Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrian, Choi-
dc.contributor.authorAlejandro, Aceves-
dc.date.accessioned2023-04-05T01:36:32Z-
dc.date.available2023-04-05T01:36:32Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1007/s00028-023-00881-3-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7518-
dc.descriptionCC BYvi
dc.description.abstractWe prove that the solutions to the discrete nonlinear Schrödinger equation with non-local algebraically decaying coupling converge strongly in L2(R2) to those of the continuum fractional nonlinear Schrödinger equation, as the discretization parameter tends to zero. The proof relies on sharp dispersive estimates that yield the Strichartz estimates that are uniform in the discretization parameter. An explicit computation of the leading term of the oscillatory integral asymptotics is used to show that the best constants of a family of dispersive estimates blow up as the non-locality parameter α∈(1,2) approaches the boundaries.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectL2(R2)vi
dc.subjectexplicit computationvi
dc.titleContinuum limit of 2D fractional nonlinear Schrödinger equationvi
dc.typeBookvi
Appears in Collections
OER - Khoa học Tự nhiên

Files in This Item: