure 
used to generate the data set (Section “Parameteriza-
tion of the yield function”) and present the ML model 
in which the descriptor is used (Section “Training 
ML models”). Afterward, in Section “Results,” we 
firstly introduce the different data sets used for train-
ing and testing of the ML models (Section “Data 
set”). In the following subsections, the training and 
validation results are presented, followed by a study 
of the models’ generalization property in terms of 
yield surface and r-values. In Section Discussion, 
the results are discussed under the viewpoint of the 
required descriptor dimensionality, before the most 
important conclusions of this work are summarized 
in Section “Conclusion.”
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Methods

This section introduces the texture descriptor and 
the data-driven scheme in which it is applied. The 
latter is shown in Fig. 1; its goal is to determine a 
structure–property (s–p) relationship between the 
crystallographic texture and the anisotropic yield 
function to show the meaningfulness of the tex-
ture descriptor in data-driven constitutive mod-
eling. The scheme extends the concept in [22] and 
will be briefly summarized in the following with a 
focus on the extensions. It consists of two blocks: the 
data generation process and the data analysis. As 
part of the data generation process, data points in 
terms of feature and label are generated. Firstly, the 
label, i.e., the texture descriptor x, is determined for 
a given microstructure. Then, an RVE is generated 
for this microstructure, and a Taylor-based hybrid 
CP model is used to generate stress–strain curves 
in different loading directions. Subsequently, these 
data are used to parameterize the anisotropic yield 
function Yld2004-18p for the specific microstruc-
ture, resulting in the set of anisotropic coefficients, 
that are used as labels y. Repeating these steps for 
various, different microstructures produces a data 
set, which is analyzed by employing supervised ML 
methods to determine the sought s–p relationship 

between texture and yield surface. In the following, 
the methods used in each step are briefly explained.

Texture descriptor

The descriptor we are looking for faces two funda-
mentally conflicting requirements arising from its use 
in a data-based process: On the one hand, it should 
be as general as possible to describe a wide range of 
textures in detail. On the other hand, it should be as 
compact as possible to train meaningful models with 
a limited number of data points and avoid the curse 
of dimensionality.

In their DNN constitutive model, Ali et al. [19] 
describe the texture by the set of all orientations g pre-
sent in the microstructure. The orientations are char-
acterized by the Bunge Euler angle triplets (�

1
,Φ,�

2
) . 

The problem with this approach is the direct depend-
ency of the descriptor on the number of crystallites. 
Microstructures with different numbers of grains can-
not be described by the same descriptor, which lim-
its the generality of the descriptor. The component 
model by Fuhg et al. [5] describes the texture by pairs 
of central orientation and spread. Here, the descrip-
tor is directly related to the number of peak orienta-
tions in the texture, which allows a flexible descrip-
tion of different textures, but limits the generality in 
the same way as the prior descriptor. Furthermore, 

Figure  1  Data-driven scheme to identify s–p relationship 
between crystallographic texture (feature) and anisotropic yield 
surface (label) with a supervised ML approach. The methods 

for the data generation as well as for the data analysis block are 
explained in Sections “Texture descriptor–Training ML models”.
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deformation-induced texture evolution where the 
position and number of maxima changes due to 
the rotation of the grains are not considered by this 
approach.

To avoid these shortcomings, we follow a more 
generic approach and focus on the common base of 
all textures, the orientation space. The starting point 
of our considerations is the orientation distribution 
function (ODF). It is defined as a mapping from the 
space of orientations SO(3) to the real numbers and 
assigns to each orientation g ∈ SO(3) the volume frac-
tion of crystallites in a polycrystalline sample volume 
that are within dg around g. According to Bunge [23], 
the ODF can be represented by a series expansion 
based on generalized spherical harmonics (GSH). 
The Fourier coefficients of this expansion would meet 
the above requirements in such a way that they rep-
resent the most general and established method for 
texture description. However, in order to achieve this 
generality, the series expansion is truncated usually 
between 22 and 32 harmonics, yielding a potentially 
very high-dimensional input space [24]. Montes de 
Oca Zapiain et al. [25] use GSH coefficients to relate 
cubic–orthorhombic textures to a more simple aniso-
tropic material behavior defined by Hill’s yield crite-
rion [26]. Their analysis shows that the later the series 
is truncated, the better the accuracy of the trained 
models was. The maximum truncation point in their 
study is chosen after twelve harmonics, yielding a tex-
ture descriptor containing 32 distinct GSH coefficients. 
With this descriptor, the anisotropic coefficients of the 
yield function could be predicted quite accurately.

The descriptor we propose compromises between 
generality and complexity. It is based on evaluating 
the ODF over an approximately equidistant grid of 
resolution � in the orientation space SO(3). Different 
methods have been proposed in literature to create 
an approximately equidistant grid in SO(3) [27–31]. 
The approach followed in this work is similar to the 
NED proposed by Helming [27, 28] and taken from the 
MATLAB toolbox MTEX [32]. It begins with sampling 
an approximately equidistant distribution of points on 
a sphere. Each point on the sphere can be described 
by a combination of azimuth and polar angle, associ-
ated here with the first two Euler angles �

1
 and Φ . 

The range of Φ , bounded by the cubic–orthorhom-
bic fundamental zone, is divided into nΦ sections of 
equal distance. These sections form latitudes on the 
sphere, separated by the grid resolution � . On each 
latitude, n�

1

 samples are distributed that again have 

an angular distance of � to each other. As the angle 
Φ , also �

1
 is bounded by the fundamental zone, limit-

ing the circular arc that is populated with samples. 
This approach results in an approximately equidistant 
grid of �

1
,Φ-pairs on the sphere section, bounded by 

the cubic–orthorhombic fundamental zone. To com-
plete the desired grid in SO(3), the third Euler angle 
�
2
 is divided into n�

2

 equal �-sections as well. The 
approximately equidistant grid within MTEX is then 
fully characterized by the tensor product between the 
approximately equidistant grid on the sphere for Φ , �

1
 

and the equi-distribution w.r.t �
2

Different values of � lead to different values of n�
1

 , 
nΦ , n�

2

 and thus to a different number of grid nodes m. 
On each of these nodes, the ODF of the texture being 
described is evaluated. The obtained value is associ-
ated with the intensity of the ODF, expressed in mul-
tiples of a random distribution (MRD). Arranging all 
of the recorded intensities in vector notation yields the 
texture descriptor used in this work.

The concept of the descriptor is visualized in Fig. 2. 
Each sub-figure shows the same section of the orien-
tation space discretized by a grid of different resolu-
tion. The Rodriguez–Frank representation is chosen 
here to visualize the approximately equidistant char-
acter of the grid. Since the focus in this work lies on 
rolling textures, the orientation space can be reduced 
to the cubic–orthorhombic fundamental zone, assum-
ing crystal and specimen symmetry. The restriction to 
this section reduces the number of nodes and by that 
the complexity of the descriptor. However, the con-
cepts and methods employed here also apply to tex-
tures with lower symmetries. The red dots in Fig. 2 cor-
respond to the nodes of the equidistant grid on which 
the ODF is evaluated. The number of nodes decreases 
with decreasing grid resolution � , yielding a lower-
dimensional texture descriptor. If the resolution of the 
grid is increased, the number of nodes increases and 
with this the dimensionality of the texture descriptor. 
In that sense, the descriptor embodies the two conflict-
ing goals mentioned above and controls the trade-off 
between detailed texture description and low-dimen-
sional representation. To find the optimum grid resolu-
tion, � is varied between 11◦ and 30◦ , resulting in nine 
different descriptors ranging from 7 to 111 dimensions. 
This range is motivated by the findings in [33] where the 
influence of grid resolution on ODF reconstruction has 
been studied. The grids for � ∈ [11◦, 15◦, 23◦] are exem-
plaryly shown in Fig. 2. Table 1 introduces the acronyms 
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for the different descriptors used in this work together 
with their properties.

Anisotropic yield function

The material property for which the meaningfulness 
of the descriptor is to be shown is anisotropic plastic 
behavior. In this work, anisotropic plastic behavior is 
described by a variant of the Barlat Yld2004-18p yield 
function, a widely used phenomenological yield func-
tion in sheet metal forming [2]. The yield function is 
formulated as the generalized form of two isotropic 
Hosford yield criteria,

The material-specific exponent a is set to 8 for fcc met-
als [2]. S′

i
and S

′′
i
 are the principal values of the trans-

formed deviatoric stresses. They are obtained from 
solving the characteristic equation of the two linear 
transformed deviatoric stress tensors s̃′ , s̃′′

where the linear transformation is based on the two 
anisotropy tensors C′ and C′′

(1)
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Figure 2  Approx. equidistant grids in cubic–orthorhombic fun-
damental zone of Rodriguez–Frank space for different resolutions 
� = 11◦ (a), � = 15◦ (b) and � = 23◦ (c). Red dots are grid nodes 

on which the example ODF centered at (0◦, 0◦, 40◦) is evaluated. 
The measured intensities of the ODF at the gridpoints are vector-
ized and used as texture descriptor.

Table 1  Overview of the different descriptor variants studied in 
this paper

aLinear principal component analysis was applied to reduce 
dimensions (see Section “Training and cross-validation”)

Acronym � [ ◦] # Grid points

7-d 30 7
9-d 27 9
12-d 24 12
16-d 23 16
25-d 21 25
36-d 18 36
48-d 15 48
72-d 13 72
111-d 11 111
111-d+PCAa 11 111



J Mater Sci 

The anisotropy tensors are defined in the material ref-
erence frame that is aligned along the orthotropic sym-
metry axes. In the original formulation, the number of 
anisotropic coefficients is 18. However, it was shown 
by van den Boogaard et al. [6] that this formulation 
obeys a non-uniqueness of the anisotropic coefficients 
and that the same yield function can be described by 
different sets of anisotropic coefficients. To resolve this 
non-uniqueness, they propose to set the coefficients c′

12
 

and c′
13

 to one.
Following the approach in [22], the number of coef-

ficients is further reduced by limiting the yield func-
tion to the principal stress space, i.e., allowing only 
diagonal stresses in the basis of the principal direc-
tions of the orthotropic material reference frame. 
The main reason for this limitation is that it enables 
the application of the numerically efficient crystallo-
graphic yield locus method (CYL) by Biswas et al. [34]. 
This method replaces computational costly CPFEM 
simulations that are required to parameterize the yield 
loci for each texture. Therefore, the diagonal coeffi-
cients four to six in C’ and C” can be set to zero, i.e., 
c
�
44

= c
�
55

= c
�
66

= c
��
44

= c
��
55

= c
��
66

= 0 , reducing the num-
ber of anisotropic coefficients and thus the dimension-
ality of the output space from 16 to 10.

Parameterization of the yield function

After clarifying how structure and property are 
described, this section presents how exactly the prop-
erties for each structure are determined, i.e., how the 
set of anisotropic coefficients is identified for a given 
texture. This process is referred to as parameterization 
of the yield function. As mentioned in Section “Intro-
duction,” it requires a set of stress states at yield onset. 
These stress states are obtained by applying the virtual 
lab approach introduced by Zhang et al. [35] where a 
CP model is used instead of experiments to determine 
these stress states for different loading directions.

The CP model applied in this work is a hybrid 
scheme, introduced by Biswas et al. [34]. It is based 
on the Taylor-type approach to crystallographic 
yield loci by Van Houtte et al. [36] and combines 
the accuracy of full-field CPFEM calculations with 
the efficiency of a simple Taylor model. Its central 
idea is to relax the constraints imposed by the Tay-
lor assumption on the yield surface by calibrating 
the latter to results obtained from CPFEM. The cali-
bration requires only two CPFEM calculations per-
formed on an representative volume element (RVE) 

for each texture, allowing the generation of large 
amounts of data in a short time. For details on the 
algorithm, the reader is referred to [34]. In this work, 
the two required CPFEM calculations are performed 
in the commercial FEM code Abaqus using a UMAT 
for the crystal plasticity. The crystal plasticity con-
stitutive model and the used material parameters are 
given in Appendix. An RVE of 2197 linear eight-node 
brick elements with reduced integration (C3D8R) is 
generated to describe the crystallographic texture. 
Each element represents a cube-shaped grain with an 
edge length of 0.002 mm. It is noted here that these 
simulations are only evaluated up to the yield point 
of the model, for which the representation of each 
grain by only one element is justified. For simula-
tions of the strain hardening behavior, it is recom-
mended to use at least 8 elements per grain in such 
models. The required 2197 discrete orientations are 
sampled from the known ODF employing the texture 
reconstruction scheme by Biswas et al. [33] which is 
based on the integer approximation method. Peri-
odic boundary conditions are applied on the RVE, 
and a homogenized macroscopic stress is imposed 
by applying Neumann boundary conditions at three 
representative nodes of the RVE [37].

From the hybrid scheme, 60 stress states at yield 
onset are obtained to which the yield function is fit-
ted. This parameterization is done by minimizing the 
error function

In Eq. (3), � is a vector containing the yield function 
values for all 60 stress states from the CP model s , 
and �̄� is the isotropic yield strength equivalent. Each 
entry in � is obtained by evaluating the yield function 
� (Eq. (1)) with the current set of anisotropic coeffi-
cients c on the corresponding stress state at yield onset 
s obtained from the CYL. If the yield function is accu-
rately parameterized, this term will be close to zero 
since the yield function is zero at yield onset per defi-
nition. Thus, minimizing Eq. (3) with c as independent 
variables results in the desired set of anisotropic coef-
ficients and a parameterized yield function. For the 
minimization, the trust region algorithm implemented 
in the SciPy python library [38] is applied due to its 
advantages for non-convex optimization [39].

To address the well-known non-uniqueness 
between the anisotropic coefficients and the yield 

(3)E(c) =
‖�(s, c)‖

2

�̄�
.
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function, a regularization approach is required. The 
problem is visualized in Fig. 3. Initializing the mini-
mization scheme mentioned above with three differ-
ent initial guesses leads to three different converged 
sets of anisotropic coefficients, all with the same error 
score. The converged coefficients c′

21
 to c′′

32
 are shown 

as bars in the figure with different colors for the three 
initial guesses. The point-symmetric yield loci corre-
sponding to each set of coefficients are plotted above 
the bar chart in the cylindrical principal stress space 
together with the stress states at yield onset as gray 
dots. The definition of cylindrical principal stresses 
follows the derivations in Hartmaier [14]. It can be 

seen that although the coefficients differ in all three 
converged sets, the yield loci are indistinguishable. 
If a s–p relationship is to be identified between the 
texture and the coefficients of the yield surface, the 
question arises which coefficients should be accepted 
for a certain texture. In [22], the authors argue that 
similar textures should have similar coefficients. In 
other words, small changes in the texture should not 
lead to large changes in coefficients. However, their 
approach was limited to the one-dimensional texture 
description. In this work, we extend the idea and 
adopt the concept to the new texture descriptor.

Figure 3  Non-uniqueness 
between the set of anisotropic 
coefficients and the yield sur-
face. Colored bars represent 
converged sets of anisotropic 
coefficients for three different 
initial guesses. The corre-
sponding centro-symmetric 
yield loci are normalized by 
the average yield stress and 
plotted in the upper half of 
the �-plane. Although the 
coefficients are different, the 
yield functions they represent 
are indistinguishable.

Figure 4  K-nearest-neighbor 
regularization approach 
to parameterize the yield 
function for each texture 
in the data set. The texture 
descriptor is simplified to two 
dimensions.
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The regularization approach followed here is visu-
alized in Fig. 4. It is based on the k-nearest-neighbor 
algorithm. For visualization purposes, the texture 
descriptor space is simplified to two dimensions and 
an example set of thirteen textures is shown as circles. 
For the blue texture x

1
 whose yield function is to be 

parameterized, first the 20 nearest neighbors in the 
data set of all textures are determined. To quantify the 
nearness of two textures x

1
 , x

2
 , the Euclidean distance 

in the texture descriptor space is used:

Then each of the 20 neighboring textures, starting with 
the closest, i.e., most similar, is queried to see whether 
it has already been parameterized. If yes, its converged 
coefficients are used as initial guess for the parameteri-
zation of the current texture x

1
 . If not, the next nearest 

neighbor is consulted. In Fig. 4, the nearest, parameter-
ized neighbor is colored green. If none of the nearest 
neighbors is parameterized, the value one is chosen 
as initial guess for each coefficient. This method has 
the advantage that similar textures have similar coef-
ficients, and thus, discontinuities due to large jumps in 
the parameter space of the searched function between 
texture and yield surface are reduced. On the other 
hand, the necessary resources are also reduced, since 
the initial guess is closer to the desired minimum 
than a completely random initial guess, and thus, the 
trust region algorithm converges faster. To increase 
the probability of finding already parameterized tex-
tures among the k-nearest neighbors, a certain order 
in which the textures in the data set are parameter-
ized is specified in advance. Starting from a random 
initial texture, the distance metric in Eq. (4) is used to 
determine the next texture in the data set that is not 
yet parameterized. That texture is then parameterized 
next. Searching is repeated until all textures in the data 
set have been parameterized.

After all textures have been parameterized, the pro-
cess of data generation is completed and the data set 
that is passed to the analysis block. Each data point 
in the set is composed of texture descriptor and the 
respective set of 10 anisotropic coefficients.

Training ML models

In the data analysis block, three different supervised ML 
function classes are trained on the data set to identify 
the s–p relationship between texture and anisotropic 

(4)d = ‖‖x1 − x
2

‖‖2.

coefficients. Thus, they have to address the multivari-
ate regression problem of finding the function

which is mapping from the m-dimensional space of the 
texture descriptor to the 10-dimensional space of the 
coefficients. The value of m depends on the resolution 
of the grid in SO(3). The function classes applied here 
are the � support vector regression ( �-SVR) [40], mul-
tiple-output least-squares support vector regression 
(MLSSVR) [41] and the random forest algorithm (RFR) 
[42]. The latter two are so-called multi-output func-
tion classes. Here, a single model instance is trained 
that represents all output dimensions in one model. 
In contrast, the classical �-SVR trains one instance per 
output dimension. In the case of 10 anisotropic coef-
ficients, 10 different models are created and trained 
independently of each other. The advantage of the 
multi-output function classes is that the correlations 
of the output dimensions are taken into account dur-
ing training, which can lead to higher accuracy if there 
is a dependency between the coefficients [43].

To compare the different function classes and tune 
their hyperparameters, a nested ten–sevenfold cross-
validation (CV) scheme is applied. The outer loop of 
the CV is used for model selection: The training data are 
split in ten folds. Nine of the ten folds are used to train 
one of the three function classes, whereas the remain-
ing fold is used to validate the training performance. 
The nine training folds enter the inner CV loop, which 
is sevenfold. This loop is used for hyperparameter opti-
mization, which is essential for successful training. We 
follow a grid search logic, where the number of hyper-
parameters to be determined depends on the respective 
function class. The grid points, from which the hyper-
parameter combinations arise, are listed in Table 2 for 
each function class.

To evaluate the models during training, validation 
and testing, the mean-squared error is calculated. It is 
generally formulated as

where n is the number of data points on which it is 
evaluated, y(i)

m
 is the mth true anisotropic coefficient 

of data point i and ŷ(i)
m

 is the prediction. After the 
three function classes are trained, their generalization 

(5)
f (texture) = anisotropic coefficients

ℝ
m
→ ℝ

10
,

(6)MSE =
1

n ∗ 10

n∑
i=1

10∑
m=1

(
y
(i)
m

− ŷ
(i)
m

)
2

,
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capability is evaluated by applying them on a holdout 
test set.

Results

To study the capabilities of the texture descriptor, a 
data set of 816 different cubic–orthorhombic textures 
is created. Details on construction and properties of 
that data set are given in Section “Data Set.” In Sec-
tion “Training and cross-validation,” results from the 
training and validation process of the ML models are 
presented, followed by a study on the generalization 
properties of the trained models in Section “Generali-
zation on holdout test data set.”

Data set

The data set constructed here consists of 816 different 
cubic–orthorhombic textures. Each texture is quantita-
tively defined by its ODF. To define the ODF, the ker-
nel density estimation implemented in the MATLAB 
toolbox MTEX [32] is applied. Kernel density estima-
tion approximates the ODF by superimposing a kernel 
function of specified half-width � over a given central 
orientation g in the space of orientations. The kernel 
function can be associated with a probability density 
function, centered at the orientation g. The half-width 
� then controls the spread of this distribution and its 
intensity, i.e., the height of the peak. For a small half-
width, the distribution is narrow and only a small 
spread of orientations around the central orientation 
is sampled, yielding a highly anisotropic single crystal 
if � approximates zero. Vice versa, if � approaches 90◦ , 
the distribution becomes uniform and the resulting 
ODF corresponds to a random texture.

In this work, we choose 48 central orientations 
g
i
, i ∈ [1⋯ 48] in the cubic–orthorhombic fundamen-

tal zone that are nearly equidistant to each other. For 

each g
i
 , the de la Vallée Poussin kernel function is 

combined with 17 different half-widths � ∈ [10◦, 30◦] . 
This results in a number of 816 different unimodal, 
cubic–orthorhombic textures. To complete the training 
data set by the appropriate anisotropic coefficients, the 
yield function Yld2004-18p is parameterized for each 
texture using the method described in Section “Param-
eterization of the yield function.”

Figure 5 gives an intuition of how changes in central 
orientation and half-width on the texture side affect the 
shape of the resulting yield surface on the property side. 
The pole figures correspond to a texture with central ori-
entation g = (135◦, 7.5◦, 195◦) . In the top row, labeled (a), 
the texture is defined by the minimum kernel half-width 
�
min

= 10
◦ . This corresponds to the most narrow dis-

tribution sampled in this work. With a texture index of 
6.69, the corresponding texture is severely anisotropic. 
The texture in the second row has the same central ori-
entation g, but now the ODF is defined by the maximum 
kernel half-width �

max
= 30

◦ causing the largest spread 
in the orientation space. The resulting texture is much 
less anisotropic as shown by the pole figures in (b). The 
texture index is now 1.37, indicating an almost random 
texture.

The influence of the half-width � on the resulting 
yield loci can be seen in the bottom row of the figure. 
Similar to Fig. 3, the centro-symmetric yield loci are 
projected to the top half of the �-plane in the cylindri-
cal principal deviatoric stress space. The yield surface 
corresponding to the texture in (a) is shown in dark 
purple and the yield surface of texture (b) in yellow. 
The half-width � is increased in steps of 4◦ between 
the two extremes (a) and (b). The figure clearly shows 
that the narrower the half-width of the kernel, the more 
anisotropic the resulting yield surface. This is plausi-
ble because the narrower the half-width, the more the 
behavior of the polycrystal approaches that of a single 
crystal, which is inherently anisotropic.

Table 2  Hyperparameter 
grid points for each function 
class

a[Start:steps:end]

SVR MLSSVR RFR

C ∈ {10i, for i ∈ [−4⋯ 4]} p ∈ {2i, for i ∈ [−15 ∶ 2 ∶ 3]}a ntrees ∈ 10, 100, 500, 1000

� ∈ {10i, for i ∈ [−5⋯ 0]} � ∈ {2i, for i ∈ [−2⋯ 5]}

k(x, x) ∈ [rbf, linear] k(x, x) ∈ [rbf, linear]

� ∈ {10i, for i ∈ [−5..0]} � ∈ {2i, for i ∈ [−10 ∶ 2 ∶ 10]}a
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Training and validation set

The data set of 816 different textures is spread into a 
training and validation set and a holdout test set. The 

training and validation set includes 652 randomly 
selected textures, representing 80% of the total data. 
The validation data sets are drawn from the training 
data set according to the cross-validation procedure 
described in Section “Training ML models.”

Figure  5  Influence of the ODF kernel half-width � on 
the yield surface. Pole figures of a texture centered at 
g = (135◦, 7.5◦, 195◦) for minimum kernel half-width �min = 10◦ 

(a) and maximum half-width �max = 30◦ (b). Resulting yield loci 
for different kernel half-widths ∈

[
�min,�max

]
 are shown in (c).
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Holdout test set

To evaluate the generalization properties of the trained 
models, a holdout test set of the remaining 164 tex-
tures is formed. Additionally to these, three prominent 
ideal texture components brass, copper and Goss, as 
well as three fiber textures � , � and � are created. All of 
these textures are frequently observed in sheet metal 
forming and thus represent important test cases.

The ODFs of the ideal components follow the same 
logic as the unimodal textures described so far: a ker-
nel of half-width � = 12

◦ is placed at the characteristic 
center orientation g of the ideal component. The key 
difference from the data described above, however, is 
that the central orientations of the ideal components 
differ from the 48 previously used. In that sense, this 
kind of test data requires a different kind of interpola-
tion of the trained ML models.

The ODFs of the fiber components are even more 
different from the training validation data. Unlike the 
latter, they are not unimodal textures with a single 
peak, but have a skeleton line along which the maxima 
are distributed in the orientation space. Like the uni-
modal textures, the fiber textures are generated using 
MTEX. In Fig. 6, the skeleton lines of the � , � and � fib-
ers are plotted in the orientation space. The half-width 
� = 12

◦ was assigned to each fiber, describing a very 
narrow spread of orientations around the skeleton 
line. The pole figures for the �-fiber are plotted as an 
example next to the skeleton plot. The different charac-
ter of this strongly anisotropic texture with respect to 
the unimodal textures becomes immediately apparent 
when comparing the pole figures with those in Fig. 5. 
For the ML models that have been trained solely on 

unimodal textures, predicting the anisotropic coeffi-
cients of fiber textures can be seen as an extrapolation 
task.

Training and cross‑validation

In this section, the results of training and validation 
process are presented. The three ML function classes 
introduced in Section “Training ML models” are com-
pared based on the MSE score they achieve during 
cross-validation for various variants of the texture 
descriptor. The results should provide information 
about which function class and which variant of the 
descriptor is particularly suitable for determining the 
structure property relationship.

Figure 7 shows the results of the 10–7 nested CV. 
On the abscissa, the different variants of the texture 
descriptor are plotted in increasing dimension. The 
dimension of the respective descriptor corresponds 
to the number of grid nodes in the orientation space 
and arises from the resolution of the discretization as 
explained in Section “Texture descriptor.” On the ordi-
nate the MSE is shown. The MSE is calculated accord-
ing to Eq. (6) on the 10 different validation folds with 
n = 65 data points, each. The colored lines in the figure 
correspond to the average MSE over the 10 validation 
folds, and the shadowed area around the lines marks 
the standard deviation.

In gray, the example of MLSSVR shows how the 
ML models behave when trained on a data set that is 
generated without the kNN regularization described 
in Section “Parameterization of the yield function.” 
With a mean validation MSE of around 0.04, the 
model is one order of magnitude less accurate than 

Figure 6  Skeleton lines of the three different fiber textures. Pole figures for �−fiber texture with a 12◦ spread around the skeleton line 
are exemplary given on the right hand side of the figure.
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the models trained on the regularized data set. If a 
regularized data set is used, the mean validation 
MSEs of SVR (blue) and RFR (orange) are 1.2 ⋅ 10−2 
for the coarsest texture descriptor with only seven 
nodes. The MLSSVR (red) is already more accurate 
on this descriptor and achieves a smaller mean error 
with 7.9 ⋅ 10−3 . For the 16-d descriptor, all error curves 
reach a first relative minimum. The continuous func-
tion classes SVR and MLSSVR achieve an error of 
4.5 ⋅ 10

−3 and 4.2 ⋅ 10−3 , respectively, which is a 62% 
and 47% reduction from the 7-d description. With a 
mean validation MSE of 1.1 ⋅ 10−2 , the discontinuous 
RFR improves only slightly over the 7-d variant and 
is significantly less accurate than the other two func-
tion classes.

Further refinement of the grid resolution and the 
associated increase in the dimension of the texture 
descriptor up to 111 do not initially lead to any reduc-
tion in the error. The error of SVR and MLSSVR fluc-
tuates slightly around 5 ⋅ 10−3 , with RFR fluctuating 
more sharply. When the dimension of the descriptor 
reaches 111, SVR and MLSSVR recover their relative 
minimum from the 16-d variant, whereas the RFR 
does not quite so. To check whether the stagnation of 
the error is related to the increasing complexity of the 
input space, a reduction using principal component 
analysis (PCA) is performed before training. Instead 
of the original 111 input dimensions, the m directions 
in which the variance of the data is largest are deter-
mined, and these are used for the texture description. 
The number of so-called principle components m 
enters the cross-validation as an additional hyperpa-
rameter and varies between 5 and 10 in our results, 

representing 76% and 91% of the cumulative variance 
of the data, respectively. The results show that the use 
of PCA in combination with the 111-d descriptor leads 
to an absolute minimum of the MSE with 3.3 ⋅ 10−3 , 
3.5 ⋅ 10

−3 and 5.5 ⋅ 10−3 for SVR, MLSSVR and RFR, 
respectively.

Generalization on holdout test data set

To assess the quality of descriptor and ML models, 
the generalization properties on the holdout test set 
are evaluated. Rather than comparing the predicted 
with the known coefficients in terms of MSE as was 
done previously, we now directly compare the result-
ing yield loci and their gradients.

In Fig. 8, the yield loci predicted by the MLSSVR are 
compared to the true reference yield loci for each of 
the 164 textures in the holdout test set. The histogram 
describes the distribution of the maximum relative dif-
ference between the reference and the predicted yield 
surface d 

J2
 . The concept behind this metric is illus-

trated in the small graphic in the upper right corner of 
Fig. 8. The graphic shows a section of the �-plane in the 
cylindrical principle stress space with the true refer-
ence yield surface in black and the MLSSVR prediction 
in red. In order to calculate d 

J2
 , firstly the J2-equiva-

lent stress is evaluated for the same 60 stress states 
at yield onset in the upper half of the �-plane (plot-
ted as dots) for the reference and the predicted yield 
function, respectively. Then d 

J2
 is calculated as the 

difference between the two equivalent stresses, nor-
malized by the true reference J2-equivalent stress. The 
largest d 

J2
 among all of the 60 stress states is reported 

Figure 7  Mean-squared 
error (symbols and lines) and 
standard deviation (shaded 
regions) for the three differ-
ent ML models during cross-
validation.
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as maxd
J2

 and added to the histogram. Repeating this 
calculation for all the 164 data points in the holdout 
test set results in the histogram displayed in Fig. 8. To 
get a sense of what this difference means qualitatively 
in terms of the shape of the entire yield surface, the 
yield loci at four characteristic error levels 1.5%, 3%, 
5% and 12% (A–D) are shown as examples in Fig. 9

The colored bars in the histogram represent the d 
J2

-
error distributions of the MLSSVR trained on three dif-
ferent descriptor variants 7-d, 16-d and 111-d + PCA. 
For the coarsest 7-d descriptor in yellow, the error 

follows a rather flat distribution with 50% of the test 
data below a maximum difference of 1.5% (point A). 
The second characteristic error level of 3% maxd

J2
 is 

not exceeded by 80% of the test data (point B). Only in 
6% of the test data, the observed deviation was larger 
than 5% w.r.t the reference yield surface.

If the 16-d descriptor is used for training of the 
MLSSVR, the error distribution shifts to the upper left 
direction of the histogram: The fraction of data points 
that do not exceed the first critical error level of 1.5% 
increases by 20% and now amounts 70%. Furthermore, 

Figure 8  Distribution 
of the maximum relative 
distance d J2 between true 
and MLSSVR-predicted 
yield surface for all texture 
in the holdout test set for the 
texture descriptors 7-d, 16-d 
and 111-d+PCA. The labels 
A, B, C, and D refer to the 
error levels used in following 
figures.

A B

C D

Figure 9  Centro-symmetric yield loci for error levels A–D defined in Fig. 8 of the test data set plotted in upper half of �-plane. All 
stresses are normalized by the average yield stress of the corresponding microstructure.
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the number of data points below a maximum differ-
ence of 3% increases to 90%, and the fraction of outli-
ers above 5% error decreases to 4%.

The trend toward a narrower error distribution is 
continued when the 111-d descriptor combined with 
PCA is used for training. In this case, 77% of the yield 
loci in the test data set are predicted with a maximum 
deviation of less than 1.5%. The amount of data points 
below error level B does not change w.r.t the 16-d 
descriptor while the amount of outliers above 5% is 
slightly reduced to 3%.

In addition to the contours of the yield surface, the 
r-values of the predicted and reference yield functions 
are compared in the following. The r-value is a meas-
ure for plastic anisotropy widely used in sheet metal 
forming industry. For uniaxial tension, it is defined 
as the ratio of width strain to thickness strain or their 
rates. We follow the derivations in [44] and calculate 
the r-value r� by

In Eq. (7), the tensor components with dashed indices 
are defined in the reference frame of uniaxial loading. 
This reference frame is related to the orthotropic mate-
rial reference frame by a rotation of � around the nor-
mal direction. Setting � for example to 15◦ , 45◦ or 90◦ 
gives the three standard r-values in � degree to rolling 
direction (direction 1 of material reference frame). The 
partial derivatives 𝜕�̄�

𝜕𝜎
ij

 are the gradients of the yield 

function (Eq. (1)), evaluated at the rotated uniaxial 
stress tensor at yield onset. As described in Sec-
tion “Anisotropic yield function,” the anisotropic coef-
ficients corresponding to the shear stress components 
have been set to zero, as only normal stresses are used 
for the parameterization. This would lead to vanishing 
gradients 𝜕�̄�

𝜕𝜎
12

 in the r-value calculation. In order to 
avoid this, the material is treated to be isotropic with 
respect to these directions and the anisotropic 
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coefficients in reference and predicted model where 
enforced to be 1, consequently.

Figure 10 shows the r-values in case of uniaxial ten-
sion with tensile axis oriented by � between 0 ◦ and 90◦ 
to rolling direction for four different textures. The cho-
sen textures are the same as in Fig. 8 and correspond 
to the characteristic error levels A–D. The r-values for 
the MLSSVR-predicted yield functions are shown in 
red and the reference models in black. For the small-
est error level A, the r-values between 10◦ and 75◦ are 
in almost perfect agreement with the reference model. 
With increasing d

J2
 error, also the deviation between 

predicted and reference r-values increases. For error 
level B in the second sub-figure, in addition to the inac-
curacies at the edges, small deviations in the middle 
part of the r-value curve appear. For the most inaccu-
rately predicted yield function in the test data set in 
the last sub-figure, significant quantitative deviations 
of the r-values are observed. However, the qualitative 
course of the reference curve can be approximately 
reproduced.

In a final consideration, the generalization proper-
ties of the trained MLSSVR are evaluated on the promi-
nent texture components brass, copper and Goss, as 
well as of three fiber textures � , � and � introduced in 
Section “Data set.” The former, like the textures in the 
holdout test data set, address the interpolation proper-
ties of MLSSVR, since they are also unimodal textures 
but with different central orientation. The application of 
the trained MLSSVR to fiber textures is an extrapolation 
task, since the training data set does not contain any 
fiber textures but only unimodal ones.

The maximum d 
J2

-error for the six textures is shown 
in Fig. 11. The red-colored bars correspond to the uni-
modal textures, while the gray bars represent the fiber 
textures. All yield functions are predicted in the lim-
its discussed above for the holdout data set. For the 
relatively isotropic copper texture, the predicted yield 
function is quite accurate with a maximum deviation of 
1.4%. For the more anisotropic brass texture the devia-
tion is 4.2%. The least accurate prediction is made by 
MLSSVR for the strongly anisotropic Goss texture with 
a maximum deviation of 9%. In general, however, the 
shape can also be reproduced well here. It is noteworthy 
that even the fiber textures can be predicted with good 
accuracy, although the ML model has only been trained 
on unimodal textures.
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Discussion

In the following, the results from the previous section 
will be used to assess whether and in which variant 
the descriptor presented here is suitable for determin-
ing the s–p relationship between texture and aniso-
tropic yield function.

Looking at the CV results, the first noticeable aspect 
is the importance of kNN regularization in data gen-
eration. If regularization is not applied, the MSE in the 
CV is consistently an order of magnitude higher than 
for a regularized data set, resulting in very inaccurate 
predictions of the yield function. With the help of the 
regularization approach, it is possible to use the non-
uniqueness of the anisotropic coefficients, which is 
often described as a disadvantage of phenomenologi-
cal models in the literature [13, 17], to generate a distri-
bution of the coefficients that is relatively continuous. 
The observations confirm the considerations in [22] 
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Figure 10  r-values for error levels A–D defined in Fig. 8 of the test data set.
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that regularization partially resolves discontinuities 
in the data set for the case of a higher-dimensional 
texture description.

If the results of the CV are considered from the 
point of view of model selection, the continuous mod-
els SVR and MLSSVR are found to be more appro-
priate functional classes than the discontinuous RFR, 
which is a common choice for solving regression prob-
lems. The results further suggest that the description 
of the intercorrelation of the anisotropic coefficients, 
which the MLSSVR does through its hierarchical Bayes 
approach but which the SVR completely ignores, has 
only little effect on the accuracy of the results. How-
ever, earlier studies on simplified, one-dimensional 
texture descriptions suggest that modeling intercor-
relation is advantageous in the case of a sparser data 
set, and MLSSVR is significantly more accurate in such 
situations than single-target function classes such as 
SVR, which disregard correlation [22].

Looking at the evolution of the MSE during CV over 
the different descriptor variants, it is noticeable that a 
minimum number of 16 nodes in the orientation space 
leads to a first relative error minimum. A coarser mesh 
with 7, 9 or 12 nodes is not able to capture the decisive 
features of the texture required to explain the aniso-
tropic coefficients. Furthermore, it can be observed 
that with further mesh refinement of the orientation 
space, the error for all three function classes stagnates 
and even slightly increases up to the finest discretiza-
tion with 111 nodes. A possible explanation for this 
would be that although the finer discretization adds 
additional nodes to the descriptor, these do not rep-
resent any additional information gain in terms of the 
s–p relationship sought between texture and yield 
function. This thesis is contradicted by the fact that 
when PCA is applied to the 111-d descriptor, the error 
decreases compared to the 16-d variant. This suggests 
that the finer mesh with 111 nodes does add relevant 
information to the descriptor and makes a second 
explanation more likely, which is referred to as the 
bias-variance trade-off in statistical learning [45]. Add-
ing more nodes increases the dimension of the input 
space for the ML models and thus their parameter 
spaces. In these spaces, the correct parameters have 
to be found during training in order to approximate 
the sought unknown objective function as accurate as 
possible. If the space is larger due to an information-
rich, higher-dimensional descriptor, it is possible to 
find a better approximation (lower bias). However, the 
search for the appropriate parameters is much more 

difficult than in a low-dimensional space (higher vari-
ance). Since the number of data points available for the 
search is the same in both spaces, it is possible that the 
simple approximation in 16-d space is more accurate 
than the high-variance approximation in 111-d space. 
If PCA is used to systematically reduce the 111-d input 
space before training, the information content of a 
high-dimensional descriptor can still be used during 
training without having to pay the price of the high-
dimensional parameter space. For this reason, the MSE 
values for all function classes drop below the relative 
minimum of the 16-d descriptor.

Summarizing the CV results, the combination of 
111-d descriptor with PCA using MLSSVR achieves 
the best results to determine the sought s–p relation-
ship between texture and anisotropic yield function. 
Comparing the number of required nodes in the orien-
tation space with similar approaches, such as the his-
togram approach by Dornheim et al. [46], it turns out 
to be slightly lower. For the prediction of elastic con-
stants, the authors achieve good results with 512 bins 
in the cubic fundamental zone. Generalizing the 111-d 
descriptor presented here for the cubic–orthorhombic 
fundamental zone to triclinic specimen symmetry 
yields a number of 435 nodes.

To study the generalization properties of the trained 
MLSSVR, it is applied to the holdout test data sets. 
The first data set analyzed contains the 164 unimodal 
textures that were separated from the overall data set 
before training. The error distribution of the maxi-
mum deviation in yield onset, shown as a histogram 
in Fig. 8, emphasizes the findings from the CV with 
respect to the optimal descriptor variant. While the 
distribution is rather flat, it becomes narrower in case 
the 111-d+PCA variant is used during training. In that 
case, 90% of the yield functions in the test set are pre-
dicted with a maximum deviation in yield onset below 
3%. An outlier fraction of 3% deviates by more than 
5%. Also qualitatively, the predicted yield loci agree 
well with the reference ones, as shown in Fig. 9.

Comparing the r-values between predicted and ref-
erence yield function (Fig. 10), a slightly larger discrep-
ancy is observed than for the plain shape. One explana-
tion for this could be the high sensitivity of the r-values 
with respect to the stress gradients as already pointed 
out by Nascimento et al. [13] and Zhang et al. [35]. Over-
all, however, the r-value profiles can be predicted very 
well for a large proportion of the test data, especially if 
the angle to the rolling direction � is between 10◦ and 
75◦ . Close to rolling and transverse direction ( � =0◦ and 
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90◦ ), the r-values systematically deviate from the refer-
ence values. This is partially explained by the ratio of 
shear to normal stresses and the enforced condition on 
the shear coefficients described in Section “Generaliza-
tion on holdout test data set.” For � =0◦ and 90◦ , the 
shear stress is equal to zero and the fraction vanishes 
from the numerator in Eq. (7). With increasing angle � , 
the fraction of the shear component in the Cauchy stress 
tensor increases up to a maximum at � = 45

◦ and then 
decreases again until it gets zero as � approaches 90◦ . 
As the shear coefficients of reference and ML yield func-
tion are enforced to be the same, increasing the fraction 
of the stress component weighs the error in a beneficial 
way. Nevertheless, as shown for error level D, the ani-
sotropic coefficients of the normal stress components 
still play a role even in case of maximum shear frac-
tions and can lead to substantial deviations if predicted 
inaccurately.

The second data set consists of six characteristic roll-
ing textures: the three unimodal textures Goss, copper 
and brass, and the three fiber textures � , � and � . The 
MLSSVR predicts the yield loci of the unimodal textures 
with a similar accuracy as the textures in the first data 
set, emphasizing the good interpolation properties of 
the model for even more distinct textures. However, it is 
noticeable that also the fiber textures are predicted very 
accurately, although only unimodal textures were used 
during the training process. This suggests that the pro-
posed descriptor could also be suitable for fiber textures 
and that the MLSSVR even extrapolates to this texture 
type to some extent.

Compared to the results of the related work by 
Montes de Oca Zapiain et al. [25], the descriptor pre-
sented here is shown to be an accurate and efficient 
alternative to their GSH-based approach. The predic-
tions of the advanced Yld2004-18p yield criterion show 
a similar accuracy as the neuronal network predictions 
of the simpler Hill model studied in [25]. Instead of the 
parameter-intensive neural network, ML models were 
used here, which are also suitable for smaller data sets. 
This will play a more important role in particular when 
more full-field CP computations have to be performed 
to generate training data in the full stress space.

Conclusion

In this work, we present a new approach for the 
description of crystallographic texture in data-driven 
constitutive modeling of polycrystalline metals. The 

description is based on a discretization of the orien-
tation space by an equidistant grid of user-specific 
resolution. We show that the approach is suitable to 
determine the structure–property (s–p) relationship 
between cubic–orthorhombic textures and the mate-
rial parameters of the anisotropic Yld2004-18p yield 
function [2]. For this purpose, we train three differ-
ent supervised machine learning (ML) methods on a 
data set of 816 textures that have been described by 
the novel descriptors with different grid resolutions.

We find that a grid with 16 nodes already cap-
tures the essential texture information needed to 
determine the s–p relationship. Refining the grid 
to 111 nodes and successively applying dimension 
reduction by principal component analysis (PCA) to 
5 or 10 components, further improves the accuracy 
of the models. Independent of the grid resolution, 
the use of the k-nearest-neighbor (kNN) regulariza-
tion introduced here, proofed to be a prerequisite 
for successful training. By requiring that neighboring 
textures should have similar coefficients, the well-
known non-uniqueness of the Yld2004-18p material 
parameters, where different parameter sets describe 
the same yield function [6], could be bypassed.

The trained models show good generalization 
properties on a holdout test data set and can accu-
rately predict the yield surface and also the r-values 
for most textures in the test set. Final investigations 
suggest that interpolation to other unimodal textures 
is possible as well as extrapolation to fiber textures. 
The latter, however, requires further evaluation.

The new descriptor allows the incorporation of 
meaningful microstructural degrees of freedom into 
data-driven constitutive modeling of anisotropic 
plasticity, providing a pathway to model texture evo-
lution and to train more general material models. In 
upcoming work, we plan to evaluate the suitability 
of the descriptor for fiber textures and to extend the 
method to the entire stress space. Since this exten-
sion requires more computationally intensive crystal 
plasticity simulations, active learning methods could 
be of particular interest, as shown for example in 
[47].
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Appendix A: CP Model

As explained in Section “Parameterization of the yield 
function,” the hybrid crystal plasticity scheme employed 
in this work requires two full-field CPFEM calculations 
on an RVE for each texture. Details on the crystal plastic-
ity constitutive model as well as on the material param-
eters are given in the following.

According to Lee and Liu [48], the total deforma-
tion gradient F is multiplicatively decomposed into 
an elastic and a plastic part:

The plastic part F
p
 maps the reference configuration 

to the stress-free intermediate configuration. All of the 
following calculation steps required to find the stress 
at the next increment are performed in this interme-
diate configuration. From there, F

e
 maps to the cur-

rent configuration taking lattice rotations and elastic 
stretches into account. Following Roters et al. [49], the 
multiplicative decomposition of the deformation gra-
dient yields an additive decomposition of the velocity 
gradient L

The evolution of plastic flow is then given by

The formulation of the plastic velocity gradient L
p
 

requires an additional kinematic equation as well as a 
constitutive model that relates stimulus and response 
on grain level. Assuming that dislocation slip is the 
sole cause for plastic flow, the kinematic equation is 
given by

In Eq. (11), the Schmid tensor in the intermediate 
configuration M̃ for slip system � is composed of the 
slip plane normal ñ𝛼 and the slip direction m̃𝛼 . For the 
fcc structures analyzed in this work, four unique slip 
planes of type {111} with three slip directions of type 
⟨110⟩ have to be considered.

(8)F = F
e
F
p
.

(9)

L = ḞF
−1 = Ḟ
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e

+ F
e
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.
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.
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The rate-dependent phenomenological constitu-
tive model proposed by Rice [50] and Hutchinson and 
Hill [51] is employed to relate the slip rates �̇�𝛼 on the 
slip system � to the respective resolved shear stress on 
that system ��

where �̇�
0
and m are material parameters for the refer-

ence shear rate and the strain rate sensitivity expo-
nent, respectively; ��

c
 is the slip resistance or critical 

resolved shear stress on slip system � . The evolution 
of this material parameter due to hardening effects is 
captured by the rate equation

where h�� expresses the hardening matrix,

which empirically describes the interaction between 
different slip systems in a grain [49]. The material 
parameters for slip hardening h

0
, a and �

s
 are assumed 

to be identical for all slip systems in the fcc crystal. 
Latent hardening effects are captured by q��.

All material parameters that appear in the above 
equations (plus the elastic constants) are summarized 
in Table 3. Their values are taken from the work of 
Anand [52] on the single-crystal elasto-viscoplastic 
behavior of fcc copper.

(12)
�̇�𝛼 = �̇�

0

||||
𝜏𝛼

𝜏𝛼
c

||||
m

sgn(𝜏𝛼),

(13)�̇�𝛼
c
= h𝛼𝛽

||| ̇𝛾𝛽
|||,

(14)h�� = q��

[
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0
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