Tìm kiếm theo: Tác giả Gianluigi, Rozza

Duyệt theo: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hoặc nhập chữ cái đầu tiên:  
Kết quả [1 - 1] / 1
  • Tác giả : Martin W., Hess; Annalisa, Quaini; Gianluigi, Rozza;  Người hướng dẫn: -;  Đồng tác giả: - (2023)

    This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition, and manifold interpolation, the proposed approach allows to accurately recover field solutions from a few large-scale simulations. Numerical experiments for the Rayleigh-Bénard cavity problem show the effectiveness of such multi-step procedure in two parametric regimes, i.e., medium and high Grashof number. The latter regime is particularly challenging as it nears the onset of turbulent and chaotic behavior.