Thông tin tài liệu
Thông tin siêu dữ liệu biểu ghi
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor.author | I. Bahmani, Jafarloo | - |
| dc.contributor.author | C., Bocci | - |
| dc.contributor.author | E., Guardo | - |
| dc.date.accessioned | 2023-04-06T03:47:06Z | - |
| dc.date.available | 2023-04-06T03:47:06Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.uri | https://link.springer.com/article/10.1007/s00009-023-02375-5 | - |
| dc.identifier.uri | https://dlib.phenikaa-uni.edu.vn/handle/PNK/7625 | - |
| dc.description | CC BY | vi |
| dc.description.abstract | In this paper we address the question if, for points P,Q∈P2, I(P)m⋆I(Q)n=I(P⋆Q)m+n−1 and we obtain different results according to the number of zero coordinates in P and Q. Successively, we use our results to define the so called Hadamard fat grids, which are the result of the Hadamard product of two sets of collinear points with given multiplicities. The most important invariants of Hadamard fat grids, as minimal resolution, Waldschmidt constant and resurgence, are then computed. | vi |
| dc.language.iso | en | vi |
| dc.publisher | Springer | vi |
| dc.subject | I(P)m⋆I(Q)n=I(P⋆Q)m+n−1 | vi |
| dc.subject | Waldschmidt constant and resurgence | vi |
| dc.title | Hadamard Products of Symbolic Powers and Hadamard Fat Grids | vi |
| dc.type | Book | vi |
| Bộ sưu tập | ||
| OER - Khoa học Tự nhiên | ||
Danh sách tệp tin đính kèm:

