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Abstract Ecological status assessment under the 
European Water Framework Directive (WFD) often 
integrates the impact of multiple stressors into a 
single index value. This hampers the identification 
of individual stressors being responsible for status 
deterioration. As a consequence, management meas-
ures are often disentangled from assessment results. 
To close this gap and to support river basin manag-
ers in the diagnosis of stressors, we linked numerous 
macroinvertebrate assessment metrics and one diatom 
index with potential causes of ecological deteriora-
tion through Bayesian belief networks (BBNs). The 
BBNs were informed by WFD monitoring data as 
well as regular consultation with experts and allow 
to estimate the probabilities of individual degradation 

causes based upon a selection of biological metrics. 
Macroinvertebrate metrics were shown to be stronger 
linked to hydromorphological conditions and land use 
than to water quality-related parameters (e.g., thermal 
and nutrient pollution). The modeled probabilities 
also allow to order the potential causes of degradation 
hierarchically. The comparison of assessment metrics 
showed that compositional and trait-based commu-
nity metrics performed equally well in the diagnosis. 
The testing of the BBNs by experts resulted in an 
agreement between model output and expert opin-
ion of 17–92% for individual stressors. Overall, the 
expert-based validation confirmed a good diagnostic 
potential of the BBNs; on average 80% of the diag-
nosed causes were in agreement with expert judge-
ment. We conclude that diagnostic BBNs can assist 
the identification of causes of stream and river degra-
dation and thereby inform the derivation of appropri-
ate management decisions.

Keywords Stream and river management · 
Biological metrics · Multiple stressors · Diagnostic 
approach · Data synthesis

Introduction

Europe’s running waters are largely degraded. In 2015, 
56.1% of Europe’s streams and rivers failed to achieve 
a good ecological status or potential (EEA, 2023). 
The reasons for this failure are manifold and include 
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morphological and hydrological pressures, nutrient 
enrichment from diffuse sources, and chemical pol-
lution (Lemm et  al., 2021), which may also interact 
in complex ways. According to the European Water 
Framework Directive (WFD; Directive 2000/60/EC), 
ecological status assessment is primarily based on 
biological quality elements (BQEs), comprising fish, 
macroinvertebrates, higher plants, and algae, and sup-
ported by physicochemical and hydromorphological 
parameters. The BQEs are usually quantified as com-
munity metrics (e.g., number of taxa, proportion of 
feeding types, or habitat preferences) based on taxa-
lists (Birk et  al., 2012). These metrics are known to 
respond to a variety of anthropogenic stressors (Birk 
et al., 2012; Hering et al., 2010) and thus are used to 
integrate the overall impact of stressors into an eco-
logical status class ranging from 1 (high) to 5 (bad). 
However, many metrics respond unspecific to individ-
ual stressors and rather integrate their impacts across 
spatial and temporal scales (e.g., Hering et al., 2006; 
Laini et  al., 2018; Lemm et  al., 2019). This integra-
tive nature of assessment metrics is desirable, because 
the final ecological status of a river water body has to 
reflect the overall impact of all stressors affecting the 
biota in that water body. However, as soon as man-
agement measures need to be defined to improve the 
ecological status, many assessment metrics bear only 
little information about the causal stressor(s) behind 
a moderate or worse ecological status. The metrics 
do not allow to disentangle the individual stressors’ 
effects, which is a prerequisite for developing targeted 
measures (Gieswein et  al., 2017). Consequently, the 
diagnosis of the causes of stream degradation merely 
from biological monitoring data constitutes a major 
challenge for river managers.

To overcome this obstacle, several approaches for 
stressor identification have been developed. With CAD-
DIS (U.S. EPA, 2017) and Eco Evidence (Nichols et al., 
2011) online applications have been implemented in the 
U.S. and Australia that allow users to evaluate appar-
ent cause-and-effect relationships and identify likely 
causes of aquatic system degradation based on evidence. 
Evidence may be extracted from, inter alia, literature, 
experiments, predictions, data, or qualitative opinion. 
In order to complement current assessment and man-
agement practices for streams and rivers within the EU, 
some studies have developed purely data-driven diag-
nostic approaches based on regular monitoring data. 
Mondy and Usseglio-Polatera (2013) developed random 

forest (RF) models based on macroinvertebrate traits to 
disentangle several pressure categories and calculate 
their impairment probabilities. Similar to this approach, 
Dézerald et al. (2020) used fish metrics as predictors in 
RF models to examine pressure patterns and identify 
the most influential pressures. In addition, Clews and 
Ormerod (2009) achieved an improved diagnostic capa-
bility by combining several standard biological indi-
ces, while Baattrup-Pedersen et al. (2016) and Statzner 
and Bêche (2010) used (multiple) functional traits of 
macroinvertebrate taxa, such as small size and flat-
tened body, to withstand stressful flows, to discriminate 
between stressors.

Against this background, the discriminatory diag-
nosis of individual stressors could be improved by 
approaches that allow for the combination of multiple 
biological metrics as well as the integration of different 
types of evidence (Feld et al., 2020). Probabilistic mod-
els such as Bayesian belief networks (BBNs) provide a 
suitable framework to integrate evidence from monitor-
ing data with evidence from literature and knowledge 
of experts (Feld et al., 2020; Trigg et al., 2000). A BBN 
graphically represents dependencies between vari-
ables, while the dependencies are expressed as condi-
tional probabilities (Jensen & Nielsen, 2007). The main 
advantages of BBNs include the capability to synthesize 
knowledge (McCann et  al., 2006) and to quantify the 
uncertainty that is associated with the model outcome 
(Uusitalo, 2007). Recent applications of BBNs include 
the diagnosis and ranking of potential causes of deg-
radation using biological metrics (Feld et  al., 2020). 
This approach is similar to medical diagnosis (Elosegi 
et  al., 2017), where symptoms (biological metrics) are 
related to potential causes (of diseases). Besides this 
example, however, the utility of probabilistic models 
such as BBNs for river ecosystem diagnosis is still in 
its infancy—although the monitoring data from more 
than 100,000 river water bodies and several monitoring 
cycles since 2005 (EEA, 2023) provides an excellent 
database for the development of river diagnostic tools as 
suggested by Feld et al. (2020) and shown by Dézerald 
et al. (2020). The data has been gathered by numerous 
experts, including local river basin managers, biologists, 
and practitioners, whose invaluable knowledge could 
also help disentangle the responses of stream biota to 
multiple stressors. Yet, to date, these invaluable assets 
remain largely unexploited.

Here, we present an approach that probabilistically 
links anthropogenic stressors (potential degradation 
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causes) with biological responses (macroinvertebrate and 
diatom metrics) for three groups of stream types in the 
Federal State of Baden-Württemberg (Germany). For 
each of these groups, a BBN was developed to provide 
the probabilistic model framework. We hypothesized that 
the simultaneous utility of numerous biological metrics 
allows for a discrimination of individual causes, even 
in the absence of stressor-specific metrics. We further 
hypothesized that metrics reliably indicating individual 
stressors are applicable across different stream types or 
even eco-regions. The diagnostic BBNs were validated 
and tested against external data and the expertise of local 
experts. To our knowledge, this is the first study to pre-
sent twofold-validated diagnostic BBNs for running 
waters. The final integration of the BBNs into web-based 
diagnostic tools allows an end user to easily identify 
potentially causal stressors and their hierarchy within a 
targeted running water body.

Materials and methods

Study area

We used WFD monitoring data from 783 stream and 
river monitoring sites in the Federal State of Baden-
Württemberg (Germany). Each site is assigned to 
a stream type (stream typology according to Pott-
giesser, 2018). The stream types are characterized by 
four criteria, namely, ecoregion (according to Illies, 
1978), elevation, size of catchment area, and catch-
ment geology. For the purpose of this analysis, they 
were assigned to one of three groups based on their 

similarities: ‘streams of the low mountain ranges,’ 
‘rivers of the low mountain ranges,’ and ‘streams/riv-
ers of the pre-alpine region’ (Table 1).

Biological data

The State Agency for the Environment of Baden-Würt-
temberg provided data on macroinvertebrates and dia-
toms that were part of the regular WFD monitoring. 
Macroinvertebrates were sampled at 783 sites between 
2010 and 2016 using a multi-habitat sampling protocol 
(Meier et al., 2006a) and identified in the laboratory to 
species level (except for Oligochaeta and Diptera: family 
level) to obtain the taxonomic level given by an opera-
tional taxalists (Haase & Sundermann, 2004). The taxal-
ists were first processed with ASTERICS v.4.04 (https:// 
gewae sser- bewer tung. de/ index. php? artic le_ id= 419) and 
later with PERLODES v.5.0 (https:// www. gewae sser- 
bewer tung- berec hnung. de/ index. php/ perlo des- online. 
html), which allows for the calculation of more than 300 
macroinvertebrate community metrics, including meas-
ures of abundance, biodiversity, community, and func-
tional composition. Based on the author’s expertise, 32 
macroinvertebrate metrics were pre-selected.

For 114 of the 783 monitoring sites, results of the 
Trophic Diatom Index, an indicator of the trophic sta-
tus, were provided. Benthic diatoms were sampled 
under WFD monitoring programs in 2013 according to 
the protocol described in Schaumburg et al. (2012) and 
determined to species level whenever possible. The 
resulting taxalists were processed with Phylib v.6.0 
(https:// gewae sser- bewer tung- berec hnung. de/ index. 
php/ phylib- online. html).

Table 1  Grouping of stream types. Monitoring sites refer to macroinvertebrate monitoring

Group of stream types Types Monitoring 
sites

Streams of the low mountain ranges 5: coarse substrate-dominated, siliceous mountainous streams
5.1: fine substrate-dominated, siliceous mountainous streams
6: coarse substrate-dominated, carbonaceous mountainous streams
7: fine substrate-dominated, carbonaceous mountainous streams

426

Streams/rivers of the pre-alpine region 2.1: streams of the pre-alpine region
2.2: small rivers of the pre-alpine region
3.1: streams of the young moraines of the pre-alpine region
3.2: small rivers of the young moraines of the pre-alpine region

121

Rivers of the low mountain ranges 9: siliceous, fine to coarse substrate-dominated mountainous rivers
9.1: carbonaceous, fine to coarse substrate-dominated mountainous rivers
9.2: large mountainous rivers

246

https://gewaesser-bewertung.de/index.php?article_id=419
https://gewaesser-bewertung.de/index.php?article_id=419
https://www.gewaesser-bewertung-berechnung.de/index.php/perlodes-online.html
https://www.gewaesser-bewertung-berechnung.de/index.php/perlodes-online.html
https://www.gewaesser-bewertung-berechnung.de/index.php/perlodes-online.html
https://gewaesser-bewertung-berechnung.de/index.php/phylib-online.html
https://gewaesser-bewertung-berechnung.de/index.php/phylib-online.html
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Environmental data

The State Agency for the Environment of Baden-
Württemberg also provided data on various potential 
stressors. For each monitoring site, data on catch-
ment area and percentages of land use types within 
the catchment for the year 2009, including urban 
area, agriculture, special crops, intensive grassland, 
and coniferous forest, were provided. Hydromor-
phological conditions were recorded on site, similar 
to the descriptions in Gellert et  al. (2014), between 
2010 and 2016 by mapping 18 structural parameters 
along 100-m segments, summarized in the six main 
parameters (1) channel evolution, (2) longitudinal 
profile, (3) cross profile, (4) riverbed structure, (5) 
bank structure, and (6) floodplain condition. Subse-
quently, the recorded conditions were compared to 
reference conditions, and depending on the devia-
tion, each parameter was assessed on a scale rang-
ing from unchanged (class 1) to completely modified 
(class 7). These assessment results were comprised in 
a shapefile of the stream and river network of Baden-
Württemberg. For each monitoring site, we computed 
upstream stretches of 1 km and 5 km in ArcView 
v.3.3 (ESRI, 2002). Hydromorphology assessment 
data within these stretches, as well as at the loca-
tion of each monitoring site, were extracted from the 
shape file in ArcMap Desktop v.10.8 (ESRI, 2020). 
Subsequently, we calculated the weighted means of 
the hydromorphological assessment classes within 
these stretches.

To spatially match the different data sources, the 
closest upstream gauging stations were assigned 
to the monitoring sites in ArcMap Desktop v.10.8 
(ESRI, 2020). From the gauging data, regionalized 
runoff values (1981–2010), including extreme and 
reoccurring flood events  (m3/s), as well as the ratio of 
mean high and low water flow, were derived. Such a 
network analysis was also applied to identify the clos-
est chemical monitoring station as well as the closest 
and all sewage treatment plant upstream of each mon-
itoring site. Annual means of the plant parameters 
 NO3-N (mg/L) and o-PO4-P (mg/L) at outlet, as well 
as maxima of pH values, were calculated for the year 
before macroinvertebrate sampling. Network analy-
sis was also used to identify if a monitoring site is 
located in a backwater, based on shape file of location 
and length of backwaters for the year 2019. Fine sedi-
ment coverage was estimated using the field protocol 

of the macroinvertebrate sampling. We calculated 
the fine sediment proportion at a monitoring site as 
the sum of percentages of psammal (sand), argyl-
lal (loam), pelal (sludge), and FPOM. For the water 
quality parameters  BOD5 (mg/L),  NO2-H (mg/L), and 
 NH4-N (mg/L), Cl (mg/L),  SO4 (mg/L), and conduc-
tivity (µS/cm), the annual mean of all measurements 
in the year before macroinvertebrate sampling was 
calculated. For  O2 (mg/L), the minimum of all meas-
urements in the year before sampling was calculated.

Overall, a total of 81 environmental variables that 
could potentially act as stressors were identified. As 
not all data were available for each monitoring site, 
the coverage of the individual parameters ranged 
from 113 to 765 of the 783 monitoring sites, with 
data on chemical parameters showing the lowest cov-
erage and hydromorphological conditions the highest.

Relationships between stressors and metrics

All analyses underlying the development of the BBNs 
were performed in R v.4.1.0 (R Core Team, 2021). To 
exclude redundant hydromorphological parameters, 
the parameters were tested for collinearity by calcu-
lating correlation coefficients (Pearson) with the ade4 
package (Dray & Dufour, 2007). If the Spearman 
rank correlation coefficient of a pair was greater than 
0.8, one of the two parameters was excluded from 
further analyses. The identification of the spatial scale 
at which the remaining hydromorphological param-
eters show the strongest influence on biota and the 
selection of potentially diagnostically useful stressor-
metric relationships were done using the randomfor-
estSRC package (Ishwaran & Kogalur, 2007) (Fig. 1). 
RF models can handle incomplete datasets with a 
large number of explanatory variables and are suit-
able for analyzing non-linear relationships (Breiman, 
2001). The output includes the relative importance of 
each predictor variable to the model. Partial depend-
ence plots (Hastie et al., 2009; Friedman, 2001) help 
to uncover individual cause-and-effect relationships.

In the course of the identification of the most influen-
tial spatial scale, the German Fauna Index and the share 
of Ephemeroptera, Plecoptera, and Trichoptera taxa (% 
EPT) were used as proxies for biota. Both are sensitive 
to hydromorphological conditions (Feld et al., 2014). A 
RF model was built for each of these metrics per group 
of stream types. Across all six RF models, hydromorpho-
logical parameters within a stretch of 5 km upstream of 
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the monitoring sites predominantly showed the strongest 
relative influence to the deviance explained by the model. 
This resulted in the selection of 14 structural parameters 
and four main hydromorphological parameters at the 
identified most influential spatial scale.

The next step was to build RF models for each 
group of stream types for each pre-selected biological 
metric (response variable), using the 33 considered 
potential causes of degradation as predictor variables. 
Besides the hierarchy of importance of single predic-
tor variables, partial dependence plots were visually 
examined for break points. Here, a break point is 
defined as a sharp increase or decrease in the value of 
the response variable at a certain value along the pre-
dictor’s gradient, in particular those that mark a shift 
from low to high values (or vice versa). Since visual 
detection bears the risk to be biased by the viewer’s 
judgement, conditional inference tree analyses were 
additionally performed with the partykit package 
(Hothorn et al., 2006), to align the visually identified 
break points. Conditional inference trees use p-values 
to split the distribution of a response variable along 
the gradient of predictor variables. The number of 
levels of predictor variables was restricted to three. 
The relationship between a potential stressor and a 

metric was only included in the initial BBN structure, 
if the stressor was ranked in the top quarter of the 
relative importance hierarchy and the partial depend-
ence plot showed a sharp increase or decrease.

BBN development

A BBN is a probabilistic model, which graphically 
represents relationships between predictors and 
response variables as nodes, which are connected 
by arrows pointing from predictor nodes (parent) to 
response nodes (child) (Jensen & Nielsen, 2007). In 
discrete BBNs, each node has a finite set of states 
representing a variable’s gradient. The probability 
of a child being in a particular state depends on the 
combination of states of its parents. This conditional 
dependency is captured in conditional probability 
tables (CPTs). The conditional probabilities can be 
informed by empirical data, evidence reported in 
literature, or knowledge of experts (McCann et al., 
2006; Uusitalo, 2007). Furthermore, a probabilis-
tic model inherently addresses the uncertainty and 
variability associated with the assignment of condi-
tional probabilities (Jensen & Nielsen, 2007).

Fig. 1  Development of the BBN structure for the group 
‘streams of the low mountain ranges’ (SLMR), including cru-
cial steps of integrating monitoring data (orange) and expert 
knowledge (purple). The initial, only data based, BBN (A) 
was revised during an expert workshop. Experts’ feedback and 

subsequent additional data analyses resulted in an intermediate 
BBN (B). The final BBN (C) resulted from some additional 
suggestions from and two testing rounds by experts. Degrada-
tion causes in gray, biological metrics in white
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A discrete BBN was developed for each group of 
stream types in GeNIe Modeler v.2.5 (BayesFusion, 
LLC, 2020). Figure 1 graphically represents the devel-
opment process of the BBN for the group ‘streams 
of the low mountain ranges.’ The initial BBNs were 
exclusively based on monitoring data. Break points of 
stressor–metric relationships, which were identified by 
the previously described analyses, were used to define 
the ranges of node states (Table S1–S3). For populat-
ing the models’ CPTs, we revisited the calculated con-
ditional inference trees (“Relationships between stress-
ors and metrics”), which display the distribution of 
values of a biological metric depending on the value 
of one or more potential degradation causes (for more 
details see Feld et al., 2020). If these analyses were not 
sufficient, the data distribution across the defined node 
states was inspected using box-and-whisker plots and 
partially complemented with the authors’ expertise.

Throughout the development of the BBNs, 
the involvement of experts from environmen-
tal authorities and spatial planning offices in 
Baden–Württemberg (Table  S4) was an iterative 
process. The experts recommended several struc-
tural modifications of the BBNs: (1) considering 
individual hydromorphological parameters instead 
of aggregated main parameters (e.g., width vari-
ance instead of cross profile) and (2) including the 
KLIWA-IndexMZB and the Trophic Diatom Index 
for a better approximation of warming and nutrient 
enrichment, respectively. The former index has been 
developed to indicate warming effects (Sundermann 
et  al., 2022), whereas the latter index is strongly 
linked to eutrophication (Schaumburg et al., 2012). 
The experts also suggested additional stressor-
metric relationships and revised existing ones. The 
experts were further asked to repeatedly test the 
developed models (see section “BBN validation and 
testing” for more details). The CPTs were finalized 
after these tests, so that the overall behavior aligned 
with the feedback of the experts.

BBN validation and testing

The BBN for each group of stream types was trained 
and validated in GeNIe Modeler v.2.5 (BayesFusion, 
LLC, 2020) by applying threefold cross-validation. 
During threefold cross-validation, the dataset was 
randomly split into three subsets, or folds. The model 
was then trained on two folds, whereas one fold was 

hold out to test the model; the procedure was repeated 
three times. The resulting accuracies per node as well 
as for the whole model were averaged and represent 
the proportion of alignment between observed and 
predicted node states. For this validation procedure, 
the data sets for the groups of stream types were dis-
cretized according to the BBNs’ node states.

In addition, experts tested the BBNs’ diagnos-
tic accuracy with their own monitoring data for sin-
gle sites. Therefore, the BBNs were implemented as 
online tools using the shiny package in R (Chang et al., 
2021). The default settings of these tools represent the 
joint probability distributions across states of metrics 
and potential degradation causes as represented in the 
data underlying the models’ development. Per group 
of stream types, the input mask allows the experts to 
choose the corresponding state per biological metric. 
Applying the experts’ specifications, the tools calcu-
late probabilities of changes in potential stressors in 
relation to the default settings and order them from 
the strongest to the weakest change. This order reflects 
the putative hierarchy of potential degradation causes 
impacting the relevant site. The experts then compared 
the identification and hierarchy of stressors as pro-
vided by the tools with their knowledge about actual 
occurring stressors. Based on their expertise, they 
provided information on the reliability of the diag-
nosed stressors as ‘overestimated,’ ‘underestimated,’ 
‘incorrectly diagnosed,’ or ‘correctly diagnosed’ 
(Figs.  S1–S3). The proportion of ‘correctly diag-
nosed’ stressors constitutes the expert-based accuracy. 
The BBN for the group ‘streams of the low mountain 
ranges’ was tested for 31 monitoring sites, the BBN 
for the group ‘streams/rivers of the pre-alpine region’ 
for nine sites, and the BBN for the group ‘rivers of the 
low mountain ranges’ for 16 sites.

Diagnostic value of information

GeNIe modeler v.2.5 (BayesFusion, LLC, 2020) 
supports diagnosis by calculating a diagnostic value 
expressed as ‘entropy reduction.’ The calculation is 
based on cross-entropy, an information–theoretical 
performance measure. In information theory, entropy 
quantifies the uncertainty associated with a pos-
sible event of a random variable (Cover & Thomas, 
2006; Shannon, 1948). Accordingly, cross-entropy 
measures the expected reduction in entropy between 
two probability distributions of a possible event of a 
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random variable (possible state of a potential degra-
dation cause) given knowledge of observable varia-
bles (biological metrics). In this study, entropy reduc-
tion associated with a potential degradation cause was 
averaged over all its possible states. The more a bio-
logical metric reduces the entropy associated with a 
potential degradation cause, the higher this metric’s 
value regarding discriminatory diagnosis.

Assessment metrics vs. diagnostic metrics

We tested if the accuracy of stressor diagnosis is affected 
by the use of diagnostic metrics, in addition to the 
assessment metrics. Theoretically, a diagnostic met-
ric can be any of the more than 300 macroinvertebrate 
community metrics (e.g., share of taxa with habitat and 
zonation preferences or particular feeding types) that 
are calculated by the German assessment tool PER-
LODES (www. gewae sser- bewer tung- berec hnung. de). 
In contrast, an assessment metric (e.g., German Fauna 
Index, Saprobic Index) is a metric that has been identi-
fied to reliably indicate the ecological status of streams 
and rivers in line with the WFD (Meier et  al., 2006b, 
compare header of Fig. 3). The stressor hierarchies and 
their assessments, resulting from indicating the states 
of as many metrics included in the respective BBN as 
possible, were provided by the experts (Figs.  S1–S3). 
Additionally, the stressor hierarchies exclusively based 
on the assessment metrics were calculated. Both hier-
archies were compared in terms of the probabilities for 
each individual stressor. If the change in probability for 
a stressor was lower than 10%, no change in diagnos-
tic accuracy and stressor hierarchy was assumed. If the 
probability changed by more than 10%, it was checked 
whether the new stressor hierarchy got closer to the 
expert opinion or not. If yes, it was classified as ‘cor-
rectly diagnosed.’ A stressor was classified as under- or 
overestimated, if its probability changed by more than 
half of the probability that resulted from providing 
solely the states of assessment metrics.

Results

BBNs

Across the three BBNs, 13 potential stressors 
(Table  2) could be conceptually associated with 18 
diagnostically useful metrics (Table 3).

The BBNs for ‘streams of the low mountain 
ranges’ (Fig.  1C) and for ‘streams/rivers of the pre-
alpine region’ (Fig.  S4) both comprise 15 biologi-
cal metrics and ten potential degradation causes. 
The BBN for ‘streams of the low mountain ranges’ 
(Fig.  S5) includes 13 biological metrics and nine 
potential degradation causes. The stressor groups land 
use, substrate and hydromorphological conditions 
were included based on data, whereas the stressor 
groups nutrients and water temperature were included 
based on expert suggestions. Across the three BBNs, 
nine biological metrics were shown or assumed to 
diagnose one or more stressor groups (Fig.  2). The 
stressor group of hydromorphological conditions is 
linked to six of these metrics, whereas land use, for 
example, is only linked to one. Except for land use 
and nutrients, stressor groups are linked with metrics 
expressing taxonomic composition, biodiversity, and 
habitat preference.

The same sets of metrics are used for all three 
groups of stream types to diagnose flow diversity 
and depth variance, substrate diversity, fine sedi-
ments, water temperature, and nutrients (Fig. 3). These 
common (sets of) biological metrics are mainly related 
to taxonomic composition and biodiversity. For each 
group of stream types, these sets of ‘common metrics’ 
are complemented by additional metrics that are asso-
ciated with the relevant degradation causes. The diag-
nostically useful metrics indicating bank conditions 
are not shared among groups of stream types; here, dif-
ferent metrics expressing habitat preferences are used 
for the three groups of stream types. Three biological 
metrics are only included in one of the BBNs: share of 
shredders (‘streams of the low mountain ranges’), share 
of taxa with pelal preference (‘streams/rivers of the 
pre-alpine region’), and share of taxa with metarhithral 
preference (‘rivers of the low mountain ranges’). Share 
of shredders contributes to discrimination of both 
width variance and bank condition, share of taxa with 
pelal preference to both agriculture and bank vegeta-
tion cover, and share of taxa with metarhithral prefer-
ence to agriculture, flow diversity and depths variance, 
and water temperature, respectively.

Highest diagnostic values across all groups 
of stream types were calculated for the  KLIWA 
 IndexMZB and the Trophic Diatom Index (Fig.  3). 
Besides these, the highest diagnostic values per group 
of stream types were found for share of shredders 
(indicating bank condition for ‘streams of the low 

http://www.gewaesser-bewertung-berechnung.de
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mountain ranges’), share of Trichoptera taxa (indi-
cating the share of special crops in the catchment for 
‘streams/rivers of the pre-alpine region’), as well as 
share of taxa with psammal preference (indicating 
fine sediments in ‘rivers of the low mountain ranges’).

Model validation and testing

Based on expert judgment, the proportion of correctly 
diagnosed potential degradation causes clearly outweighs 
the incorrectly diagnosed ones for all three BBNs (Fig. 4). 
For ‘streams of the low mountain ranges,’ 85.5% were 

correctly identified, 80.4% for ‘streams/rivers of the pre-
alpine region,’ and 77.5% for ‘rivers of the low mountain 
ranges.’ It needs to be noted, however, that these percent-
ages do neither include diagnosed degradation causes the 
experts did not provide feedback on nor over- or under-
estimated degradation causes. Over- and underestimated 
degradation causes according to the experts’ evaluation, 
however, were considered for Fig. 5A–C. The BBNs’ tests 
by experts yielded poor to good diagnostic accuracies for 
potential degradation causes across the three groups of 
stream types, ranging from 17% for water temperature in 
the BBN for ‘streams/rivers of the pre-alpine region’ to 
92% for flow diversity and depth variance in the BBN for 

Table 2  Overview of biological metrics included in the three developed BBNs. Per metric, a short description and its potential iden-
tification capability is provided

Metric Metric description Potential indication

Epirhithral preference Epirhithral: oxygen-rich, cold, gravelly sole, turbulent, 
irregular flow (% individuals)

Modified hydromorphology, increased water temperature, 
land use

Metarhithral preference Metarhithral: oxygen-rich, cold, gravelly sole, turbulent, 
irregular flow (% individuals)

Modified hydromorphology, increased water temperature, 
land use

Hyporhithral preference Hyporhithral: oxygen-rich, water temperature 
rarely ≥ 14 °C, gravelly to sandy sole, increased plant 
growth (% individuals)

Modified hydromorphology, land use

Littoral preferences Littoral: interface between land and water, photo-
synthetically active radiation, low flow conditions (% 
individuals)

Modified hydromorphology, land use

Pelal preference Pelal: unconsolidated fine sediments; grain 
size < 0.063 mm (% individuals)

Modified hydromorphology, land use

Psammal preference Psammal: sand; grain size 0.063–2 mm (% individuals) Modified hydromorphology, fine sediment load, land use
Shredders Individuals that decompose organic matter ( e.g., fallen 

leaves) (%)
Modified hydromorphology

Active filter feeders Individuals that feed on suspended organic matter in the 
water (%)

Modified hydromorphology, land use

EPT taxa Ephemeroptera, Plecoptera, and Trichoptera taxa [%] Modified hydromorphology, increased water temperature, 
land use

EPTCBO taxa Number of Ephemeroptera, Plecoptera, Trichoptera, 
Coleoptera, Bivalvia, and Odonata taxa

Modified hydromorphology, fine sediment load, land use

Coleoptera Coleoperta taxa (%) Modified hydromorphology
Trichoptera Trichoptera taxa (%) Modified hydromorphology, land use
SPEARpesticides Measure of macroinvertebrate community change due to 

short-term pulsed exposure to insecticides, fungicides 
and other pesticides

Land use

German Fauna Index Ratio between taxa indicating (semi-)natural waterbodies 
and degraded waterbodies (as EQR)

Modified hydromorphology, land use

Rheoindex Ratio of rheophilic/rheobiontic taxa to limnobiontic/lim-
nophilic taxa [based on frequency classes]

Modified hydromorphology, fine sediment load, land use

KLIWA  IndexMZB Temperature tendency of a macroinvertebrate community 
based on its species temperature tolerances and prefer-
ences

Increased water temperature

German Saprobic Index Measure of saprobic status based on macroinvertebrate 
composition

Modified hydromorphology, increased water temperature, 
fine sediment load, land use, nutrient load

Trophic Diatom Index Measure of trophic status based on diatom composition Nutrient load
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Table 3  Overview of potential degradation causes included in the three developed BBNs. If a stressor is included in the BBN of a 
specific group of stream types, mean (min–max) is given

a Values of KLIWA  IndexMZB
b Values of Trophic Diatom Index

Stressor Spatial scale/definition of stressors Group of stream types

SLMR SRPAR RLMR

Land use
Agriculture % of catchment of monitoring site 18.6 (0.0–73.8) 29.4 (0.0–70.8) 19.4 (0.0–64.17)
Intensive grassland % of catchment of monitoring site 26.6 (1.0–66.8)
Special crops % of catchment of monitoring site 1.6 (0.0–55.5) 0.9 (0.0–20.2)
Urbanized areas % of catchment of monitoring site 6.5 (0.0–39.6) 7.2 (0.9–20.9) 9.1 (2.0–62.9)
Hydromorphological conditions
Backwater Mean assessment result (scale: 1–7) along 

a 5-km stretch upstream of monitoring site
5.3 (3.0–7.0)

Width variance Mean assessment result (scale: 1–7) along 
a 5-km stretch upstream of monitoring site

4.8 (1.0–7.0)

Flow diversity & depth variance Mean assessment result (scale: 1–7) along 
a 5-km stretch upstream of monitoring site

4.1 (1.0–7.0) 4.2 (1.0–6.6) 4.6 (1.2–7.0)

Substrate diversity Mean assessment result (scale: 1–7) along 
a 5-km stretch upstream of monitoring site

3.9 (1.0–7.0) 3.9 (1.0–6.5) 4.4
(1.2–6.3)

Bank condition Mean assessment result (scale: 1–7) along 
a 5-km stretch upstream of monitoring site

3.5 (1.0–6.5) 3.4 (1.2–6.7)

Bank vegetation cover Mean assessment result (scale: 1–7) along 
a 5-km stretch upstream of monitoring site

3.6 (1.5–7.0)

Others
Fine sediments % of fine sediments (Psammal, Pseu-

dopsammal, Agryllal, and FPOM) at 
monitoring site

6.7 (0.0–70.0) 5.0 (0.0–95.0) 6.1 (0.0–100.0)

Water temperature If a pre-defined value of central tem-
perature tendency for a macroinverte-
brate community based on its species 
temperature tolerances and preferences 
(KLIWA  IndexMZB) at a monitoring site 
is exceeded, the probability of ther-
mal pollution strongly increases (see 
Tables S1–S3)

12.4 (3.6–25.0)a 14.1 (6.5–18.6)a 16.1 (9.5–26.7)a

Nutrients If a pre-defined value of the Trophic 
Diatom Index at a monitoring site is 
exceeded, the probability of nutrient pol-
lution strongly increases (Tables S1–S3)

2.6 (1.3–3.3)b 2.6 (1.6–3.1)b 2.7 (1.5–3.3)b
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‘streams of the low mountain ranges.’ Cross-validation-
based accuracies range between 44% for width variance 
in ‘streams of the low mountain ranges’ and 100% for 
water temperature and nutrients across all three groups of 
stream types.

With diagnostic accuracies of about 60% or higher, both 
in cross-validation and expert judgement, seven poten-
tial degradation causes were reliably diagnosed across the 
three BBNs. Only fine sediments were reliable diagnosed 
across all groups of stream types, whereas the remaining 
six potential degradation causes showed a more stream 
type group-specific outcome. Water temperature was reli-
ably diagnosed for two groups of stream types (‘streams of 
the low mountain ranges’ and ‘rivers of the low mountain 
ranges’), while substrate diversity was reliably diagnosed 
only for ‘streams/rivers of the pre-alpine region.’ The diag-
nostic accuracies indicate a moderate performance of the 
developed BBNs. Expert-based accuracies are lower than 
those based on cross-validation in about half of the cases, 
even when cross-validation yielded accuracies > 60%. Thus, 
expert judgement seems more conservative in more than 
half of all cases compared to the results of cross-validation.

Assessment metrics vs. diagnostic metrics

Across all three groups of stream types, the diagnos-
tic accuracies of most potential degradation causes 
increase when values were not only provided for the 

assessment metrics but for all 12 or 15 diagnostic 
metrics (Fig. 6A–C). These increases range between 
1 and 60%. The diagnostic accuracies for substrate 
diversity, bank condition, and urban areas for ‘streams 
of the low mountain ranges’ do not change. This also 
holds true for the diagnostic accuracy of urban areas 
for ‘streams of the low mountain ranges’ and for spe-
cial crops for ‘streams/rivers of the pre-alpine region.’ 
Diagnostic accuracies for urbanized areas, substrate 
diversity, and nutrients in the BBN for ‘streams/ riv-
ers of the pre-alpine region’ decrease when all diag-
nostic metrics are included.

Discussion

Diagnostic accuracy

The overall diagnostic accuracy of our BBNs dem-
onstrates the general utility of biological metrics to 
reflect particular environmental states or conditions. 
Based on the experts’ evaluation, the three BBNs 
correctly identified, on average, 80% of the diag-
nosed potential degradation causes. For individual 
causes, up to 92% and 100% correct identifications 
were achieved by expert-based testing and data-based 
cross-validation, respectively. Irrespective of the 
stream types, the expert-based accuracies were the 

Fig. 2  Shared diagnostic relationships between metrics and stressor groups across all groups of stream types
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highest for hydromorphological causes including fine 
sediment load. In contrast, the data-based cross-val-
idation identified the highest accuracies for warming 

and nutrient enrichment, two water quality-related 
causes. Further, the highest diagnostic values were 
calculated for the KLIWA  IndexMZB and the Trophic 

Fig. 3  Numbers indicate the cross-entropy based diagnostic 
value of a metric to diagnose a potential degradation cause. 
The unit-less value ranges from 0 to 1; the higher the value, 
the better an observable variable (metric value) predicts a pos-
sible event (state of potential degradation cause). Relation-
ships between biological metrics and degradation causes as 

displayed in the three developed BBNs. *Assessment metric 
for all groups of stream types, SLMR assessment metrics for 
‘streams of the low mountain ranges,’ SRPAR assessment met-
rics for ‘streams/rivers of the pre-alpine region,’ RLMR assess-
ment metrics for ‘rivers of the low mountain ranges’

Fig. 4  Expert evaluation results of the developed BBNs for 
‘streams of the low mountain ranges’ (SLMR), ‘streams/riv-
ers of the pre-alpine region’ (SRPAR), and ‘rivers of the low 
mountain ranges’ (RLMR). Positive indicates that the stressors 

were correctly diagnosed or observed in the field whereas neg-
ative indicates that the stressors were incorrectly identified or 
not observable in the field
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Fig. 5  Comparison 
of diagnostic accuracy 
resulting from threefold 
cross-validation and expert 
opinion for the developed 
BBNs for ‘streams of the 
low mountain ranges’ 
(SLMR) (A), ‘streams/riv-
ers of the pre-alpine region’ 
(SRPAR) (B), and ‘rivers 
of the low mountain ranges’ 
(RLMR) (C)
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Fig. 6  Comparison of 
diagnostic accuracy of 
the developed BBNs 
for ‘streams of the low 
mountain ranges’ (SLMR) 
(A), ‘streams/rivers of the 
pre-alpine region’ (SRPAR) 
(B), and ‘rivers of the low 
mountain ranges’ (RLMR) 
(C), if only river assessment 
metrics or all diagnostic 
metrics are considered
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Diatom Index. These findings seem contradictory 
but may be explained by shortcomings of the mod-
els’ structure and parameterization. Both biological 
indices were integrated to improve the approximation 
of corresponding stressor intensity, i.e., the probabil-
ity of warming and excess nutrients were considered 
higher, if a previously defined threshold value (see 
Tables  S1–S3 for  stream type group-specific thresh-
old values) was exceeded for the metrics. Hence, 
these strong stressor–metric relationships are owed 
to the models’ structure and parameterization, with 
only two states (cause present or absent) being imple-
mented in the corresponding conditional probability 
tables. Besides these high diagnostic accuracies for 
individual degradation causes, other causes revealed 
weaker results. The diagnostic accuracy for bank 
modification in ‘streams of the low mountain ranges’ 
or substrate diversity in ‘rivers of the low mountain 
ranges,’ for example, were notably lower (50–58%). 
It is assumed that this was due to weak associations 
between structural modifications and biological met-
rics in our data.

The comparison of diagnostic and assessment 
metrics revealed that by a combination of both it was 
possible to achieve a higher diagnostic accuracy as 
compared to a model purely based upon assessment 
metrics. Across all models, eleven out of the 15 high-
est diagnostic values were associated with diagnostic 
metrics, i.e., metrics that are not regularly used for the 
ecological status assessment. The integration of such 
diagnostic metrics increased the diagnostic accuracy 
for the majority of potential degradation causes by up 
to 60%. The exceptions from this improvement were, 
for example, causes that were solely linked to assess-
ment metrics, such as substrate diversity for ‘rivers 
of the low mountain ranges.’ Furthermore, the find-
ings suggest that the discrimination between multiple 
causes of degradation requires multiple biological 
symptoms (metrics). We assume that the number of 
symptoms (metrics) used to diagnose multiple causes 
needs to be higher than the number of actual causes 
to discriminate.

Discrimination between causes

Our findings align with those of previous studies (e.g., 
Clews & Ormerod, 2009; Mondy & Usseglio-Polat-
era, 2013; Statzner & Bêche, 2010) that observed the 

discrimination between individual causes (stressors) 
to be enabled by the simultaneous consideration of 
numerous biological metrics. This is notable, since 
the number of biological metrics that are linked to 
only one stressor (N = 7) is much lower than the num-
ber of metrics that are linked to more than one cause 
(N = 36) in the three BBNs. Both, community com-
position metrics (e.g., share of EPT taxa) and species 
trait metrics (e.g., proportion of feeding types) appar-
ently respond to various sources of degradation (e.g., 
Gieswein et  al., 2017; Hering et  al., 2006; Pilière 
et al., 2016; Poff et al., 2006). Here, the highest diag-
nostic values per stressor–metric relationship were 
equally spread across the different metrics types.

The discrimination between the causes related to 
flow velocity and depth variation, bank condition, and 
fine sediment entry in the ‘rivers of the low moun-
tain ranges,’ for example, would be impossible, if all 
these causes were linked solely to the Rheoindex. 
The Rheoindex presents the relationship between 
rheophilic/rheobiont taxa and limnophilic/limnobiont 
taxa (Banning, 1998). Hence, the index is not only 
directly related to flow diversity (and its modification) 
but also indirectly related to its concomitants bottom 
substrate modifications and changes in the nutrient 
concentrations (Meier et al., 2006b). The discrimina-
tion between all these potential causes improved, if 
additional metrics were integrated. Macroinvertebrate 
taxa associated with the metarhithral are also adapted 
to higher flow velocities, but usually prefer a water 
temperature below 18 °C (Moog & Wimmer, 1994). 
This is why rheophilic taxa occur in fast-flowing 
streams and larger rivers, while metarhithral-prefer-
ring taxa are largely limited to the metarhithral, i.e., 
mid-sized streams (Meier et  al, 2006b). Taxa with 
psammal preference are adapted to sandy bottom sub-
strates. They could be linked to effects of increased 
fine sediment entry and hence support the discrimi-
nation between flow modification and fine sediment 
entry. The combination of the Rheoindex, and the 
share of taxa with metarhithral and psammal prefer-
ences in a BBN hence can help to better discriminate 
between the potential causes flow modification, sub-
strate modification and warming effects.

Further analyses with a larger dataset might reveal 
stronger and diagnostically more useful relation-
ships. This assumption is supported by the finding 
that macroinvertebrate metrics turned out to respond 
more sensitive to land use and hydromorphological 
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causes than to those causes related to water quality. 
This aligns with the findings of Hering et al. (2006) 
and points at the need to integrate other organism 
groups (e.g., diatoms, fish, and aquatic macrophytes) 
in the diagnosis. We believe that a multi-organismal 
diagnosis could improve the discrimination between 
multiple causes and particularly contribute to a bet-
ter integration of causes that act at different spatial 
scales. Fish are known to respond to longitudinal 
river characteristics over several kilometers or even 
tens of kilometers (Bunn & Arthington, 2002; Gido 
et al., 2015; Poff, 1997). Therefore, incorporating fish 
diagnostic metrics may increase the diagnostic accu-
racy of alterations of longitudinal river characteris-
tics, such as dams, stagnant conditions, and enhanced 
water temperature. The aquatic flora, including dia-
toms and macrophytes, is physiologically directly 
related to nutrient concentrations (Poikane et  al., 
2018; Schneider & Melzer, 2003), flow velocity, and 
substrate coarseness (Kaijser et al., 2022) and are thus 
presumably well suited to diagnose related causes of 
degradation.

Benefits and potential application of the diagnostic 
tools

Three features of BBNs turned out to be particularly 
advantageous during the development process: (1) 
the graphical representation of stressor-metric rela-
tionships, (2) the possibility to combine different 
sources of evidence, and (3) the inherent capability 
to deal with uncertainty. The graphical representation 
facilitated the exchange with experts during the work-
shops. In contrast to purely data-based approaches 
currently used for stressor diagnosis in aquatic sys-
tems, our approach is not limited by data availability. 
For example, Dézerald et al. (2020) had to exclude a 
pressure category from their diagnosis due to insuf-
ficient data, whereas our approach allows such data 
limitations to be overcome with other types of evi-
dence, such as expert knowledge. Examples from 
our study include the implementation of the potential 
degradation causes water temperature and nutrients. 
Alike other diagnostic tools such as CADDIS (U.S. 
EPA, 2017) and Eco Evidence (Nichols et al., 2011), 
our approach also allows to analyze the strength of 
evidence and thus the quantification of uncertain-
ties. In our approach, this is achieved by a definition 
of conditional probabilities. The more the states of 

an effect variable can be distinguished by probabil-
ity distributions in the underlying CPTs, the lower 
the uncertainty associated with the cause-and-effect 
relationship in the diagnostic BBN. For example, if 
there is strong evidence that a high KLIWA  IndexMZB 
is associated with thermal pollution (warming), the 
conditional probability for a high metric value under 
warming condition would be set to 80% or even 
higher. This corresponds to an uncertainty of 20%, 
i.e., in 20% of the cases a high metric value might be 
found at sites without warming conditions. Hence, 
the principle of assigning conditional probabilities 
directly allows to integrate and quantify uncertainties 
in BBN models.

Even though the diagnostic accuracy of some deg-
radation causes showed modest results, the devel-
oped BBNs are applicable for their main purposes 
(Feld et  al., 2020): informing decisions by estimat-
ing changes in probabilities of potential degradation 
causes and ranking them hierarchically. At this point, 
it should be emphasized that the developed tools are 
not intended to replace existing tools for ecologi-
cal status assessment according to the WFD or the 
invaluable knowledge of numerous domain experts in 
river authorities and spatial planning offices. Rather, 
our diagnostic tools are meant to complement them. 
When the potential causes of degradation are just 
unknown, probabilistic diagnostic tools can make 
a decisive contribution to both the identification 
of actual stressors and the exclusion of improbable 
stressors, especially at the beginning of the diagnostic 
process.

Conclusions

Ecological status assessment according to the WFD 
is often based on a few community-based assess-
ment metrics. While a few assessment metrics allow 
to integrate the impacts of multiple potential causes 
of degradation, these metrics do not allow to trace 
back from an assessment result to individual potential 
causes of degradation. Diagnostic metrics can help to 
reverse the integration and discriminate between dif-
ferent stressors. The alignment of metrics and stress-
ors through cause-and-effect relationships provides 
the foundation of BBNs. Even though the diagnostic 
accuracy of single degradation causes can be further 
improved, our findings confirm the discriminatory 
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power of three diagnostic BBNs that were built upon 
regular monitoring data and experts’ knowledge on 
streams and rivers in the Federal State of Baden-
Württemberg  (Germany). Validation and testing 
of the diagnostic BBNs confirmed their usefulness 
regarding both the identification of causes of degra-
dation and their hierarchical classification. If embed-
ded in web-based applications, the BBNs can be eas-
ily applied by a wide range of end users to support 
the identification of causes of deteriorated ecological 
status of streams and rivers. Hence, such web-based 
diagnostic tools can help river basin managers bet-
ter link the outcome of ecological status assessments 
with related programs of management measures. The 
diagnostic tools on the three BBNs presented in this 
study are available at https:// www. lubw. baden- wuert 
tembe rg. de/ wasser/ diagn oseto ol- makro zoobe nthos.
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