Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorMichael C., Burkhart-
dc.date.accessioned2023-04-03T08:16:22Z-
dc.date.available2023-04-03T08:16:22Z-
dc.date.issued2022-
dc.identifier.urihttps://link.springer.com/article/10.1007/s11590-022-01895-5-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7448-
dc.descriptionCC BYvi
dc.description.abstractTo minimize the average of a set of log-convex functions, the stochastic Newton method iteratively updates its estimate using subsampled versions of the full objective’s gradient and Hessian. We contextualize this optimization problem as sequential Bayesian inference on a latent state-space model with a discriminatively-specified observation process. Applying Bayesian filtering then yields a novel optimization algorithm that considers the entire history of gradients and Hessians when forming an update.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectlog-convex functions,vi
dc.subjectlatent state-space modelvi
dc.titleDiscriminative Bayesian filtering lends momentum to the stochastic Newton method for minimizing log-convex functionsvi
dc.typeBookvi
Appears in Collections
OER - Khoa học Tự nhiên

Files in This Item: