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Abstract
Various doping concentrations of boron (B)-doped germanium nanocrystal (Ge NC) films were prepared using the plasma-
enhanced chemical vapor deposition (PECVD) technique followed by thermal annealing treatment. The electronic prop-
erties of B-doped Ge NCs films combined with the microstructural characterization were investigated. It is worthwhile 
mentioning that the Hall mobilities �Hall of Ge NCs films were enhanced after B doping and reached to the maximum of 
200  cm2  V−1, which could be ascribed to the reduction in surface defects states in the B-doped films. It is also important 
to highlight that the temperature-dependent mobilities �H(T ) exhibited different temperature dependence trends in 
the Ge NCs films before and after B doping. A comprehensive investigation was conducted to examine the distinct car-
rier transport properties in B-doped Ge NC films, and a detailed discussion was presented, focusing on the scattering 
mechanisms involved in the transport process.
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Abbreviations
Ge NCs  Germanium nanocrystals
PECVD  Plasma-enhanced chemical vapor deposition
a-Ge:H  Hydrogenated amorphous germanium
SCCM  Standard cubic centimeter per minute
XRD  X-ray diffraction
GBs  Grain boundaries
DBs  Dangling bonds

Introduction

Over the past decade, there has been a growing interest in semiconductor nanocrystals based on Silicon and Germanium. 
These nanocrystals have gained attention due to their versatile applications in various devices, including light emitters, thin-
film solar cells, photoelectric sensors, and nonvolatile memories [1–7]. Germanium, in particular, exhibits advantages such as 
larger electron and hole mobility, a narrower band-gap (0.67 eV), and high phonon responsivity in the near-infrared region 

 * Yunqing Cao, yqcao@yzu.edu.cn; Dan Shan, shandnju@126.com; Menglong Wang, wangml0708@126.com; Daoyuan Sun, 
sundaoyuan0808@126.com | 1School of Information Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China. 2School 
of Physical Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225009, China.

http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-023-03893-7&domain=pdf


Vol:.(1234567890)

Research Discover Nano          (2023) 18:110  | https://doi.org/10.1186/s11671-023-03893-7

1 3

[8–10]. These properties make it suitable for the fabrication of Ge-based photodetectors and Ge-based thin film transistors 
(TFT) with superior device performance [7, 11–13]. However, achieving desired properties in Si and Ge NCs often necessitates 
active doping to enhance device performance [14–17]. Unfortunately, doping nanocrystals is challenging, and the process 
is further complicated by the phenomenon known as "self-purification". This phenomenon makes it difficult for defects or 
impurities to migrate toward the surface of a nanocrystal due to the small distances involved [18, 19]. Consequently, there 
has been limited research conducted on the electronic properties of doped Si or Ge NCs, highlighting the need for a deeper 
understanding of the fundamental carrier transport properties in these materials [20–24].

In our previous works, the electronic properties of P- and B-doped Si NCs films were investigated by the temperature-
dependent Hall effect measurements [20–22]. Compared with B dopants, P impurities are more likely to substitutionally 
occupy the inner sites Si NCs. They can be easily electrically activated and provide a large number of charge carriers, which 
finally reduces the barriers height of grain boundaries (GBs) in the Si NCs films. Thus, it was reported that the scattering 
effect of grain boundaries could be suppressed by the introduction of P impurities in Si NCs films. In the present work, the 
microstructure and carrier transport properties of B-doped Ge NCs films have been investigated. It was found that the crys-
tallization of Ge NCs films was degenerated when B impurities were introduced. Almost no significant increases of carrier 
concentrations were observed in Ge NCs films after B doping, indicating the doping efficiency of B is low in Ge NCs materials. 
Furthermore, carrier transport processes in Ge NCs films before and after B doping were systematically studied. There were 
different scattering mechanisms dominated the carrier transport process, respectively, in Ge NCs films with various doping 
concentrations. The possible microscopic mechanisms which to govern the charge transport were briefly discussed.

Experiment

B-doped hydrogenated amorphous germanium (a-Ge:H) films were prepared by a plasma-enhanced chemical vapor depo-
sition (PECVD) system using the gas mixtures of pure germane  (GeH4, Nanjing, China), hydrogen  (H2, Nanjing, China) and 
diborane  (B2H6, 1% diluted in  H2, Nanjing, China). The flow rate of  GeH4 was kept at 5 sccm (standard cubic centimeter per 
minute) during the growth process [20–22]. The boron concentrations were changed by adjusting the flow rate of  B2H6 (FB), 
which controlled at 0 sccm (un-doped), 0.5, 1 and 3 sccm, respectively. The gas-chamber pressure, substrate temperature and 
radio frequency power were 10 m Torr, 250 ℃ and 30 W, respectively. The thickness of all samples is designed to be 150 nm. 
After deposition, all the samples were subsequently annealed in a conventional furnace at temperatures of 500 ℃ for 1 h in 
nitrogen ambient for crystallization. Quartz plates and monocrystalline Si wafers were selected as substrates for the various 
measurements [20–22].

The microstructures of all films were characterized using Raman spectroscopy (HR800, Jobin Yvon Horiba Inc.) and X-ray 
diffraction (MXP-III, Bruker Inc.). The optical band-gap of the films was determined by analyzing the optical absorption 
spectra obtained from a Shimadzu UV-3600 spectrophotometer using Tauc plots. The electronic properties, including dark 
conductivity, Hall mobility, and carrier concentration, were determined through temperature-dependent Hall measurements 
using a variable temperature Hall effect measurement system (model: LakeShore 8400 series, LakeShore). The measurements 
were conducted in a standard van der Pauw (VDP) configuration with an electromagnet generating a magnetic induction of 
0.6 T. The temperature range for the Hall measurements was from 300 to 650 K. To achieve ohmic contacts, all samples were 
prepared with coplanar Al electrodes at the four corners using vacuum thermal evaporation, followed by a 30-min alloying 
treatment at 400 °C.

Results and discussion

Microstructure characterization

Raman spectroscopy, commonly employed to investigate the microstructures of annealed nanocrystalline films, was 
conducted using an Ar + laser with a wavelength of 514 nm as the excitation light source. Figure 1 displays the Raman 
spectra of B-doped Ge NC films with different doping concentrations. A weak and broad Raman band centered at 
273  cm−1 is observed in the as-deposited film, which is indicative of the transverse-optical (TO) vibration mode of amor-
phous Ge–Ge bonds. Conversely, in the samples subjected to the annealing procedure, a sharp peak emerges near 
300  cm−1, indicating the formation of Ge NCs phases [23, 25]. The volume fraction of crystalline XC can be estimated as 
the formula: XC =

Ic

Ic+�Ia
 [26]. To analyze the Raman spectra, a deconvolution process was employed, separating the spec-
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trum into two Gaussian components representing nanocrystalline (nc-Ge) and amorphous (a-Ge) phases. The deconvo-
lution results are depicted in the inset of Fig. 1. The integrated intensities of the crystalline and amorphous peaks are 
represented by Ic and Ia , respectively. In our analysis, a value of σ equal to 0.88 was used, signifying the ratio of the inte-
grated Raman cross sections between the crystalline and amorphous phases. It can be calculated that XC is about 86% 
for the un-doped Ge NCs film and was gradually decreased to nearly 65% for B-doped Ge NCs film with the maximum 
doping amount of FB = 3 sccm. Similar results in Si NCs films had been reported at our preliminary work [27]. The reduc-
tion in XC was primarily attributed to the introduction of dopants, resulting in increased fluctuations in bond angles and 
bond lengths as the dopants were incorporated into the films. This phenomenon led to the degradation of the short-
range order. From the aforementioned discussion, we can conclude that the incorporation of B dopants results in reduced 
crystallization within the Ge NCs films.

The microstructure of B-doped Ge NCs films with various doping concentrations was further investigated by XRD 
measurement. The XRD patterns of all samples deposited on quartz substrates are shown in Fig. 2. It was clearly observed 
that the diffraction peak at near 2 �=27° and 45°, which associated with the poly-crystalline planes of (111) and (220) for 
Ge, respectively, appeared in all the films [28]. Moreover, the diffraction peak corresponding to the (111) plane in Ge NCs 
films exhibits a slight reduction in intensity following B doping. This suggests that the proportion of crystalline material 
in the films may have decreased as a result of B doping [29]. This observation implies that the introduction of B dopants 
can adversely affect the quality of Ge NCs, leading to a decrease in crystallization within the Ge NCs films. These findings 
are consistent with the results obtained from the Raman analysis.

The optical band-gap Eg is commonly determined using Tauc plots, where (�h�)1∕2 = B(h� − Eg) . Here, � represents 
the absorption coefficient, h� is the photon energy, and B is a constant. This method is employed to characterize the 
light absorption in nanocrystalline semiconductor films [30, 31]. Figure 3 shows the Tauc’s plot of (�h�)1∕2 versus photon 
energy h� for B-doped Ge NCs films. It is found that the value of optical band-gap, which was reported as 1.6 eV for the 
un-doped Ge NCs film in our previous work [32], was slightly reduced to 1.5 eV for the B-doped Ge NCs with FB = 0.5 sccm 
and dropped to 1.2 eV when the B doping concentration increased to FB = 3 sccm. The optical band-gap is known to 
be influenced by the presence of disordered grain boundary regions in the crystallized sample, which typically exhibit 
a higher optical band-gap compared to the nanocrystalline regions [33]. The widespread distribution of grain bound-
ary regions in Ge NC films contributes significantly to the overall optical band-gap. Therefore, the decrease in optical 
band-gap for the B-doped Ge NCs films may be ascribed to the decline of nanocrystalline components caused by the 
introduction of B dopants that have already been described in the above.

Room temperature Hall effect measurement

In order to gain a deeper understanding of the electronic properties in B-doped Ge NCs films at different doping concen-
trations, Hall effect measurements were employed, which was utilized to provide enhanced insights into the behavior 
of carriers in the Ge NCs films. In Fig. 4a, room temperature carrier concentrations for Ge NCs films before and after B 

Fig. 1  the Raman spectrum 
of Ge NCs films with various 
B doping concentrations. The 
inset is the Gauss decomposi-
tion of Raman peak
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doping are presented. It was interested to find that the carrier concentration of un-doped Ge NCs film was nearly reached 
to  1018  cm−3 order with a p-type behavior. It was reported that the presence of a significant hole concentration in Ge 
NCs film, even without deliberate doping, can be attributed to the existence of deep-acceptor-like surface states. These 
surface states, often associated with dangling bonds (DBs), result in the accumulation of numerous negative charges at 
the surfaces [32]. As a result, the energy bands in the vicinity of the surface exhibit an upward bending, thereby attract-
ing additional holes within the film. Consequently, the un-doped Ge NCs film experiences a pronounced increase in hole 
concentration. However, the hole concentration was barely increased in Ge NCs films after B doping as if the dopants 
could not enter into the Ge NCs. As we know, the dopants may have difficulty entering the core of nanocrystalline Si or 
Ge according to the so-called self-purification effect, especially the Si or Ge NCs with small sizes [18, 34]. Therefore, there 
is no more activated impurities that can contribute to the carrier concentration in the B-doped Ge NCs films.

Furthermore, the Hall mobilities �Hall in B-doped Ge NCs films were also investigated at room temperature as shown in 
Fig. 4b. The Hall mobility is about 182  cm2  V−1 in Ge NCs film before doping, exhibiting a normal electrical performance 
compared with other reports [32]. After doping, it is very interesting to find that the value of �Hall is higher than that of 
the un-doped sample. The Hall mobility was firstly enhanced and reached to nearly 200  cm2  V−1 for B-doped Ge NCs film 
with FB = 1 sccm, then decreased with increasing the B doping concentration. As we are aware, the carrier mobility in 
bulk Si is typically reduced as the doping concentration increases, primarily due to the strong scattering effect caused 
by impurities. However, the situation is quite different in the case of B-doped Ge NCs, where we observe an enhanced 
Hall mobility. This unconventional behavior can be attributed to several factors which will be examined in detail.

The relatively low carrier mobility observed in poly-crystalline and nanocrystalline Si or Ge is typically attributed to two 
primary factors: strong scattering at grain boundaries and the presence of defect states, which encompass the crystalline 

Fig. 2  The XRD patterns of Ge 
NCs films with various B dop-
ing concentrations

Fig. 3  the Tauc’s plot of 
(�h�)1∕2 versus photon energy 
h� for Ge NCs films with vari-
ous B doping concentrations



Vol.:(0123456789)

Discover Nano          (2023) 18:110  | https://doi.org/10.1186/s11671-023-03893-7 Research

1 3

quality and interface defect states. Notably, the dangling bonds play a significant role in this regard, as they have the 
ability to trap carriers and generate a depletion region that subsequently affects carrier mobility [35–37]. However, the 
surface defects states can be well-passivated by the dopants. In our previous research, we investigated the effects of 
phosphorus (P) doping in Si NCs and made a significant discovery. We found that the introduction of P impurities effec-
tively passivated the dangling bonds within the Si NCs. This passivation process played a crucial role in enhancing the 
electron mobility within the P-doped Si NCs, as we documented in our previous study [21]. In contrast to phosphorus 
impurities, boron impurities exhibit a distinct preference for occupying surface sites on nanocrystals rather than settling 
within the core of the nanocrystals. Hong et al. made an additional observation regarding the behavior of B atoms in Si 
NC films. They found that B atoms initially substituted the inactive threefold Si atoms present in the defect states of the 
Si NC films. Subsequently, these B atoms replaced the fourfold Si atoms, leading to electrically active doping [38]. Based 
on the preceding discussion, it becomes evident that B dopants, which occupy the surface sites, effectively passivate 
the defect states. Therefore, the observed enhancement in Hall mobility following B doping can be attributed to the 
reduction in surface defect states in our current study.

Temperature‑dependent Hall effect measurement

To gain a deeper understanding of the transport properties of B-doped Ge NC films, particularly regarding the scattering 
mechanisms involved in the transport process, we conducted an investigation of temperature-dependent Hall effects, 
which covered a temperature range spanning from 300 to 650 K. As shown in Fig. 5, temperature-dependent dark 
conductivity for un-doped Ge NCs film was measured at the temperature from 300 to 500 K. It was clearly found that 
the sample exhibited a linear relationship of the ln� versus T−1 plot, which indicates that carrier transport within the Ge 
NCs film is primarily governed by thermal activation conduction [29]. The activation energy, Ea , representing the energy 
difference between the Fermi level and the top of the valence band in p-type semiconductors, can be determined by 
analyzing the slope of ln� versus T−1 curve according to the Arrhenius plots � = �

0
exp(−Ea∕kBT  ). The deduced activation 

energy Ea of the un-doped Ge NCs films is only about 29 meV and gradually decreased to nearly 0 meV after B doping 
with a series of doping concentration (insert of Fig. 5). Compared with the band-gap of 1.6 eV for the un-doped Ge NCs 
film, the relatively small activation energies observed in all the Ge NC films can be attributed primarily to the presence 
of deep-acceptor-like surface states. As mentioned earlier, these surface states lead to the accumulation of holes and 
cause the Fermi level to be pinned near the top of the valence band.

To extract information about the scattering mechanisms in the transport process, temperature-dependent Hall mobili-
ties were investigated at the temperature range from 300 to 650 K. As can be seen from Fig. 6, it should be pointed out 
that the curves of temperature dependence Hall mobilities have different trends for Ge NCs films before and after B 
doping, which implies different scattering mechanisms in these samples. For the un-doped Ge NCs film, the mobility 
is firstly increased with increasing the temperature to near about 450 K and then, decreased with further increasing 
the temperature. Considerable research efforts have been devoted to the increased Hall mobility with temperature in 
the previous works including our reports [22, 39, 40]. It can be interpreted that the carrier transport process is mainly 
dominated by the grain boundaries scattering in un-doped Ge NCs film at room temperature. The grain boundaries, 

Fig. 4  a Room temperature carrier concentrations and b Room temperature Hall mobilities for Ge NCs films before and after B doping
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characterized by a higher concentration of defects, tend to trap charged carriers to a greater extent than the interior of 
the grains. As a result, band bending occurs at the grain boundaries, impeding carrier transport. However, as the tem-
perature increases, the carriers gain additional energy, facilitating easier traversal of the potential barriers at the grain 
boundaries. Consequently, the mobility exhibits an increase with temperature, attributed to the reduced scattering 
caused by the grain boundaries [39].

However, the mobilities exhibited different temperature dependence trends after B doping, especially in the tempera-
ture region 300–450 K. It can be found that the Hall mobility decreases monotonously with the temperature in the whole 
measurement temperature range, which implies that the grain boundaries scattering may not dominate the carrier trans-
port process in B-doped Ge NCs films. We suggested it can be ascribed to the reduction in crystallization in Ge NCs films 
after B doping. The lower crystallization in Ge NCs films, the fewer and smaller grains spreading over the films that due 
to the decrease in grain boundaries. Thus, the grain boundaries scattering mechanism could not play an important role 
in the carrier transport process in B-doped Ge NCs films. To further explore the scattering mechanism in B-doped Ge NCs 
films, Fig. 7 plots the log�H

 as a function of logT  in the temperature range from 300 to 650 K. The �H(T ) can be described 
by the following equation �H(T ) ∝ Tn . It can be estimated that the data yield n = − 0.8 for the B-doped Ge NCs film with 
FB = 0.5 sccm and n = − 0.2 for the B-doped Ge NCs film with FB = 3 sccm. It is generally believed that typical scattering 
is acoustic phonons, ionized and neutral impurities scattering, which yield values of − 1.5, 1.5 and 0, respectively [41]. 
However, in our present works, the B dopants are more likely to occupy the surface sites of Ge NCs dots than be ionized 
to realize electrically active doping. Therefore, the exponents, which show the n-value of about − 0.2 and − 0.8, indicate 
that the carrier transport is dominated by a superposition of acoustic phonon scattering, neutral impurities scattering 
as well as grain boundaries scattering [42]. It must also be mentioned that the grain boundaries scattering is weaker in 
the B-doped Ge NCs film with FB = 3 sccm than in the film with FB = 0.5 sccm. Consequently, the n-value of − 0.8 for the 

Fig. 5  temperature-depend-
ent dark conductivity for 
un-doped Ge NCs film; the 
insert are the deduced activa-
tion energy Ea for Ge NCs 
films with various B doping 
concentrations

Fig. 6  The temperature 
dependence Hall mobilities 
of Ge NCs films with various B 
doping concentrations



Vol.:(0123456789)

Discover Nano          (2023) 18:110  | https://doi.org/10.1186/s11671-023-03893-7 Research

1 3

B-doped Ge NCs film with FB = 3 is shown closer to − 1.5, which indicates the acoustic phonon scattering should play a 
more and more important role in the Ge NCs films after B doping.

Conclusion

In summary, B-doped Ge NCs films with various doping concentrations were fabricated by thermal annealing of the 
corresponding a-Ge:H films. Both the crystallinity and average grain size in Ge NCs films were gradually decreased with 
increasing B doping concentrations. A high hole concentration could be achieved to more than  1018  cm−3 order due to 
the holes accumulation caused by the acceptor-like surface states in Ge NCs film. However, the hole concentrations in 
Ge NCs films after B doping had barely increased, which implies that the B atoms hardly enter into the core of Ge NCs to 
realize electrically active doping. Another interesting finding is that the Hall mobilities in Ge NCs films were unusually 
increased after B doping, which can be ascribed to the reduction in surface defects states well-passivated by the dopants. 
Based on the temperature-dependent Hall effect measurement, the scattering mechanisms during carrier transport 
process in Ge NCs films were investigated. It can be found that different scattering mechanisms were observed in the 
Ge NCs films before and after B doping. In un-doped Ge NCs film, the grain boundaries scattering mainly dominated the 
carrier transport process.  After B doping, the carrier transport process was dominated by a superposition of acoustic 
phonon scattering, neutral impurities scattering and grain boundaries scattering and the acoustic phonon scattering 
played a more and more important role when further increasing the B doping concentration.
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