Browsing by Author Matthew, Rosenzweig
Showing results [1 - 1] / 1
Aggregation equations, such as the parabolic-elliptic Patlak–Keller–Segel model, are known to have an optimal threshold for global existence versus finite-time blow-up. In particular, if the diffusion is absent, then all smooth solutions with finite second moment can exist only locally in time. Nevertheless, one can ask whether global existence can be restored by adding a suitable noise to the equation, so that the dynamics are now stochastic. Inspired by the work of Buckmaster et al. (Int Math Res Not IMRN 23:9370–9385, 2020) showing that, with high probability, the inviscid SQG equation with random diffusion has global classical solutions, we investigate whether suitable random diff... |