Browsing by Author Patrizio, Angelini

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results [1 - 1] / 1
  • Authors: Patrizio, Angelini; Steven, Chaplick; Sabine, Cornelsen;  Advisor: -;  Co-Author: - (2023)

    A morph is a continuous transformation between two representations of a graph. We consider the problem of morphing between contact representations of a plane graph. In an F-contact representation of a plane graph G, vertices are realized by internally disjoint elements from a family F of connected geometric objects. Two such elements touch if and only if their corresponding vertices are adjacent. These touchings also induce the same embedding as in G. In a morph between two F-contact representations we insist that at each time step (continuously throughout the morph) we have an F-contact representation.