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Abstract
Climate change is a major threat already causing system damage to urban and natural systems, and inducing global eco‑
nomic losses of over $500 billion. These issues may be partly solved by artificial intelligence because artificial intelligence 
integrates internet resources to make prompt suggestions based on accurate climate change predictions. Here we review 
recent research and applications of artificial intelligence in mitigating the adverse effects of climate change, with a focus on 
energy efficiency, carbon sequestration and storage, weather and renewable energy forecasting, grid management, building 
design, transportation, precision agriculture, industrial processes, reducing deforestation, and resilient cities. We found that 
enhancing energy efficiency can significantly contribute to reducing the impact of climate change. Smart manufacturing can 
reduce energy consumption, waste, and carbon emissions by 30–50% and, in particular, can reduce energy consumption in 
buildings by 30–50%. About 70% of the global natural gas industry utilizes artificial intelligence technologies to enhance the 
accuracy and reliability of weather forecasts. Combining smart grids with artificial intelligence can optimize the efficiency 
of power systems, thereby reducing electricity bills by 10–20%. Intelligent transportation systems can reduce carbon dioxide 
emissions by approximately 60%. Moreover, the management of natural resources and the design of resilient cities through 
the application of artificial intelligence can further promote sustainability.
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Introduction

The carbon dioxide emissions caused by industrial pro‑
duction are leading to climate change, which is currently 
one of humanity’s most severe climate problems. Sea level 
rise, the increasing frequency of natural disasters, the 
reduction of crop production capacity, and the loss of bio‑
diversity are closely related to climate change (Shivanna 
2022). The widespread use of fossil fuels in manufactur‑
ing processes is primarily responsible for the extensive 
carbon dioxide emissions (Yue and Gao 2018). Therefore, 
improving energy efficiency, developing green energy, and 
conserving energy are essential to address climate change. 
The transition from a society based on fossil fuels to one 
based on electricity can positively affect ecological protec‑
tion (Fang et al. 2023; Farghali et al. 2022).

Artificial intelligence can achieve automated discov‑
ery, distribution, and transmission operations through 
deep neural networks, significantly reducing energy con‑
sumption (Farghali et al. 2023). As the severity of cli‑
mate change issues continues to increase, artificial intelli‑
gence is often touted as a potential solution for addressing 
the challenges of climate change. Artificial intelligence 
technology has the potential to seamlessly integrate the 
expanding opportunities offered by the internet of things 
(IoT) and renewable energy within the energy industry. 
It can play a crucial role in energy supply, optimizing 
decision-making processes, and autonomous software 
control, thus serving as a significant driving force in the 
energy sector. In addition, artificial intelligence has also 
played an indispensable role in solar radiation modeling, 
simulation and optimization of renewable energy systems, 
urban power load forecasting, and urban building heat load 
forecasting (Al-Othman et al. 2022; Jha et al. 2017; Khos‑
ravi et al. 2018; Lyu and Liu 2021; Wang and Srinivasan 
2017). Artificial intelligence can aid in mitigating climate 
change in multiple ways, such as improving the prediction 
of extreme weather events (McGovern et al. 2017), con‑
structing energy-efficient and green intelligent buildings 
that collect and sense data while predicting thermal com‑
fort (Ngarambe et al. 2020; Yan et al. 2021), establishing 
nutrient cycling and crop productivity models to reduce 
fertilizer usage (Elahi et al. 2019b; Zhang et al. 2021), 
implementing sustainable forest management practices 
that are efficient and precise to decrease deforestation (Liu 
et al. 2021), providing smart waste management systems 
(Fang et al. 2023), and developing resilient cities (Allam 
and Dhunny 2019).

Currently, the review of artificial intelligence and cli‑
mate change primarily focuses on the technical aspects 
of artificial intelligence, omitting a perspective on how 
artificial intelligence can be applied in various fields that 

are impacted by climate change. As illustrated in Fig. 1, 
this review divides the impact of climate change on 
human social production and life into eight sections, each 
of which investigates the use of artificial intelligence in 
resource management, green energy efficiency, and sus‑
tainable development. Furthermore, the future of artificial 
intelligence’s sustainable development in the context of 
climate change was investigated. In short, artificial intel‑
ligence has the potential to transform how we respond 
to climate change mitigation by providing new tools and 
insights to assist us in achieving a more sustainable future.

Using artificial intelligence in energy 
efficiency, carbon sequestration, 
and storage

Energy efficiency

In contemporary society, energy concerns have emerged as 
one of the major global issues. As the global economy stead‑
ily expands and the population continues to burgeon, there 
has been an exponential surge in energy demand (Chen et al. 
2022b; Osman et al. 2022; Yang et al. 2023). Concurrently, 
the judicious utilization of energy and the attainment of sus‑
tainable development has posed an increasingly momentous 
challenge (Chen et al. 2023a). In order to meet the mounting 
energy demand and curb deleterious environmental impact, 
efficacious measures must be implemented to enhance 
energy efficiency and abate energy wastage (Cai et al. 2019; 
Nižetić et al. 2019). Artificial intelligence technology has 
progressively emerged as a new technological tool in the 
energy sector, offering novel prospects and challenges for 
ameliorating energy efficiency and realizing sustainable 
development (Baysan et al. 2019; Farghali et al. 2023).

In the energy sector, the implementation of artificial intel‑
ligence can heighten the efficiency of energy utilization by 
predicting energy demand, optimizing energy production 
and consumption, and realizing intelligent control, thus 
curtailing energy costs, lessening environmental pollution, 
and fostering sustainable development (Khalilpourazari 
et al. 2021; Lee and Yoo 2021). As a result, the relation‑
ship between artificial intelligence and energy efficiency has 
emerged as a highly discussed topic in the research com‑
munity, garnering the interest of numerous scholars and 
corporations alike (Ahmad et al. 2021; Kumari et al. 2020). 
Moreover, it is contended that judiciously applying artificial 
intelligence technology can result in a tangible enhancement 
of energy efficiency, foster sustainable development, and 
pave the way for a more promising future for human society. 
Accordingly, Table 1 presents an analysis of the utilization 
of artificial intelligence technology in augmenting energy 
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efficiency, outlining the present status and efficacy of its 
deployment in the energy sector.

Artificial intelligence has recently revolutionized the 
energy sector, which has emerged as a revolutionary tech‑
nological tool offering novel opportunities and challenges 
for enhancing energy efficiency and accomplishing sus‑
tainable development (Ahmed et al. 2022a; Farghali et al. 
2023; Yang et al. 2022). A thorough examination outlined 
in Table 1 has revealed that artificial intelligence has 
been proficiently employed in various domains of energy 
efficiency, such as fault detection and diagnosis, thermal 

comfort prediction and control, demand response, and 
energy storage optimization. The application of artificial 
intelligence in these domains has demonstrated promising 
results in augmenting energy efficiency, reducing energy 
waste, and fostering sustainable development (Chopra 
et al. 2022; Fang et al. 2023). However, implementing 
artificial intelligence in energy efficiency is an ongoing 
process. Its effectiveness is heavily contingent upon the 
accuracy of input data and the proper selection of artificial 
intelligence algorithms (Arumugam et al. 2022; Ouadah 
et al. 2022).

Fig. 1   Utilization of artificial intelligence in reducing the impact of 
climate change. This figure outlines various artificial intelligence 
applications in energy efficiency, including carbon sequencing, stor‑
age, and renewable energy forecasting. Furthermore, artificial intel‑
ligence optimizes transportation systems, precision agriculture, and 
natural resource management. The technology is also employed in 

energy-efficient building design and retrofitting, weather forecasting, 
and industrial process optimization. Consideration is given to the dis‑
course surrounding the implementation of sustainable and resilient 
urban centers and their potential implications in the upcoming era. 
The discussion focuses on implementing sustainable and resilient 
urban development
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According to the findings presented in Table 1, research 
conducted in Italy and Japan suggests that using artificial 
intelligence technologies in energy management systems has 
been widespread and has resulted in favorable outcomes. 
Similarly, the research conducted in the UK suggests that 
while the use of artificial intelligence in predictive main‑
tenance is still in its early stages, it has demonstrated good 
effectiveness. Moreover, in other countries, such as China 
and India, artificial intelligence is used for fault detection 
and diagnosis and in integrating renewable energy and 
demand response. Overall, the analysis presented in Table 1 
suggests that most of the applications of artificial intelli‑
gence in various aspects of energy efficiency are still in their 
nascent stages, and their effectiveness needs further inves‑
tigation. Thus, there is a need to conduct further research to 
assess the efficacy of these applications.

Some scholars contend that the exorbitant cost of artificial 
intelligence technology is a major obstacle to its application 
in energy efficiency (Enholm et al. 2022; Yang 2022; Zhao 
et al. 2022). This is because the creation and implementation 
of artificial intelligence-based systems necessitate signifi‑
cant investment, which may exceed the financial capacity of 
specific organizations (Ahmed et al. 2022b). Additionally, 
the scarcity of data and proficient experts in artificial intel‑
ligence presents a significant challenge to its widespread 
implementation in energy efficiency (Chai et al. 2022). 
Nonetheless, despite these obstacles, it is expected that the 
utilization of artificial intelligence technologies in energy 
efficiency will increase, driven by the burgeoning need to 
reduce energy consumption, mitigate environmental impact, 
and achieve sustainable development.

This section thoroughly examines using artificial intelli‑
gence-based technologies to enhance energy efficiency. The 
findings demonstrate that artificial intelligence is a powerful 
tool that enhances energy efficiency and promotes sustain‑
able development. Artificial intelligence has demonstrated 
efficacy in numerous areas, although its potential requires 
further evaluation. The scarcity of expertise and financial 
constraints hinder its widespread adoption. Nonetheless, the 
future holds promise for increased utilization of artificial 
intelligence in energy efficiency.

Carbon sequestration and storage

Carbon sequestration and storage are pivotal elements of cli‑
mate change mitigation strategies (Liu et al. 2022b; Osman 
et al. 2022; Yang et al. 2022, 2023). The application of arti‑
ficial intelligence in this field can significantly augment the 
efficiency and effectiveness of these processes (Cheong et al. 
2022; Kaack et al. 2022). Artificial intelligence-based tech‑
nologies can be harnessed to discern appropriate geological 
formations for carbon storage and prognosticate the behavior 
of carbon dioxide after it is introduced into storage sites 

(Abdalla et al. 2021). Furthermore, artificial intelligence can 
optimize the injection procedure and monitor storage sites 
to ensure carbon dioxide is securely trapped underground 
(Li et al. 2021). Artificial intelligence can also expedite the 
development of novel and ingenious carbon sequestration 
approaches, such as mineral carbonation, which converts 
carbon dioxide into stable minerals (Ding et al. 2022).

In summary, incorporating artificial intelligence in carbon 
sequestration and storage can promote climate objectives 
and sustainable development. Figure 2 depicts the sequential 
phases of incorporating artificial intelligence technology in 
carbon sequestration and storage and its capacity to facilitate 
the realization of climate goals and sustainable development. 
By leveraging artificial intelligence, it is feasible to reduce 
greenhouse gas emissions and alleviate the impacts of cli‑
mate change, expediting the attainment of carbon neutrality.

In recent years, the utilization of artificial intelligence in 
carbon sequestration and storage has increased significantly 
(Qerimi and Sergi 2022). As depicted in Fig. 2, artificial 
intelligence has the potential to enhance the efficiency and 
efficacy of these processes by identifying appropriate geo‑
logical formations for carbon storage (Jin et al. 2022), pre‑
dicting the behavior of carbon dioxide once it is introduced 
into the storage sites (Chinh Nguyen et al. 2022), optimiz‑
ing the injection process (Elsheikh et al. 2022), monitoring 
storage sites (Kishor and Chakraborty 2022), and devising 
new and innovative carbon sequestration methods (Gupta 
and Li 2022). Moreover, artificial intelligence can aid in 
accomplishing sustainability objectives and achieving car‑
bon neutrality by reducing greenhouse gas emissions and 
mitigating climate change (Jahanger et al. 2023; Sahil et al. 
2023). Therefore, one of the advantages of artificial intel‑
ligence technology in carbon sequestration and storage is its 
capacity to analyze vast amounts of geological and engineer‑
ing data to locate appropriate storage sites and optimize the 
injection process (Yao et al. 2023). Additionally, artificial 
intelligence can anticipate the behavior of carbon dioxide 
in storage sites and monitor the site to ensure the permanent 
trapping of the gas underground (Kushwaha et al. 2023). 
Another strength is its ability to develop new and innovative 
carbon storage methods, such as driving the development of 
promising materials for sustainable carbon dioxide manage‑
ment (Zhang et al. 2022).

Integrating artificial intelligence in carbon sequestration 
and storage encounters various impediments (Hasan et al. 
2022). Among them, the financial expenses required for 
implementation (Heo et al. 2022) and a lack of expertise 
in the field (Ahmad et al. 2022) pose significant obstacles. 
Moreover, ethical and regulatory concerns may arise in 
monitoring and managing carbon storage sites through the 
use of artificial intelligence (Swennenhuis et al. 2022), and 
careful attention must be given to ensure that the technology 
does not cause any detrimental environmental impacts or 
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unintended consequences (Delanoë et al. 2023). However, 
as technology advances and becomes more accessible in the 
future (Liu et al. 2022c), the usage of artificial intelligence in 
carbon sequestration and storage is anticipated to increase. 
Therefore, ensuring that artificial intelligence technology 
is implemented ethically and responsibly is crucial, aim‑
ing to achieve sustainability goals and carbon neutrality. 
Moreover, further research and development must address 

the challenges of using artificial intelligence in carbon 
sequestration and storage and capitalize on the technology's 
potential benefits.

To sum up, integrating artificial intelligence in carbon 
sequestration and storage can significantly augment the effi‑
cacy and potency of these processes, facilitate the attain‑
ment of climate objectives, and promote sustainable growth. 
This technology can be employed to discern appropriate 

Fig. 2   Carbon sequestration and storage utilizing artificial intelli‑
gence. Five distinct phases are depicted in the figure above for incor‑
porating artificial intelligence into carbon sequestration and storage. 
It also highlights artificial intelligence's critical role in achieving cli‑
mate goals and promoting sustainable development. The illustration 
depicts the use of artificial intelligence in the analysis of geological 
data to identify suitable formations for carbon storage and in predict‑

ing the behavior of carbon dioxide upon injection at storage sites. In 
addition, it demonstrates how artificial intelligence can improve the 
efficiency of the injection process to maximize carbon storage while 
ensuring the security of underground carbon dioxide sequestration 
through site monitoring. Moreover, artificial intelligence can acceler‑
ate the development of pioneering carbon storage techniques
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geological formations for carbon storage, anticipate the 
behavior of carbon dioxide, optimize the injection process, 
oversee storage sites, and generate fresh and inventive car‑
bon sequestration techniques. Nevertheless, the applica‑
tion of artificial intelligence in this realm also encounters 
obstacles such as financial expenditure, dearth of expertise, 
ethical and regulatory quandaries, and plausible adverse 
environmental effects.

Using artificial intelligence in weather 
forecasting

Severe weather occurrences such as tornadoes, hail, and 
thunderstorms can cause significant damage to infrastructure 
and human settlements, resulting in financial losses and pos‑
ing a severe threat to public safety. Improved observational 
and calculation techniques have contributed to a reduced risk 
of loss of life and damage from the effects of climate change. 
Despite a scientific consensus on the fundamental aspects of 
climate change, accurately predicting results remains chal‑
lenging due to the intricate nature of earth system models 
and the inherent uncertainty surrounding climate change 
(Bonan and Doney 2018). Artificial intelligence’s data pro‑
cessing and collection capabilities significantly improve 
the gap between digital model predictions and real situa‑
tions, achieving more accurate predictions of future results 
(McGovern et al. 2017).

The large amount of data provided by observation sat‑
ellites and the complexity of climate models have made 
artificial intelligence increasingly crucial in weather fore‑
casting. Artificial intelligence is widely used to search for 
all information and discover new climate models, thereby 
reducing prediction bias and improving accuracy (Jones 
2017). Gradually more professionals are paying attention to 
the potential of artificial intelligence in weather forecasting. 
Hsiang et al. (2017) predicted the effects of climate change 
on the economy in the USA using data from six economic 
sectors on short-term weather changes. Introducing artifi‑
cial intelligence will better assist relevant departments in 
modeling data and predicting the effects of weather change 
on the economy. In short, combining artificial intelligence 
and numerical climate simulation data can effectively fill 
the data gaps in observations, reducing uncertainty and bias 
in climate prediction (Kadow et al. 2020). Table 2 demon‑
strates the application of artificial intelligence in weather 
forecasting.

More precise meteorological models can be created by 
analyzing many historical and present weather data using 
machine learning algorithms. These models can help predict 
several climatic characteristics, such as temperature, pre‑
cipitation, and wind speed. By contrasting three models—
deep neural network, time convolution neural network, and 

short-term memory neural network—with support vector 
machine, random model, and empirical equation, Chen et al. 
(2020b) calculated daily evapotranspiration in the Northeast 
China Plain of China. Zhang et al. (2019a) found that distrib‑
uted lagged nonlinear models outperform cross-correlation 
functions in predicting variable selection and determining 
lag effects. In contrast, machine learning methods predict 
standardized precipitation evapotranspiration indices more 
accurately than nonlinear models using artificial neural 
networks.

The impact of solar activity on climate change, particu‑
larly concerning droughts and floods, is significant. To 
improve solar activity's early detection and warning capa‑
bilities, researchers such as Jiang et al. (2023) have turned 
to artificial intelligence. Specifically, they have employed 
three-dimensional recognition techniques to identify mete‑
orological and ecological drought events, followed by the 
extraction of propagating drought events using spatiotempo‑
ral overlap rules. Machine learning models and the C-vine 
copula are combined to compute the propagation prob‑
ability. Artificial intelligence-based solar energy forecast 
models were the subject of classification research by Wang 
et al. (2020). Pham et al. (2020) gathered the highest tem‑
perature, lowest temperature, wind speed, relative humidity, 
solar radiation, and other meteorological characteristics. The 
fuzzy reasoning system based on an adaptive network fore‑
casts rainfall using support vector machines, artificial neural 
networks, and particle swarm optimization.

The use of artificial intelligence contributes to reduc‑
ing forecast uncertainty and speeding up prediction execu‑
tion. Artificial intelligence can detect geographic variables 
complex for humans, establishing more accurate climate 
models. Mostajabi et al. (2019) used station-level air pres‑
sure, temperature, relative humidity, and temperature to 
construct a machine learning model to forecast the occur‑
rence of lightning. Convolutional neural networks were used 
by Duan et al. (2021) to propose a data-driven model that 
reconstructs radar reflectivity using deep learning and RR 
using Himawari-8 radiation data. Deep learning is used by 
Pullman et al. (2019) to identify infrared brightness tempera‑
ture and other hail-related parameters for hail detection. In a 
study published in 2021, Adikari et al. (2021) compared the 
predictive abilities of wavelet decomposition function, con‑
volutional neural network, short-term memory network, and 
adaptive neuro-fuzzy inference system in flood and drought.

Satellites can obtain massive amounts of land resource 
information at different periods through artificial intelli‑
gence to compare these data can improve the efficiency of 
spatial land planning and enhance the rationality and feasi‑
bility of planning schemes. López Santos et al. (2019) stud‑
ied the critical variables of artificial neural case studies in 
sustainable land management. They found through random 
abstraction of orchards that the yield of orchards depends 
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Table 2   Weather forecasting incorporating artificial intelligence

Using artificial intelligence, meteorological models can be developed for temperature fluctuations, drought, hail, and typhoons. Predicting and 
forewarning extreme weather conditions can aid in establishing adaptation and mitigation procedures to reduce the resulting damage. The appli‑
cation of artificial intelligence reduces the execution time of predictions and the uncertainty associated with them. As more data is analyzed, the 
accuracy of artificial intelligence in weather forecasting will increase

Regional scope Particular year Data time Prediction content Method References

The whole world 2019 1901–2016 Average temperature Using deep neural networks for top-
down climate prediction

Ise and Oba (2019)

The whole world 2019 1984–2017 El niño-southern oscillation Establishing a statistical prediction 
model using deep learning methods 
to predict el niño-southern oscillation 
with a lead time exceeding one and a 
half years

Ham et al. (2019)

The whole world 2020 2010–2019 Tropical instability wave Using a data-driven model based 
on deep learning to predict the 
spatiotemporal changes in sea level 
temperature related to unstable tropi‑
cal waves

Zheng et al. (2020)

Malaysia,
Terengganu

2021 1985–2019 Rainfall constructing and contrasting regression 
models using neural networks, deci‑
sion trees, Bayesian linear models, 
and decision forests to predict rainfall

Ridwan et al. (2021)

Seoul, South Korea 2018 1994–2015 Torrential rain Use machine learning with prediction 
performance higher than the regres‑
sion model to open the function 
of predicting rainstorm damage in 
advance

Choi et al. (2018)

Shaanxi, China 2020 1961–2016 Drought Compare the cross-correlation function 
with the distributed lag nonlinear 
model to determine the optimum 
prediction variable and the lag 
period. Create a distributed lag 
nonlinear model, an artificial neural 
network model, and machine learning 
software to estimate the standardized 
water evaporation index

Zhang et al. (2019a)

Switzerland 2019 2006–2017 Lightning A four-parameter model was created 
based on four frequently used surface 
meteorological variables—station-
level air pressure, temperature, rela‑
tive humidity, and wind speed. Use 
data validation from the lightning 
location system to confirm the gener‑
ated alert

Mostajabi et al. (2019)

Taiwan, China 2020 1965–2019 Typhoon Digitize the path of typhoons before 
and after landfall using artificial 
intelligence methods and combine 
it with hydrological and geographic 
features for prediction

Chang et al. (2020)

Poland 2019 2008–2017 Hail Building a machine learning model 
driven by radar reflectivity, remote 
sensing data, and environmental vari‑
ables to predict hail

Czernecki et al. (2019)

Shaanxi, China 2023 1982–2020 Drought Employing three-dimensional identifi‑
cation approaches to recognize bio‑
logical and meteorological drought 
events, extracting the propagating 
drought events based on certain spati‑
otemporal overlap rules, and comput‑
ing the propagation probability by 
fusing machine learning models and 
C-vine copula

Jiang et al. (2023); 
Pham et al. (2020)
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on the physical planting conditions, the ability to utilize cli‑
mate, and the level of understanding of crops of fruit farm‑
ers. Using the cellular automata model of an artificial neural 
network, Saputra and Lee (2019) selected the height, slope, 
aspect, distance, and soil type as parameters to simulate and 
predict the change in land use and land cover in Sumatra.

Artificial intelligence is more intelligent and automated in 
land classification, allowing for global zoning and decision-
making. Besides, artificial intelligence has improved soil 
functionality and land use sustainability. AlDousari et al. 
(2022) employed support vector machines and artificial 
neural networks to assess and forecast changes in Kuwait’s 
land usage and cover. Combining a linear regression tech‑
nique and an artificial neural network, Ebrahimi et al. (2019) 
assessed various subsurface soil parameters from diverse 
land use efficiencies and projected soil respiration using 
detailed soil data. Nguyen et al. (2021) investigated a tech‑
nique for openly accessing existing data and Sentinel-2 sat‑
ellite photos through machine learning algorithms. Then 
they utilized land use maps to examine how changes in land 
use affect sustainable development using local and global 
indicators.

In summary, weather forecasting is a data issue. The accu‑
racy of artificial intelligence in weather forecasting will con‑
tinue to improve as the amount of analyzed data increases. 
The increase in accuracy and timeliness of weather forecast‑
ing can help reduce the occurrence of weather disasters and 
improve land use efficiency.

Potential of artificial intelligence‑assisted 
renewable energy forecasting and grid 
management

The expansion of the global population and economy has 
led to an increase in energy use. Although with techno‑
logical advances and energy efficiency legislation, the effi‑
ciency of energy end-use services has gradually increased. 
However, this improvement is not always enough to offset 
increased demand for energy services, such as commodity 
production and consumption. Farghali et al. (2023) men‑
tioned that global energy-related carbon emissions reached 
alarming levels in 2021 and rebounded to the second-highest 
annual growth rate in history. Chatterjee and Dethlefs (2022) 
applied that traditional energy sources affected the environ‑
ment, leading to difficulties such as acid rain, greenhouse 
effects, and ozone depletion. Sustainable green energy, such 
as wind and solar, can replace traditional energy to reduce 
carbon emissions. As a result, the share of renewable energy 
in global power generation jumped from 27% in 2019 to 
29% in 2020. Renewable energy generation grow by more 
than 8% in 2021, the fastest year-on-year increase since the 
1970s. Solar and wind contribute two-thirds of the growth 

in renewable energy. Hannan et al. (2021) found that overall 
renewable energy production should increase the share of 
renewable energy in electricity generation structures to a 
record 30% in 2021.

There are many challenges to renewable energy produc‑
tion, such as land and human resource waste due to inap‑
propriate site selection, security risks due to poor layout, 
and the intermittent impact of renewable energy production 
on the grid. Intermittent production is the primary issue of 
renewable energy. The time and extent of electricity gen‑
erated by commonly used renewable sources are not con‑
trolled. The power generated by tradition can be manually 
adjusted by the power required for the load, while the output 
power of green energy is uncontrollable. The power gener‑
ated by renewable energy sources usually depends on solar 
radiation, wind, and other factors. Alassery et al. (2022) 
applied the difference between the output power of green 
energy and the power required for the load can lead to power 
outages or excessive energy output, resulting in a waste of 
energy.

Artificial intelligence can help promote the broader adop‑
tion of renewable energy worldwide. Artificial intelligence is 
a powerful tool for solving the complexity of global energy 
transformation, improving system efficiency, and reducing 
costs. Bahaloo et al. (2022) mentioned that the digitization 
of oil and gas was well documented, with almost all energy 
majors adopting artificial intelligence, machine learning, and 
other innovative technologies to improve operations. Arti‑
ficial intelligence can also be used in wind, solar, and other 
green energy projects to increase efficiency through greater 
automation. Liu et al. (2022c) applied that as energy compa‑
nies looked to digitize operations to a greater extent, artifi‑
cial intelligence play a leading role in energy transformation 
in the future. Because solar and wind have high randomness, 
low predictability, and intermittent characteristics, using 
intelligent technology for renewable energy scheduling, 
management, and optimization can stabilize the grid power 
and ensure the grid supply security, as shown in Fig. 3.

In the early planning phase, artificial intelligence can bet‑
ter generate renewable energy locally by planning and siting. 
Artificial intelligence uses geographic information systems 
to select suitable places to produce renewable energy. Arti‑
ficial intelligence determines the most convenient address 
based on a comprehensive topography analysis, climate, land 
use, and other factors. In site selection, there is no need for 
renewable energy leaders to visit the local area. Artificial 
intelligence can assist investors in determining the risk level 
of new green energy projects, predicting the energy produc‑
tion of various renewable energy sources under different 
conditions, and anticipating energy demand in different loca‑
tions at different times of the day through neural modeling 
analysis. An et al. (2023) demonstrated the use of artificial 
intelligence in determining the optimal location for a solar 
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farm based on the time and intensity of the sun, assisting 
operators in site layout planning, and controlling solar panels 
to rotate toward the sun throughout the day for maximum 
sunlight capture when generating electricity through solar 
energy.

Artificial intelligence minimizes operational costs by 
identifying faults at an early stage. Shin et al. (2021) applied 
that the impact of a failure in the renewable energy indus‑
try may be disproportionate compared to other machinery 
industries. For example, when a wind power plant's main 
components are damaged late, significant elements must 
be manufactured and transported. High requirements for 
customization and complicated installation will make the 
wind turbine shut down for several months, so in addition 
to maintenance costs, there will be a considerable loss of 
revenue. Bode et al. (2020) mentioned that artificial intel‑
ligence-assisted methods had attracted attention. Artificial 
intelligence uses neural network learning methods to input 
historical and real-time data into artificial intelligence 
models for comparison. Heo et al. (2022) mentioned that 
if data is abnormal, artificial intelligence will provide diag‑
nostic advice to the human inspector to help the artificial 

intelligence make the final decision. This help is expected to 
lead to better predictive maintenance by overcoming several 
limitations of manual inspection, such as the fatigue and 
variability of inspectors.

Artificial intelligence’s prediction and management of 
power characteristics can often be divided into power gen‑
eration and demand forecasting. Bendaoud et al. (2022) 
stated that when people need power generation forecasting, 
artificial intelligence is often used to combine multiple mete‑
orological models to improve the accuracy of sustainable 
energy forecasts. For example, the Thomas Institute, in con‑
junction with the National Renewable Energy Laboratory of 
the USA, has developed a model that includes a variety of 
weather parameters and imports a large amount of historical 
data for artificial intelligence learning. Boza and Evgeniou 
(2021) compared with a meteorological model with only one 
parameter, the prediction accuracy of solar energy is more 
than 30% higher. The UK's national grid power system oper‑
ators also use artificial intelligence to improve renewable 
generation forecasts. The carrier provides a system based 
on about 80 input variables and improved solar forecasting 
by 33%. Wind power can also create models for learning 

Fig. 3   Technology's role in managing renewable energy sources and 
the power grid using artificial intelligence. This figure shows how 
artificial intelligence connects the power grid, renewable energy col‑
lectors, and power distribution cabinets used by residents. The figure 
shows that artificial intelligence can timely adjust and control each 
part’s input and output power by controlling the smart meter. This 

figure illustrates how artificial intelligence is used in today's energy 
networks. In addition, this figure shows how artificial intelligence 
can better ensure normal electricity use by using smart meters to take 
information to control the charging and discharging of electrical stor‑
age devices
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the information used in weather forecasting. This model 
increases the value of wind power and reduces the risk and 
loss of machines from storms through intelligent regulation.

As with power generation forecasting, demand forecasting 
is essential to balance the grid. Wang et al. (2019) mentioned 
that the global deployment of smart meters has significantly 
increased available data related to power consumption, pro‑
viding a database for artificial intelligence to build predictive 
models. Artificial intelligence makes an overall linear and 
nonlinear energy demand prediction model through artificial 
neural networks. General linear models are more effective 
than nonlinear energy demand forecasting models for large, 
geographically divided environments. Saxena et al. (2019) 
mentioned that nonlinear energy demand forecasting models 
perform better in smart cities, especially in complex environ‑
ments with increasingly small geographic/market-scale fore‑
casts. In the study, the nonlinear energy demand prediction 
model accurately predicted 40 days of 57 peak load days at a 
university in the USA, with predictions of up to one percent 
accuracy, and estimated that a university in the USA could 
save about 80,000 dollars over a 1-year test period. It also 
demonstrates the potential of artificial intelligence to deliver 
economic benefits in demand forecasting.

Guo et al. (2023) analyzed that grid frequencies play a 
central role in grid control because they reflect the power 
generation and demand balance. The excess power supply 
can increase frequencies, while shortages lead to lower fre‑
quencies. Large frequency deviations correspond to large 
power imbalances, threatening system stability and lead‑
ing to large-scale power outages. Artificial intelligence 
system significantly affects the temporary problem of the 
intelligent grid, combined with information, digitization, 
innovative operation mechanism, operation mode, and real‑
izing practical analysis. Nawaz et al. (2021) mentioned that 
artificial intelligence relies on the analogy and learning of 
many training samples to form the knowledge of grid stabil‑
ity evaluation to make online discrimination of grid safety 
level. People analyzed the complex mechanism of the power 
system involves many factors affecting electromagnetic and 
electromechanical transient processes, reaching hundreds 
of nodes in the test system alone. Artificial intelligence 
has advantages over traditional machine learning in solv‑
ing complex problems with multiple factors and unknown 
mechanisms.

Kruse et al. (2021) stated that artificial intelligence helps 
people generate renewable energy and reduce carbon emis‑
sions, but it still has significant challenges as a new tech‑
nology. To efficiently manage new sample data that is con‑
stantly generated in the power system’s operation, strengthen 
the power system's stability analysis based on artificial 
intelligence. There is a need for timely disaggregation of 
the latest data. It takes much time and can cause learning 
to lag behind data updates. Artificial intelligence requires 

more historical data than traditional time domain simulation 
and reverse trajectory techniques. Xu and Yin (2015) built 
a learning model that selects/extracts critical features in the 
grid, reduces spatial input dimensions, eliminates redundant 
components, and improves predictive efficiency.

In conclusion, artificial intelligence's potential for renew‑
able energy has been proved, and artificial intelligence helps 
people to locate renewable energy sources and prevent facili‑
ties from failing. Because of the uncontrollability of renew‑
able energy production, too much electricity will be wasted, 
and too little electricity will affect people's regular use. Arti‑
ficial intelligence coordinates grids by predicting renewable 
energy production to reduce energy waste. The initiative of 
artificial intelligence to help power grid operators has been 
recognized in many regions and has created some resource 
benefits.

Feasibility of artificial intelligence 
in energy‑efficient building design 
and retrofitting

Integrating artificial intelligence in building energy-efficient 
design and retrofitting is a rapidly developing field with tre‑
mendous promise for reducing energy consumption and car‑
bon emissions in the built environment (Moraliyage et al. 
2022; Tian et al. 2021). By leveraging the power of advanced 
algorithms, artificial intelligence can analyze copious 
amounts of data, including energy usage patterns, building 
occupancy, weather conditions, and other relevant factors 
that impact building energy consumption (Kim et al. 2020). 
Subsequently, this analysis can inform the development of 
predictive models that optimize building performance by 
adjusting heating and cooling systems, lighting, and other 
building systems, thereby minimizing energy waste (Chen 
et al. 2023b; Dong et al. 2021). Furthermore, artificial intel‑
ligence can also be utilized to design new buildings that 
are inherently more energy-efficient by leveraging advanced 
modeling and simulation tools (Baduge et al. 2022). By opti‑
mizing building orientation, window placement, insulation, 
and other design elements, architects and engineers can cre‑
ate energy-efficient and comfortable buildings for occupants 
(Debrah et al. 2022).

In addition to optimizing new buildings, artificial intel‑
ligence can be leveraged to retrofit existing buildings and 
improve their energy efficiency (Konhäuser et al. 2022). 
Artificial intelligence-powered retrofitting involves ana‑
lyzing building data and identifying areas where energy 
efficiency can be improved, such as upgrading insulation, 
installing efficient lighting, or replacing outdated heat‑
ing, ventilation, and air conditioning systems (Chan et al. 
2022). Therefore, artificial intelligence-powered energy-
efficient building design and retrofitting have the potential 
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to significantly reduce energy consumption and carbon emis‑
sions in the built environment. Although there are challenges 
to implementing these technologies, such as the need for 
accurate data and the cost of implementing new systems, the 
benefits are evident, making this a promising area for future 
research and development.

The integration of artificial intelligence in energy-effi‑
cient building design and retrofitting has the potential to 
revolutionize the construction and operation of buildings, 
leading to substantial reductions in energy consumption and 
greenhouse gas emissions (Zhang et al. 2023). By analyz‑
ing data on occupancy, weather conditions, and other fac‑
tors, buildings can be optimized to minimize energy waste 
while ensuring occupant comfort, resulting in significant 
cost savings for building owners and operators and a more 
sustainable built environment. Figure 4 demonstrates how 

artificial intelligence can be utilized to analyze massive 
amounts of data and optimize various aspects of buildings, 
including heating, ventilation, air conditioning, lighting 
control, building envelope optimization, renewable energy 
integration, energy modeling, and predictive maintenance. 
For instance, artificial intelligence algorithms can adjust 
heating, ventilation, air conditioning, and lighting systems 
to reduce energy waste based on data analysis of occupancy 
rates and weather conditions (Chen et al. 2022a). Addition‑
ally, artificial intelligence technology can assist in designing 
building maintenance structures by analyzing data on build‑
ing orientation and weather conditions, among other factors 
(Huseien and Shah 2022). Artificial intelligence technology 
can also aid in integrating renewable energy sources into 
buildings to reduce reliance on non-renewable resources (Al-
Othman et al. 2022). Moreover, by detecting maintenance 

Fig. 4   Designing and retrofitting energy-efficient buildings utiliz‑
ing artificial intelligence technology. The illustration shows the use 
of artificial intelligence technologies to increase the efficiency of 
heating, ventilation, and air conditioning  systems, regulate lighting, 
optimize building envelopes, incorporate renewable energy sources, 
simulate energy consumption, and predict maintenance needs within 

buildings. The figure also effectively illustrates the potential for arti‑
ficial intelligence technology to offer pragmatic optimization solu‑
tions by analyzing building data, reducing energy consumption, and 
improving occupant comfort. In addition, the figure  illustrates the 
potential for artificial intelligence technology to predict building sys‑
tem maintenance requirements
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needs before the building's operational systems fail, artificial 
intelligence technology can prevent downtime and ensure 
the continuous operation of buildings (Javaid et al. 2022).

Moreover, studies indicate that utilizing artificial intel‑
ligence in energy-efficient building design and retrofitting 
offers many advantages, including rapidly and precisely ana‑
lyzing vast quantities of data (Ma et al. 2023). This enables 
artificial intelligence algorithms to identify energy optimi‑
zation opportunities that might elude human analysts. For 
instance, artificial intelligence can pinpoint energy usage 
patterns imperceptible to the human eye, enabling building 
operators to make modifications that can result in significant 
energy savings (Mhlanga 2023). In addition, artificial intel‑
ligence's capacity to generate more accurate energy models 
of buildings can inform decisions regarding design and ret‑
rofitting (Saheb et al. 2022). Another benefit of incorporat‑
ing artificial intelligence in energy-efficient building design 
and retrofitting is the ability to continuously monitor and 
adjust building systems in real time (Felius et al. 2020). This 
can result in enhanced energy performance over the build‑
ing's lifespan. Artificial intelligence algorithms can tweak 
building systems to adapt to occupancy patterns, weather 
conditions, and other factors. It also allows for predictive 
maintenance of building systems, mitigating downtime and 
preventing energy waste caused by poorly functioning sys‑
tems (Lee et al. 2019).

To conclude, the section mentioned above highlights that 
using artificial intelligence-powered energy-efficient build‑
ing design and retrofitting presents a tremendous opportu‑
nity for mitigating energy consumption and carbon emis‑
sions in the built environment. Using artificial intelligence 
algorithms to optimize building systems and design, build‑
ings can be more energy-efficient while ensuring occupants' 
comfort. The continued research and development in this 
domain are expected to give rise to novel and pioneering 
applications, further amplifying the potential for energy con‑
servation and sustainability in the built environment.

Role of artificial intelligence in optimizing 
transportation systems for reducing 
greenhouse gas emissions

The transport sector contributes to greenhouse gas emis‑
sions, constituting almost one-third of worldwide emissions 
(Solaymani 2019). As the globe confronts climate change 
challenges, decreasing transportation emissions has become 
a top priority (Li and Yu 2019). Using artificial intelligence 
to enhance transportation systems and diminish carbon 
footprint presents a promising solution (Fatemidokht et al. 
2021). Artificial intelligence can revamp transportation sys‑
tems by refining routes, managing fleets, developing self-
governing vehicles, optimizing public transit, and regulating 

demand (Abduljabbar et al. 2019). Using extensive data on 
traffic patterns, passenger demand, and weather conditions, 
artificial intelligence algorithms can identify opportunities 
to curtail emissions and augment efficiency in transporta‑
tion systems. This can result in substantial cost savings, as 
well as a decline in greenhouse gas emissions and a more 
sustainable transportation sector. Hence, Fig. 5 displays the 
various ways in which artificial intelligence can be employed 
to optimize transportation systems and decrease their carbon 
footprint, along with the potential benefits and challenges of 
implementing these solutions.

Artificial intelligence technology is extensively utilized 
in transport systems. As per Fig. 5, artificial intelligence can 
be applied to refine transportation routes based on various 
factors, such as traffic patterns, road conditions, and weather 
(Chavhan et al. 2020). This can lead to reduced travel times, 
improved fuel efficiency, and reduced emissions. Further‑
more, artificial intelligence can also be employed to manage 
vehicle fleets more efficiently, which includes optimizing 
maintenance schedules and fueling (Alexandru et al. 2022). 
Using predictive analytics to anticipate maintenance needs 
and plan refueling stops, transportation systems can mini‑
mize downtime and lessen fuel consumption. Developing 
self-governing vehicles presents the potential to significantly 
reduce emissions by refining fuel efficiency and decreasing 
traffic congestion (Tyagi and Aswathy 2021). Artificial intel‑
ligence algorithms can be utilized to control autonomous 
vehicles, refining their performance and decreasing energy 
consumption.

Furthermore, artificial intelligence can also be utilized 
to refine public transit systems, which includes scheduling 
and route planning (Nikitas et al. 2020). By utilizing data on 
passenger demand and traffic patterns, transit systems can 
refine efficiency and reduce emissions by diminishing empty 
buses or trains and optimizing routes. Ultimately, artificial 
intelligence can also be utilized in public transit systems, 
including incentivizing users to transition to lower-emission 
modes of transportation, such as public transit or electric 
vehicles (Olayode et al. 2020). Using data on user behav‑
ior and preferences, transportation systems can promote the 
adoption of more sustainable transportation modes.

Despite the potential benefits of artificial intelligence 
technologies in optimizing transport systems to reduce car‑
bon emissions and advance early carbon neutrality in the 
transport industry, some challenges are still associated with 
these technologies. The utilization of artificial intelligence 
technologies in transportation systems hinges on the aggre‑
gation and interpretation of vast amounts of data, includ‑
ing personal data about users. Ensuring the confidentiality 
and security of this data is crucial to establish trust in these 
systems and forestall any potential misuse or exploitation. 
Moreover, implementing artificial intelligence technologies 
necessitates considerable investment in infrastructure and 
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technology, including sensors, cameras, and data processing 
capabilities. This can present a significant obstacle, primar‑
ily for smaller transportation systems or those in developing 
countries (Abduljabbar et al. 2019).

Furthermore, with the growing prevalence of artificial 
intelligence technologies in transportation systems, a press‑
ing need arises for clear and effective governance and regu‑
lation to ensure ethical and responsible use. This involves 
addressing critical issues such as determining liability for 
accidents involving autonomous vehicles and mitigating the 
exacerbation of existing inequalities or biases. Additionally, 
the potential for autonomous vehicles and other artificial 
intelligence-powered transportation technologies to displace 
many workers in trucking and delivery must be acknowl‑
edged. A just transition for affected workers should be a top 
priority. Finally, the acceptance and adoption of artificial 
intelligence-powered transportation technologies hinge on 
various factors, including cultural attitudes, user preferences, 
and trust in these systems. Thus, developing these technolo‑
gies should be user-centric and involve consistent consulta‑
tion with users to ensure their success (Hahn et al. 2021).

This section elaborates on how artificial intelligence 
algorithms can be utilized to enhance transportation sys‑
tems, such as optimizing transportation routes, managing 
vehicle fleets, controlling autonomous vehicles, optimizing 
public transit systems, and managing the demand for trans‑
portation services. Nonetheless, implementing these tech‑
nologies necessitates substantial investment in infrastructure 
and technology and clear governance and regulation while 

ensuring data privacy and security. Tackling these critical 
issues ensures that artificial intelligence-powered transpor‑
tation technologies are developed and deployed responsibly 
and ethically.

Using artificial intelligence for precision 
agriculture to reduce fertilizer and chemical 
use emissions

As demand for food production steadily expands, chemical 
treatments (pesticides) are widely used to increase crop 
market penetration, thus significantly impacting pollina‑
tors and the earth's environment. Precision farming uses 
cutting-edge sensors for predictive analytics to gather 
real-time information on soil, crop maturity, air quality, 
weather, equipment and labor prices, and availability to 
increase agricultural yields and improve decision-making 
(Raj et al. 2021). Precision agriculture aims to increase 
agricultural output and minimize environmental effects 
(Das et al. 2018). It is making modern agriculture more 
profitable and sustainable by applying artificial intelli‑
gence (Ampatzidis et al. 2020; Wei et al. 2020). Preci‑
sion agriculture benefits from artificial intelligence, which 
identifies pests, detect diseases, predicts yields, and plans 
fertilizer and pesticide use. The technology enables mod‑
els incorporating data inputs to measure farm organization 
and directly impact efficiency, resulting in improved out‑
comes (Bacco et al. 2018; Reddy et al. 2020). Advances 

Fig. 5   Importance of artificial intelligence in reducing greenhouse 
gas emissions by optimizing transportation systems. The illustra‑
tion depicts the application of artificial intelligence technology to 
improve transportation systems and reduce carbon emissions. The 
statement emphasizes the potential for artificial intelligence to opti‑
mize transportation routes based on various factors. Furthermore, it 

demonstrates the capability of artificial intelligence to improve fleet 
management efficiency. In addition, the diagram depicts the potential 
application of artificial intelligence to the regulation of autonomous 
vehicles. Ultimately, the diagram demonstrates that artificial intelli‑
gence can potentially optimize public transportation systems and con‑
trol transportation service demand. CO2 refers to carbon dioxide
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in computer vision, machine learning, and deep learning 
technologies may be used to identify crop illnesses from 
various current crop diseases accurately, quickly, and more 
swiftly. Robotics and artificial intelligence are developing 
cognitive capacities similar to those of humans, increasing 
productivity and enhancing and amplifying human poten‑
tial (Barile et al. 2019).

Herbicides or other chemical residues are left on plant 
products due to chemical spray transfer, often when the 
wind blows tiny droplets of spray solution to nearby crops 
or fields (Creech et al. 2015). The use of unneeded herbi‑
cide applications to redundant regions can result from preci‑
sion spraying technology, which can drastically reduce the 
quantity of herbicide required. Applying herbicides where 
weeds are present might lessen the environmental impact 
while lowering the risk of expense, crop damage, and exces‑
sive chemical residues (Balafoutis et al. 2017). Applications 
for agricultural remote sensing are increasingly using deep 
learning and convolutional neural networks (Kussul et al. 
2017). According to Swaminathan et al. (2023), robots that 
monitor and spray weeds using computer vision and artifi‑
cial intelligence might eliminate 80% of the chemicals now 
sprayed on crops and lower the price of herbicides by 90%. 
A fertilizer application model is used in precision fertiliza‑
tion to calculate the necessary fertilizer input and apply ferti‑
lizer using a variable rate applicator after checking the soil’s 
nutrient levels and segmenting the field into a grid (Elbeltagi 
et al. 2022). Precision fertilizer application can minimize 
fertilizer use, increase crop yields, balance soil nutrients, 
and reduce atmospheric emissions. Table 3 demonstrates the 
use of artificial intelligence technology to improve the use of 
fertilizers and pesticides in precision agriculture.

Using genome analysis and editing techniques, precision 
agriculture and artificial intelligence technologies may gen‑
erate successful crops that are fit for the land and maximize 
plant production (Joseph et al. 2021). Lessening the effect of 
chemicals on the soil will help minimize the usage of chemi‑
cal fertilizers in agriculture and make farming more ecologi‑
cally friendly. In Hafizabad and Sheikhupura districts, Elahi 
et al. (2019a) estimated target values of agrochemicals used 
on rice farms by maintaining rice yields at current levels and 
found that 52.6% of pesticide and 43.6% of pure nitrogen 
fertilizer inputs could be reduced to have a favorable and 
significant impact. Putra et al. (2020) modeled the amount 
of nutrient data stored and released by fertilizer application 
to simulate the availability and loss of oil palm nutrients so 
that the nutrient balance can be effectively determined to 
be maintained by fertilizer application to a specific site. Du 
et al. (2021) developed a water and fertilizer control system 
based on soil conductivity thresholds to improve the utiliza‑
tion of water and fertilizer for cotton cultivation from soil 
conductivity and moisture content, resulting in a 10.89% 
reduction.

Chen et al. (2020a) enhanced image recognition of pests 
by using the “You Only Look Once” neural algorithm and 
acquired images using an uncrewed aerial vehicle with a 
90% recognition rate. High-resolution pest images are 
acquired by stabilized flight unmanned aerial vehicles to 
solve the disturbance of leaves by propeller wind. Enhance 
the speed of picture identification to locate pests and dis‑
eases more effectively and use fewer pesticides on farms. 
The smart sprayer is a piece of technology that combines 
weed recognition, a mapping system, and a unique rapid and 
precise spraying mechanism. It also uses a newly created 
algorithm to generate visual maps. Partel et al. (2019) used 
an embedded graphics processing unit in a smart sprayer 
for precision weed control of artificial and amaranth weeds 
with 59–71% accuracy, which can significantly reduce pes‑
ticide costs, crop damage, and the risk of excessive herbi‑
cide residues, and potentially reduce environmental impacts. 
Facchinetti et al. (2021) used a “Rover” sprayer vehicle to 
accurately detect color differences between salad and ground 
and reduce pesticide spraying by 55%. The I2PDM system 
is composed of an intelligent integrated pest management 
wireless sensor network that collects images, pest num‑
bers, and species through sensor nodes and stores them in 
a database for analysis, thus generating models that can be 
visually translated into numerical information (Rustia et al. 
2020). The technique was applied to a tomato field, and the 
pesticide dose was reduced from 235 to 204 L/time (16%), 
indicating that insecticide spraying effectively reduced pests 
(Rustia et al. 2022).

In conclusion, artificial intelligence provides systems that 
are proved to be scalable, stable, and accurate to provide 
real-time data for precision agriculture. Artificial intelli‑
gence-supported precision agriculture eliminates random‑
ness, provides precise and required amounts of fertilizers 
and pesticides, and can increase food productivity by utiliz‑
ing the limited available arable land for farming.

Use of artificial intelligence in optimizing 
industrial processes for more 
energy‑efficient and lower‑emission 
operations

In recent years, various companies have also recognized the 
idea of energy conservation and emission reduction effi‑
ciency by developing a green energy strategy. In the pro‑
cess of energy transformation, many industrial enterprises 
are in the process of developing many challenges. However, 
the use of artificial intelligence can provide new ideas for 
the transformation of these companies. Lei et al. (2023) 
mentioned that traditional enterprises had used many excel‑
lent management methods, such as comprehensive quality 
management, ISO 9000 quality management system, and 
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management excellence model. These management methods 
are usually analyzed from a macro perspective. Integrating 
artificial intelligence into traditional industries facilitates a 
digital transformation that allows for micro-level monitoring 
of industrial processes. Artificial intelligence can optimize 
energy usage and reduce emissions by analyzing data and 
feedback mechanisms, leading to greater energy conserva‑
tion and efficiency. This section will analyze the application 
of artificial intelligence in industrial processes.

Artificial intelligence optimizing industrial 
processes preconstruction

Artificial intelligence optimizes preindustrial process design 
by managing product design and industrial process layout. 
Neural networks are computational algorithms that simulate 
human brain analysis and processing of information through 
artificial intelligence. Artificial intelligence can use neural 
network learning to create process plans using geometric 
data, decision logic, and algorithms. It incorporates manu‑
facturing process plans for new goods based on part forms, 
materials, and other factors. The system's primary input is a 
description of the geometry. Leo Kumar (2017) mentioned 
that designers could quickly get input from it, which closely 
coordinates with product modeling activities. Artificial intel‑
ligence can increase the space usage of the model by opti‑
mizing the model, thus saving more material-saving prod‑
ucts, increasing industrial process efficiency, and reducing 
emissions from the point of view of the product's use of 
materials. Artificial intelligence optimizes industrial process 
layouts to save energy and reduce scrap rates. Manufactur‑
ing has seen success with machine learning, automation and 
robotics, machine vision, data mining, big data, and expert 
systems. Sarker (2022) stated that artificial intelligence tech‑
nology could understand the operation of each process step 
to identify the problem, timely adjustment, and optimization. 
The same artificial intelligence can help planners determine 
the allocation of human resources earlier so that projects can 
proceed earlier.

In conclusion, artificial intelligence optimizes the upfront 
layout of industrial processes with a more rational product 
design and a more appropriate division of labor. Artificial 
intelligence saves energy by providing granular data to help 
people make more rational decisions in the early design 
stages.

Optimizing mid‑stage industrial process 
construction with artificial intelligence

The most important aid of artificial intelligence in industrial 
processes is to monitor control and detect equipment losses 
in advance. Collecting data using hardware sensors to moni‑
tor industrial production processes is traditional. However, 

there are some challenges in the use of hardware sensors. 
For example, temperature, humidity in different working 
environments, cumbersome personalization requirements, 
slow measurement data transfer, and higher cost of hard‑
ware sensors all impact measurement results. Perera et al. 
(2023) applied traditionally. This issue has been resolved by 
applying straightforward fixes like removing data points with 
missing values or substituting them with the average values 
of the variables they influence. However, these technologies 
are not regarded as the ideal answer due to the possibility 
of affecting model performance. Xie et al. (2020) reported 
autoencoder is a deep neural network that can extract rel‑
evant information features and reconstruct data in several 
sets. Suppose the potential variable is a random variable, 
and its probabilistic variant is called a variational autoen‑
coder by building a new soft sensor framework. Data loss 
due to sensor failure in industrial processes can also work 
well with neural network learning. The most recent artificial 
intelligence-based algorithms allow soft sensors to increase 
computational efficiency and forecast accuracy by resolving 
the drawbacks of conventional modeling methods compared 
to classical statistics and machine learning-based models. 
This model enables better monitoring and control of the 
process, lowering pollutants and material and energy waste. 
Perera et al. (2023) mentioned that industrial processes use 
soft sensors to monitor operations. However, they typically 
have the following four issues: missing data from tiny data‑
sets, dimensionality reduction, process adaptation, and fea‑
ture extraction from time and space. Specialists from various 
fields use artificial intelligence to solve the issues in Table 4.

Artificial intelligence also controls various catalysts in 
industrial processes and associated toxic gas emissions. Sun 
et al. (2019a) mentioned that refineries could continuously 
monitor and keep emissions under the required limits thanks 
to using soft sensors, which directly impact environmental 
sustainability. Fernandez de Canete et al. (2021) reported 
that soft sensors could be created for the pulp and paper 
sector to detect levels of bleached wastewater containing 
hazardous chemicals. The pulp and paper sector uses soft 
sensors to anticipate chemical oxygen demand for financial 
gain and material efficiency, enabling influential paper wash‑
ing with fewer chemicals.

Artificial intelligence helps industrial processes perform 
complex operations. The assembly industry is the process 
by which mechanical parts or components are connected 
according to the technical requirements of the design, com‑
bining mechanical parts or components into machines. 
The assembly industry can effectively reduce some links 
in industrial processes and speed up the use of raw materi‑
als by using assembly-style preconditioners that can effec‑
tively reduce manual errors. Cohen et  al. (2019) stated 
that precomponent production requires significant data 
analysis. In modeling, if component data problems produce 
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waste, reducing the enterprise’s productivity can also cause 
resource waste. Cioffi et al. (2020) mentioned that one is for 
intelligent manufacturing. This fully integrated collaborative 
production system reacts in real time to changing condi‑
tions in the factory, supply network, and customer needs. 
The other solution is lean manufacturing, which aims to 
reduce costs while maximizing efficiency. A transforma‑
tional “cyber-physical production system” converts data 
from connected systems into predetermined and required 
operations for elastic performance. The use of digital twin 
technologies supports the product lifecycle. Both techniques 
may guarantee the preconditioners' precision, enhancing effi‑
ciency and lowering emissions.

To summarize, in the middle of an industrial process, arti‑
ficial intelligence assists soft sensors in monitoring pipeline 
data. Although there are some problems with soft sensors, 
artificial intelligence minimizes the impact of problems in 
soft sensors by building models. More accurate data can help 
people control the use of chemicals and reduce emissions.

Artificial intelligence optimizes industry processes 
in the late stage

Artificial intelligence optimization for the later stages of 
industrial processes is mainly optimized for the process. 
After some time in industrial processes, managers use arti‑
ficial intelligence to address inappropriate and inefficient 
resource allocation. Dwivedi et al. (2021) reported that arti‑
ficial intelligence improves efficiency by combining manage‑
ment methods. For example, the combination of artificial 
intelligence and lean production, through which each pro‑
duction link calculates the efficiency of the link and then 
reduces the waste of related raw materials due to idle, can 
also help the management of the enterprise to optimize the 
production line. The primary use of artificial intelligence 
here is as a tool for data analysis and, thus, for interpret‑
ing or evaluating results to improve energy and resource 
management.

Flexible manufacturing on mature production lines can 
benefit from using artificial intelligence. Resilient manu‑
facturing involves adapting to sudden changes in the pro‑
duction process to ensure continuous production activities. 
As needed, intelligent optimization and field conditions are 
utilized to modify the control system. Additionally, artificial 
intelligence can upload information from related devices to 
the cloud, allowing for remote manipulation of production 
processes even when relevant managers are not present on-
site. This feature enhances the agility and resilience of the 
production process. Oruganti et al. (2023) mentioned that 
this model helps the assembly line in industrial processes 
cope with accidents while reducing pressure on managers.

In this section, artificial intelligence can optimize con‑
vection lines in mature industrial processes, reducing risks 

and scrap rates. It can also provide information support for 
industrial processes by uploading relevant pipeline informa‑
tion to mobile devices, enabling remote access to essential 
data.

In summary, artificial intelligence improves product 
design through data modeling and enhances the monitoring 
of industrial processes through soft sensors, thereby reduc‑
ing scrap rates. Additionally, in mature industrial systems, 
artificial intelligence can optimize assembly lines, increase 
productivity by eliminating unnecessary processing steps, 
assist managers in flexible production, and reduce the burden 
on managers. Ultimately, artificial intelligence helps reduce 
the impact of labor on industrial processes and improves 
overall efficiency.

Artificial intelligence for natural resource 
management: reducing deforestation 
and emissions

In recent years, the difficulties and potentials regarding natu‑
ral resource management (especially land, water, and forests) 
have been a hot topic of exploration worldwide. Humans are 
losing valuable ecosystem services and critical habitats that 
sustain biodiversity through the loss of forests, so artificial 
intelligence models are thought to reduce the risk of natural 
resource loss (Buchanan et al. 2008; Newman et al. 2014). 
In order to forecast incremental deforestation and deforesta‑
tion rates in the Amazon rainforest, Dominguez et al. (2022) 
employed a dense neural network to model spatially static 
data and an extended short-term memory network to model 
temporal data on deforestation. The rate of future forest loss 
is estimated by comparing the prediction results and per‑
forming retraining to update the model with new data so that 
action can be taken in advance. The freely available dataset 
generated reasonable deforestation risk maps using all tech‑
niques in the Mexico and Madagascar study areas. Mayfield 
et al. (2017) had more consistent predictive performance 
through Gaussian processes. However, they could not use 
the model to predict the amount or total area of deforestation 
and risk factors and could only determine whether deforesta‑
tion risk exists. In addition, the weightless neural network 
architecture created by the field-programmable gate array in 
conjunction with an unmanned aerial vehicle for deforesta‑
tion monitoring and visual navigation assessment in green 
rural regions is shown to provide a greater level of process‑
ing of visuals (Torres et al. 2020). Tien Bui et al. (2017) 
modeled forest fires by particle swarm optimization neuro-
fuzzy, which can determine the optimal values of parameters 
and reasonably predict the causes of forest fires generated in 
Vietnam, random forest, and support vector machine. Tien 
Bui et al. (2016) developed fire sensitivity maps effective for 
planning and management of forest fires.
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In order to manage the environmental restoration of ter‑
restrial ecosystems by creating a biological retreat configura‑
tion for the Changsha–Zhuzhou–Xiangtan urban area, Yin 
et al. (2021) suggested an artificial intelligence-assisted 
intelligent planning framework. Its identification of envi‑
ronmental components in existing biodefense zones supports 
the effectiveness of machine learning in green resource pre‑
diction, demonstrating that retreat configurations help bet‑
ter understand urban growth's impact on environmentally 
relevant processes. The basis for ecological berm vegetation 
screening and backpropagation is soil moisture susceptible 
to climatic change and vegetation growth conditions. Liu 
et al. (2022a) suggested a neural network regression model 
optimized by a genetic algorithm for roads in the Zhejiang 
province to modify the system's greater processing power 
and address the problems with local minima. Controlling 
or managing land pollution through prediction, clustering, 
data-centric analysis, and soil quality evaluation requires 
artificial intelligence and machine learning (Gautam et al. 
2023).

Managing varied and complex urban water resources 
requires using current technological platforms owing to 
increased water demand brought on by climate change, 
urbanization, and population expansion (Mrówczyńska et al. 
2019). A more simplified procedure to increase water effi‑
ciency is adaptive intelligent dynamic water resource plan‑
ning, which uses a subset of artificial intelligence technology 
to maintain the water environment in metropolitan settings 
(Xiang et al. 2021). Liu et al. (2019) added dynamic iner‑
tia weights to the moth flame algorithm in the projection 
tracking water quality evaluation model with higher stability 
and reliability, improving the regional water environment 
evaluation accuracy. Afzaal et al. (2020) used recurrent 
neural networks and long- and short-term memory to solve 
the problem of dynamic inputs of climate change in Prince 
Edward Island, Canada. In order to complement crop water 
needs, accurate calculation of reference evapotranspiration 
may give helpful data for water management and sustainable 
agriculture. It can also provide immediate feedback on water 
deficiency in potatoes. Also, artificial neural networks can 
be used to predict and evaluate leachate infiltration from 
landfills into groundwater, Bagheri et al. (2017) analyzed the 
cost of leachate concentration at different depths by build‑
ing a fuzzy logic model of leachate infiltration into ground‑
water in Kurdistan province for more accurate determina‑
tion of molybdenum, sodium and chemical oxygen demand 
(R2 = 0.99998).

The socioeconomic, environmental, and ecological activi‑
ties that take place in urban areas, as well as the lives of the 
populations that inhabit them, are significantly influenced by 
urban land use planning. By using aerial imaging analysis 
to pinpoint physical surface materials or human land use, 
these investigations may be carried out at a considerable 

cost and time savings. Geospatial data and environmental 
information may be captured using remote sensing imaging 
technology for ground observation. Deep learning models 
can be used to categorize land cover or land use, and they 
can also be trained with high accuracy to classify differ‑
ent types of habitations (Alem and Kumar 2022). Using an 
intelligent planning support system based on a multiagent 
system and applying Bayesian learning methods in Zanjan, 
northwest Iran, it is possible to perform automated urban 
land use planning consultations (Ghavami et al. 2017). In 
addition, convolutional neural networks that can perform 
many image classification tasks have higher performance for 
land cover/land classification than support vector machines, 
random forests, and k-nearest neighbors (Carranza-García 
et al. 2019).

In summary, artificial intelligence plays a crucial role 
in natural resource management, as shown in Fig. 6. This 
includes forest resource management, ecosystem restora‑
tion, water resource management, and land use planning. 
Artificial intelligence facilitates the management of natural 
resource use, rationalizes the allocation of natural resources, 
and reduces unnecessary waste.

Using artificial intelligence in developing 
sustainable and resilient cities

As a refuge for modern people, cities inhabit over half of 
the world's population, providing convenience for human 
modernization while consuming a large amount of energy. 
Greenhouse gases emitted by cities account for three-quar‑
ters of the total emissions, making them the core strategy 
for mitigating global climate change. The impacts of climate 
change on towns and the relationship between it and sustain‑
able urban development are complex (Mi et al. 2019). With 
the gradual severity of climate issues, cities face increasing 
uncertainties and unknown risks. In addition to the urgent 
need to solve issues like energy shortages, air pollution, 
and waste management, people are becoming increasingly 
interested in how “resilient” communities are at handling 
calamities (Zhu et al. 2019). Resilient cities are a new urban 
governance concept that has emerged after intelligent cities 
to improve the city's ability to withstand disasters and self-
recover in emergencies. Zhu et al. (2020b) explored the con‑
nections and differences between smart and resilient cities.

Artificial intelligence can be applied to various aspects of 
waste management, such as waste-to-energy, waste sorting, 
waste generation models, plastic pyrolysis, logistics, dis‑
posal, and resource recovery. It can also help reduce illegal 
dumping and improve public health. By implementing arti‑
ficial intelligence in waste logistics, transportation distance 
can be reduced by up to 36.8%, cost savings by up to 13.35%, 
and time savings by up to 28.22%. Artificial intelligence can 
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accurately identify and sort waste with 72.8–99.95% accu‑
racy (Fang et al. 2023). Combining artificial intelligence 
with chemical analysis can improve waste pyrolysis, carbon 
emission estimation, and energy conversion. This technol‑
ogy can also increase efficiency and reduce costs in waste 
management systems for smart cities (Fang et al. 2023).

Since 1973 Holling introduced the concept of resilience 
into ecosystem research, and the connotation of resilience 
has greatly enriched and expanded. Rapidly developing cities 
are easily affected by natural disasters such as floods, earth‑
quakes, and hurricanes. Besides, terrorist attacks and sudden 
viruses also cause cities to face massive crises. As urban 
vulnerability increases (Szewrański et al. 2018), Building 
resilient cities is receiving increasing academic attention. 
Artificial intelligence is not a panacea for addressing climate 
issues. However, as an efficient and reliable framework, it 
can help humans plan and establish sustainable livelihoods, 
enhancing the resilience of cities. Table 5 demonstrates the 
application of artificial intelligence in building sustainable 
and resilient cities.

The increase in climate uncertainty poses enormous 
challenges to urban water resource management. Artificial 
intelligence's rational planning and constraints on water 
resource applications make cities safer, more resilient, and 

more sustainable. By streamlining the information transfor‑
mation process with artificial intelligence modeling, Xiang 
et al. (2021) presented an adaptive intelligent dynamic water 
resource planning to sustain metropolitan regions' water 
environment and increase water resource usage. Pluchinotta 
et al. (2021) used the system dynamics model to explore 
different sustainable urban water resources management 
policies in Ebbsfleet garden city. They created a novel tech‑
nique that uses a coupled dynamic artificial neural network 
architecture, a Bayesian framework, and a genetic algorithm 
to predict irrigation water use over the short term with little 
information. Additionally, Maurya et al. (2020) proposed 
a framework based on the comprehensive management of 
urban water resources and stress state response for urban 
water resource planning and management.

By enhancing its whole ecological environment, a city 
can become more resilient. Artificial intelligence can be 
used to build a detailed, multidimensional, multiscale, and 
resilient city. Yin et al. (2021) created a novel technique 
that uses a coupled dynamic artificial neural network archi‑
tecture, a Bayesian framework, and a genetic algorithm to 
predict irrigation water use over the short term with little 
information. The ecological sources are categorized, the 
environmental channel and strategy points are established, 

Fig. 6   Applications of artificial intelligence in natural resource man‑
agement. Artificial intelligence can monitor forests, reduce deforesta‑
tion, and assist decision-makers in issuing early fire warnings. Using 
artificial intelligence to manage intelligent ecosystem restoration and 
adapt to climate change can reduce ecosystem pollution and imple‑

ment effective conservation measures. Artificial intelligence is neces‑
sary for the effective management of urban water resources. Remote 
sensing and geographic information systems technologies improve 
urban land use and planning
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and planning is provided for urban growth and ecological 
restoration of the terrestrial ecosystem. To better under‑
stand how urbanization has impacted Beijing, Tianjin, 
and Hebei’s urban ecosystem, Kang et al. (2018) created 
a framework combining ecosystem services and health. 

Using probabilistic risk assessment, Liu et al. (2023) esti‑
mated the likely risk of a flood occurring in urban areas 
and assessed the effect of future climate change on urban 
flood risk. To recognize the complexity of the urban eco‑
system's health in the future, Yue et al. (2023) developed 

Table 5   Utilization of artificial intelligence in resilient city buildings

Water resource management, urban ecological management, air quality testing, and disaster monitoring are crucial elements in constructing 
resilient cities. By employing big data and deep learning technologies, artificial intelligence can analyze and predict real-time data, optimizing 
urban operations and resource utilization and enhancing urban resilience

Research contents Particular year Research area Research method References

Water resources management 2020 Melbourne, Australia An example of a method that examines 
hybrid crow search techniques and 
artificial neural networks by combining 
a discrete wavelet transform with an 
adaptive neural fuzzy inference system

Zubaidi et al. (2020)

Water resources management 2021 Ebbsfleet, Britain Explore sustainable solutions for urban 
water resource management through 
system dynamics models

Pluchinotta et al. (2021)

Water resources management 2018 Bembézar,
Spain

Using the integration of a dynamic 
artificial neural network architecture, 
a Bayesian framework, and a genetic 
algorithm, the irrigation water demand 
with restricted data availability was 
examined

González Perea et al. (2019)

Urban heat island 2019 Ningbo, China The impact of the urban morphology 
index on the land surface temperature at 
three observation scales is distinguished 
using ordinary least squares regression 
and random forest regression

Sun et al. (2019b)

Air quality 2021 Tehran, Iran One can compare and forecast the daily 
concentration of nitrogen dioxide in 
the atmosphere using multiple linear 
regression and a multilayer perceptron 
neural network

Shams et al. (2021)

Disaster resilience 2018 Shenzhen, China Support vector machines and the Delphi 
analytic hierarchy process assessed 
streets' physical and social resilience

Zhang et al. (2019b)

Urban heat island 2020 Hangzhou, China To investigate the effect of urbanization 
and landscape design on habitat quality, 
a complete assessment framework of 
environmental services and trade-offs 
was built using ordinary least squares 
and a regionally weighted regression 
model

Zhu et al. (2020a)

Urban heat island 2021 Pearl river delta, China Propose a Malmquist Luenberger model 
for measuring green total factor produc‑
tivity based on relaxation measurement

Li and Chen (2021)

Air quality 2018 Taiwan, China A shallow multioutput short- and long-
term neural memory network model is 
proposed, which combines small batch 
gradient descent, dropout neurons, and 
L2 regularization to conduct regional 
multistep advance air quality prediction

Zhou et al. (2019)

Air quality 2018 Athens, Greece Five air contaminants’ results were com‑
pared using multiple linear regression, 
artificial neural networks, and a set of 
correlation, difference statistical meas‑
urements, and residual distribution

Alimissis et al. (2018)
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a hybrid technique. The urban ecosystem's condition was 
identified using an ecological model to thoroughly assess 
ecosystem health.

The internet of things is also essential in improving the 
efficiency of resilient urban transportation. Cities' many 
components are now connected thanks to the use of artificial 
intelligence in the internet of things, which has cultivated 
the city's capacity for adaptability and helped it grow into an 
organism of interconnected things. In order to properly man‑
age resources and optimize energy consumption, artificial 
intelligence can process vast amounts of data provided by 
the internet of things. This can create an intelligent network 
that connects everything on the physical Earth (Ullah et al. 
2020). Zhang et al. (2021) proposed a new method to assign 
each network layer reasoning calculation to the equipment 
of the multilayer internet of things system. Moreover, they 
designed a dynamic programming algorithm to balance the 
corresponding time of calculation and transmission cost 
minimization. Lv et al. (2021) develop a brand-new net‑
work information physics system, a machine learning-based 
assessment framework, and an online sorting algorithm to 
enable real-time online analysis and evaluation. In order to 
improve the network architecture of smart cities, blockchain 
and artificial intelligence are integrated into the internet of 
things network (Singh et al. 2020).

In addition to harming human health, air pollution 
impedes sustainable ecological growth. To build a resilient 
city, air quality must be tested and managed. Almalawi et al. 
(2022) used linear regression, support vector regression, 
and gradient enhancement decision trees to build a one-step 
model and analyze the air quality index using sensors. Fur‑
thermore, Catalano and Galatioto (2017) designed a new 
model. They compared it with a specific background statisti‑
cal model, focusing on testing the air quality in Manchester 
and enhancing the prediction of traffic-related air pollution. 
Mihăiţă et al. (2019) utilized mobile and fixed air quality 
detection equipment, combined with machine learning meth‑
ods, to gather data and model the information using decision 
trees and neural networks. Their findings suggest that noise 
and humidity are the primary factors influencing predictions 
of nitrogen dioxide concentration at mobile collection sites. 
To compare the results of air pollution in the five schools 
utilizing correlation, different statistical metrics, and resid‑
ual distribution, Alimissis et al. (2018) used artificial neural 
networks and multiple linear regression. They found that 
artificial neural networks have computational advantages 
when the density of air quality networks is limited.

In summary, artificial intelligence technologies are cru‑
cial in promoting urban resilience and sustainable develop‑
ment. With big data and deep learning techniques, artificial 
intelligence can offer real-time data, analysis, and predic‑
tions, optimizing urban operations and resource manage‑
ment. This, in turn, enhances urban resilience to disasters 

and improves the overall happiness and quality of life for 
urban residents.

Perspective

Numerous industries are swiftly integrating disruptive tech‑
nologies such as artificial intelligence (Shao et al. 2022). 
However, the exponential expansion of computational and 
energy demands associated with many modern machine 
learning technologies and systems can result in substan‑
tial carbon emissions (Hanifa et al. 2023). Machine learn‑
ing models can establish different orders of magnitude and 
hierarchies among diverse models, facilitating a thorough 
and more accurate assessment of carbon dioxide quantifica‑
tion and the environmental efficiency of industrial activi‑
ties. Developing and defining a clear, robust, and general 
method to calculate the energy consumption of artificial 
intelligence models can reduce the carbon footprint (Hen‑
derson et al. 2020). Cloud for data storage, hardware for 
computing, and hardware providers are essential for energy 
consumption evaluation of artificial intelligence algorithms, 
thus advancing the evaluation criteria, including precision, 
accuracy, or recall for the calculation of energy consump‑
tion of the project. Also, to automate system control and 
enhance the automation of grid intelligence, appropriate 
functioning of renewable energy-producing equipment is 
required (Ghadami et al. 2021; Zahraee et al. 2016). Pro‑
mote new smart infrastructure that uses less energy and poli‑
cies that support the sustainable advancement of artificial 
intelligence to lessen grid instability. Energy segmentation 
can assist artificial intelligence ecosystems or systems of 
systems by supporting organized data management, data 
mining capabilities, and machine learning techniques, per‑
mitting artificial intelligence-enabled smart grids (Ashfaq 
et al. 2022). Moreover, a sizable initial investment will be 
needed to restructure and modernize the electric system’s 
data management systems, enabling the deployment of data-
intensive solutions to address privacy and cyberattack issues. 
Utility companies will need time and money to develop the 
necessary degree of “data ready” to successfully implement 
artificial intelligence solutions. The data layer is the support 
layer for future investments.

Transportation infrastructure combined with the internet 
of things technology to collect and process real-time data 
in the field to effectively alleviate traffic congestion. Intel‑
ligent monitoring of urban surface and underground space 
anomalies based on digital twin for urban construction and 
operation management (Wu et al. 2022). A city informa‑
tion model creates a three-dimensional city space model, 
achieves all-encompassing three-dimensional visualization 
management of urban traffic planning, construction, and 
operation, supports urban traffic simulation, analysis, and 
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verification, and achieves intelligent supervision of urban 
transportation. Using long-range, ZigBee, wireless fidelity, 
5G, and emerging narrow-band internet of things commu‑
nication technologies, ample opportunity exists to create 
cost-effective, autonomous, energy-efficient, and easy-
to-use internet of things (IoT)-based agriculture solutions 
with robust architecture and low maintenance (Cicioğlu 
and Çalhan 2021). A potential strategy is to employ crop 
simulation models in conjunction with remote sensing for 
crop phenotype data, and using artificial intelligence models 
to integrate phenotypic and genotypic data at the plot level 
can further help address complex challenges in agriculture 
(Khaki and Wang 2019; Ma et al. 2018). Artificial intel‑
ligence can drive positive change in cities and societies and 
contribute to achieving multiple sustainable development 
goals (Vinuesa et al. 2020). However, it is also essential 
to advance the implementation of appropriate policies and 
regulations to reduce the damage caused by artificial intel‑
ligence to the most vulnerable urban and social groups and 
nature. In conclusion, the algorithmic computation of artifi‑
cial intelligence improves efficiency gains for future practi‑
cal applications and makes timely, rational, and optimized 
decisions. The adoption of the internet of things and tel‑
ecommunication technologies facilitates the advancement 
of social transportation systems and agricultural systems, 
thus conforming to the process of sustainable urbanization.

Conclusion

As the global economy and population have expanded, 
energy demand has increased exponentially. Traditional pat‑
terns of energy production have proved to be detrimental to 
the environment, with excessive emissions of harmful gases 
causing global warming and extreme weather events such as 
tornadoes, hail, and thunderstorms causing severe damage to 
human habitats and posing a serious threat to human life and 
property. Artificial intelligence technology is emerging as 
a new tool in the energy sector, offering a promising direc‑
tion for combating climate change to address these issues 
and mitigate their adverse environmental effects. Artificial 
intelligence contributes to climate change mitigation in the 
energy sector by predicting energy demand and enhancing 
energy efficiency to reduce environmental pollution. Numer‑
ous nations use artificial intelligence to improve energy effi‑
ciency and reduce energy waste.

In addition, artificial intelligence has improved weather 
prediction technology, enabling more accurate weather fore‑
casting and modeling to better prepare for and respond to 
extreme weather events via early warning systems. Artificial 
intelligence enables a deeper comprehension of natural fac‑
tors such as climate and geography, thereby facilitating the 
selection of optimal sites for renewable energy. It can predict 

renewable energy production, adjust grid output, and guar‑
antee a continuous electricity supply. Moreover, artificial 
intelligence can optimize residential architecture by deter‑
mining optimal house orientation and window placement, 
thereby reducing energy consumption and enhancing living 
conditions. Addressing traffic emissions is also essential, and 
artificial intelligence can enhance bus systems by utilizing 
large data samples to develop neural networks that optimize 
routes, vehicle rounds, and passenger traffic.

Artificial intelligence is essential to reduce the environ‑
mental impact of agrochemical use. Precision agriculture 
employs artificial intelligence to collect and analyze environ‑
mental data related to crop growth, enabling farmers to make 
informed decisions, reduce chemical use, and increase yield. 
In the industrial sector, traditional hardware sensors cannot 
provide relevant information to decision-makers. Artificial 
intelligence enables decision-makers to optimize industrial 
processes by analyzing data, developing models, and com‑
pleting missing information from hardware sensors to con‑
serve energy and reduce emissions. People’s understanding 
of nature is enhanced by artificial intelligence, allowing for 
more accurate predictions of future deforestation and tree 
loss, which can assist governments in protecting the envi‑
ronment and promoting sustainable energy. By calculating 
relevant data to ensure residents' safety, artificial intelligence 
can also aid in developing sustainable and resilient cities 
by minimizing damage caused by extreme weather events. 
In addition, artificial intelligence significantly mitigates cli‑
mate change by increasing energy efficiency and providing 
decision-makers with accurate data.
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