Tìm kiếm theo: Tác giả Andrea, Passerini

Duyệt theo: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hoặc nhập chữ cái đầu tiên:  
Kết quả [1 - 1] / 1
  • Tác giả : Giovanni De, Toni; Bruno, Lepri; Andrea, Passerini;  Người hướng dẫn: -;  Đồng tác giả: - (2023)

    Being able to provide counterfactual interventions—sequences of actions we would have had to take for a desirable outcome to happen—is essential to explain how to change an unfavourable decision by a black-box machine learning model (e.g., being denied a loan request). Existing solutions have mainly focused on generating feasible interventions without providing explanations of their rationale. Moreover, they need to solve a separate optimization problem for each user.