Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorThomas J., Morgan-
dc.contributor.authorAdrian N., Langley-
dc.contributor.authorRobin D. C., Barrett-
dc.date.accessioned2023-03-24T07:20:02Z-
dc.date.available2023-03-24T07:20:02Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10877-022-00879-1-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7145-
dc.descriptionCC BYvi
dc.description.abstractUsing computer simulation we investigated whether machine learning (ML) analysis of selected ICU monitoring data can quantify pulmonary gas exchange in multi-compartment format. A 21 compartment ventilation/perfusion (V/Q) model of pulmonary blood flow processed 34,551 combinations of cardiac output, hemoglobin concentration, standard P50, base excess, VO2 and VCO2 plus three model-defining parameters: shunt, log SD and mean V/Q.vi
dc.language.isovivi
dc.publisherSpringervi
dc.subjectmachine learningvi
dc.subjectICUvi
dc.titlePulmonary gas exchange evaluated by machine learning a computer simulationvi
dc.typeBookvi
Appears in Collections
OER- Y học- Điều dưỡng

Files in This Item: