Search

Current filters:

Current filters:

Author

Subject

Date issued

Has File(s)

Search Results

Results 1-2 of 2 (Search time: 0.0 seconds).
  • <<
  • 1
  • >>
  • Authors: Nguyen, Xuan Thai; Nguyen, Van Duy; Nguyen, Duc Hoa; Chu, Manh Hung; Nguyen, Hugo; Nguyen, Van Hieu;  Advisor: -;  Co-Author: - (2020)

    The detection of volatile organic compounds (VOCs) is very important in practical application in breath analysis. Thus, gas sensors based on metal oxide have been fabricated, but they lacked selectivity. One approach to resolve this task is to use array of highly sensitive and selective sensors as an electronic nose. Here we present a gas sensor array of Tin oxide nano-structure use of temperature modulation techniques. A Platinum micro-heater is accompanied with the array gas sensor. The gas sensor array was composing of five single sensors and that single sensor is located at different site from the micro heater and work at different temperatures. The gas sensing properties of the gas array sensors was investigated with VOC gases such as Ethanol, Methanol, Iso-propanol, and Aceton...

  • Authors: Nguyen Thanh Vinh; Tran Van Dang; Bui Thi Hang; Anh-Tuan Le; Nguyen Tri Tuan; Le Khanh Vinh; Nguyen Van Quy;  Advisor: -;  Co-Author: - (2021)

    The sensing material plays a very important role in determining the sensing properties of a gas sensor. In order to synthesise the sensing material, the precursors have a large effect on the properties of the sensing material. In this study, three types of γ-Fe2O3 nanoparticles were prepared with different ferric ion concentrations of [Fe3+] and [Fe2+] as precursors, by a typical facile chemical precipitation process and a following annealing treatment. A mass-type gas sensor was fabricated by using a quartz crystal microbalance (QCM) coated with various γ-Fe2O3 nanoparticles. The morphology, crystallisation, and gas adsorption characteristics of the γ-Fe2O3 nanoparticles were investigated. The effect of ferric ion concentrations of [Fe3+] and [Fe2+] on sensing properties is discuss...