Search

Current filters:

Current filters:

Author

Subject

Date issued

Has File(s)

Search Results

Results 1-2 of 2 (Search time: 0.001 seconds).
  • <<
  • 1
  • >>
  • Authors: Jose M., Badia; Adrian, Amor-Martin; Jose A., Belloch;  Advisor: -;  Co-Author: - (2023)

    Achieving maximum parallel performance on multi-core CPUs and many-core GPUs is a challenging task depending on multiple factors. These include, for example, the number and granularity of the computations or the use of the memories of the devices. In this paper, we assess those factors by evaluating and comparing different parallelizations of the same problem on a multiprocessor containing a CPU with 40 cores and four P100 GPUs with Pascal architecture. We use, as study case, the convolutional operation behind a non-standard finite element mesh truncation technique in the context of open region electromagnetic wave propagation problems.

  • Authors: Diego, Lloria; Pablo M., Aviles; Jose A., Belloch;  Advisor: -;  Co-Author: - (2023)

    Hybrid platforms combining multicore central processing units (CPU) with many-core hardware accelerators such as graphic processing units (GPU) can be smartly exploited to provide efficient parallel implementations of wireless communication algorithms for Fifth Generation (5G) and beyond systems. Massive multiple-input multiple-output (MIMO) systems are a key element of the 5G standard, involving several tens or hundreds of antenna elements for communication. Such a high number of antennas has a direct impact on the computational complexity of some MIMO signal processing algorithms. In this work, we focus on the channel estimation stage. In particular, we develop a parallel implementation of a recently proposed MIMO channel estimation algorithm. Its performance in terms of execution...