Browsing by Author Felix, Rott
Showing results [1 - 1] / 1
We introduce an analogue to the amalgamation of metric spaces into the setting of Lorentzian pre-length spaces. This provides a very general process of constructing new spaces out of old ones. The main application in this work is an analogue of the gluing theorem of Reshetnyak for CAT(k) spaces, which roughly states that gluing is compatible with upper curvature bounds. Due to the absence of a notion of spacelike distance in Lorentzian pre-length spaces we can only formulate the theorem in terms of (strongly causal) spacetimes viewed as Lorentzian length spaces. |