Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorSnorre H., Christiansen-
dc.contributor.authorKaibo, Hu-
dc.date.accessioned2023-04-03T04:49:17Z-
dc.date.available2023-04-03T04:49:17Z-
dc.date.issued2022-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10208-022-09555-x-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7429-
dc.descriptionCC BYvi
dc.description.abstractWe develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectde Rham theorem on cohomology groupvi
dc.subjectsections of vector bundlesvi
dc.titleFinite Element Systems for Vector Bundles: Elasticity and Curvaturevi
dc.typeBookvi
Appears in Collections
OER - Khoa học Tự nhiên

Files in This Item: