Browsing by Author Hao Van Bui
Showing results [1 - 5] / 5
Nitride red phosphors of Sr2Si5N8:Eu2+ are synthesized in mild conditions and exhibit excellent luminescence properties; yet, the occurrence of thermal degradation results in a decrease of their luminous intensity and quantum efficiency at the high working temperature of wLED. This work shows that Sr2Si5N8:Eu2+ phosphors, prepared by a high-temperature solid-state reaction, undergo severe thermal degradation at high temperatures, not only in air atmosphere, but even in highly pure N2 gas. In order to shed light on the degradation mechanism, the materials obtained after heat-treatment at various temperatures up to 600 °C were thoroughly characterized at the investigated temperatures wi... |
This work presents the controlled synthesis of TiO2/graphene photocatalysts by hydrothermal method using TiCl4 as the precursor. The influence of the precursor concentration and the reaction time on the growth of TiO2 nanoparticles on graphene is studied and results in the ability to achieve the catalysts with desired TiO2 loadings and dispersion. By means of XPS, Raman, and UV-VIS diffuse reflectance spectroscopies, the chemical composition, the interaction between TiO2 and graphene, and the optical properties of the photocatalysts are investigated. The results reveal that the coupling with graphene considerably narrows the bandgap of TiO2, which stimulates the photocatalytic activit... |
This work presents a gas-phase approach for the synthesis of Cu2O/TiO2 powder-based photocatalysts using atomic layer deposition (ALD). The process is carried out in a fluidized bed reactor working at atmospheric pressure using (trimethylvinylsilyl)-hexafluoroacetulacetonate copper(I) as the Cu-precursor and H2O vapor as the oxidizer. The saturating regime of the chemical reactions and the linear growth of ALD are achieved. In combination with the unsaturated regime, the ALD approach enables the deposition of ultrasmall Cu2O clusters with average diameters in the range of 1.3–2.0 nm, narrow particle size distributions and tunable Cu2O loadings on P25 TiO2 nanoparticles. The photocatal... |
This work reports on the synthesis, characterization, and photocatalytic performance of the TiO2 inverse opal nanostructure (IP-TiO2) and the IP-TiO2 modified by Ag nanoparticles (Ag@IP-TiO2). The IP-TiO2 is fabricated using polystyrene spheres as the template and TiCl4 as the precursor, and the Ag@IP-TiO2 is realized by photoreduction method. The morphological, structural, and optical properties of the materials are investigated by scanning electron microscopy, X-ray diffraction, ultraviolet–visible (UV-VIS) absorption spectroscopy, and photoluminescence spectroscopy. Their photocatalytic performances are studied by the degradation of rifampicin antibiotic under the visible-light irr... |
Nanostructures of titanium nitride (TiN) have recently been considered as a new class of plasmonic materials that have been utilized in many solar energy applications. This work presents the synthesis of a novel nanostructure of TiN that has a nanodonut shape from natural ilmenite ore using a low-cost and bulk method. The TiN nanodonuts exhibit strong and spectrally broad localized surface plasmon resonance absorption in the visible region centered at 560 nm, which is well suited for thermoplasmonic applications as a nanoscale heat source. The heat generation is investigated by water evaporation experiments under simulated solar light, demonstrating excellent solar light harvesting pe... |