Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorTim, Dokchitser-
dc.contributor.authorVladimir, Dokchitser-
dc.contributor.authorCéline, Maistret-
dc.date.accessioned2023-04-03T03:25:47Z-
dc.date.available2023-04-03T03:25:47Z-
dc.date.issued2022-
dc.identifier.urihttps://link.springer.com/article/10.1007/s00208-021-02319-y-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7421-
dc.descriptionCC BYvi
dc.description.abstractWe study hyperelliptic curves y2=f(x) over local fields of odd residue characteristic. We introduce the notion of a “cluster picture” associated to the curve, that describes the p-adic distances between the roots of f(x), and show that this elementary combinatorial object encodes the curve’s Galois representation, conductor, whether the curve is semistable, and if so, the special fibre of its minimal regular model, the discriminant of its minimal Weierstrass equation and other invariants.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjecthyperelliptic curves y2=f(x)vi
dc.subjectp-adic distancesvi
dc.titleArithmetic of hyperelliptic curves over local fieldsvi
dc.typeBookvi
Appears in Collections
OER - Khoa học Tự nhiên

Files in This Item:

Thumbnail
  • Arithmetic of hyperelliptic curves over local fields-2022.pdf
      Restricted Access
    • Size : 4,44 MB

    • Format : Adobe PDF