Thông tin tài liệu

Thông tin siêu dữ liệu biểu ghi
Trường DC Giá trịNgôn ngữ
dc.contributor.authorC.-T. Pham-
dc.contributor.authorV.S. Luong-
dc.contributor.authorD.-K. Nguyen-
dc.contributor.authorH.H.T. Vu-
dc.contributor.authorM. Le1-
dc.date.accessioned2021-09-14T07:14:55Z-
dc.date.available2021-09-14T07:14:55Z-
dc.date.issued2021-
dc.identifier.urihttps://iopscience.iop.org/article/10.1088/1748-0221/16/08/P08031-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/2860-
dc.description.abstractPeople counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing signal processing method is applied to clean clutter signals from UWB radar. Instead of the conventional counting methods, which manually extract features and learned from effective data patterns, we investigated deep convolutional neural networks (CNNs) that automatically learn from the data to count the number of people in an indoor space. The CNN model could accurately predict up to 97% accuracy for up to 10 people random walking in an area of 5 × 5 m. The different settings of the CNN models, such as the data input window size, and kernel size in each layer, will be investigatedvi
dc.language.isoengvi
dc.publisherJournal of Instrumentationvi
dc.titleConvolutional neural network for people counting using UWB impulse radarvi
dc.typeBài tríchvi
Bộ sưu tập
Bài báo khoa học

Danh sách tệp tin đính kèm:

Hiện tại không có tệp tin đính kèm tới tài liệu.