Browsing by Subject ODEs
Showing results [1 - 1] / 1
In this paper, blow-up solutions of autonomous ordinary differential equations (ODEs) which are unstable under perturbations of initial points, referred to as saddle-type blow-up solutions, are studied. Combining dynamical systems machinery (e.g., compactifications, timescale desingularizations of vector fields) with tools from computer-assisted proofs (e.g., rigorous integrators, the parameterization method for invariant manifolds), these blow-up solutions are obtained as trajectories on local stable manifolds of hyperbolic saddle equilibria at infinity. With the help of computer-assisted proofs, global trajectories on stable manifolds, inducing blow-up solutions, provide a global pi... |