Browsing by Author Mohamed Esmail, Karar
Showing results [1 - 1] / 1
Early diagnosis of Pancreatic Ductal Adenocarcinoma (PDAC) is the main key to surviving cancer patients. Urine proteomic biomarkers which are creatinine, LYVE1, REG1B, and TFF1 present a promising non-invasive and inexpensive diagnostic method of the PDAC. Recent utilization of both microfluidics technology and artificial intelligence techniques enables accurate detection and analysis of these biomarkers. This paper proposes a new deep-learning model to identify urine biomarkers for the automated diagnosis of pancreatic cancers. The proposed model is composed of one-dimensional convolutional neural networks (1D-CNNs) and long short-term memory (LSTM). It can categorize patients into h... |