Thông tin tài liệu
Thông tin siêu dữ liệu biểu ghi
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Luis A. Miccio | - |
dc.contributor.author | Claudia, Borredon | - |
dc.contributor.author | Ulises, Casado | - |
dc.date.accessioned | 2022-07-13T02:00:02Z | - |
dc.date.available | 2022-07-13T02:00:02Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | https://www.mdpi.com/2073-4360/14/8/1573 | - |
dc.identifier.uri | https://dlib.phenikaa-uni.edu.vn/handle/PNK/5945 | - |
dc.description.abstract | The analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time-consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials. In this work, we propose a combined approach of artificial neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate the temperature dependence of the main structural relaxation time of polymers based only on the knowledge of the chemical structure of the corresponding monomer | vi |
dc.language.iso | en | vi |
dc.publisher | MDPI | vi |
dc.subject | QSPR | - |
dc.subject | Dynamics prediction | |
dc.title | Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation | vi |
dc.type | Bài trích | vi |
eperson.identifier.doi | https://doi.org/10.3390/polym14081573 | - |
Bộ sưu tập | ||
Bài báo khoa học |
Danh sách tệp tin đính kèm:
Hiện tại không có tệp tin đính kèm tới tài liệu.