Browsing by Subject HAR
Showing results [1 - 1] / 1
This work proposes and compare two different approaches for real-time human action recognition (HAR) from raw depth video sequences. Both proposals are based on the convolutional long short-term memory unit, namely ConvLSTM, with differences in the architecture and the long-term learning. The former uses a video-length adaptive input data generator (stateless) whereas the latter explores the stateful ability of general recurrent neural networks but is applied in the particular case of HAR. This stateful property allows the model to accumulate discriminative patterns from previous frames without compromising computer memory. Furthermore, since the proposal uses only depth information, ... |