Item Infomation
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tim, Dokchitser | - |
dc.contributor.author | Vladimir, Dokchitser | - |
dc.contributor.author | Céline, Maistret | - |
dc.date.accessioned | 2023-04-03T03:25:47Z | - |
dc.date.available | 2023-04-03T03:25:47Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | https://link.springer.com/article/10.1007/s00208-021-02319-y | - |
dc.identifier.uri | https://dlib.phenikaa-uni.edu.vn/handle/PNK/7421 | - |
dc.description | CC BY | vi |
dc.description.abstract | We study hyperelliptic curves y2=f(x) over local fields of odd residue characteristic. We introduce the notion of a “cluster picture” associated to the curve, that describes the p-adic distances between the roots of f(x), and show that this elementary combinatorial object encodes the curve’s Galois representation, conductor, whether the curve is semistable, and if so, the special fibre of its minimal regular model, the discriminant of its minimal Weierstrass equation and other invariants. | vi |
dc.language.iso | en | vi |
dc.publisher | Springer | vi |
dc.subject | hyperelliptic curves y2=f(x) | vi |
dc.subject | p-adic distances | vi |
dc.title | Arithmetic of hyperelliptic curves over local fields | vi |
dc.type | Book | vi |
Appears in Collections | ||
OER - Khoa học Tự nhiên |
Files in This Item: