Thông tin tài liệu

Thông tin siêu dữ liệu biểu ghi
Trường DC Giá trịNgôn ngữ
dc.contributor.authorMatthieu, Oliver-
dc.contributor.authorAmélie, Renou-
dc.contributor.authorNicolas, Allou-
dc.date.accessioned2023-03-28T02:29:35Z-
dc.date.available2023-03-28T02:29:35Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1186/s13054-023-04320-0-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7206-
dc.descriptionCC BYvi
dc.description.abstractChest radiographs are routinely performed in intensive care unit (ICU) to confirm the correct position of an endotracheal tube (ETT) relative to the carina. However, their interpretation is often challenging and requires substantial time and expertise. The aim of this study was to propose an externally validated deep learning model with uncertainty quantification and image segmentation for the automated assessment of ETT placement on ICU chest radiographs.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectintensive care unitvi
dc.subjectendotracheal tubevi
dc.titleImage augmentation and automated measurement of endotracheal-tube-to-carina distance on chest radiographs in intensive care unit using a deep learning model with external validationvi
dc.typeBookvi
Bộ sưu tập
OER- Y học- Điều dưỡng

Danh sách tệp tin đính kèm: