Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorClara, Burgos-
dc.contributor.authorTomás, Caraballo-
dc.contributor.authorJuan Carlos, Cortés-
dc.date.accessioned2023-04-03T03:01:36Z-
dc.date.available2023-04-03T03:01:36Z-
dc.date.issued2023-
dc.identifier.govdochttps://link.springer.com/article/10.1007/s40314-023-02274-1-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7417-
dc.descriptionCC BYvi
dc.description.abstractWe extend the study of the random Hermite second-order ordinary differential equation to the fractional setting. We first construct a random generalized power series that solves the equation in the mean square sense under mild hypotheses on the random inputs (coefficients and initial conditions). From this representation of the solution, which is a parametric stochastic process, reliable approximations of the mean and the variance are explicitly given. Then, we take advantage of the random variable transformation technique to go further and construct convergent approximations of the first probability density function of the solution.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectrandom inputsvi
dc.subjectmean square sensevi
dc.titleConstructing reliable approximations of the random fractional Hermite equation: solution, moments and densityvi
dc.typeBookvi
Appears in Collections
OER - Khoa học Tự nhiên

Files in This Item: