Browsing by Author Rico, Möckel
Showing results [1 - 1] / 1
The correct and robust recognition of traffic signs is indispensable to self-driving vehicles and driver-assistant systems. In this work, we propose and evaluate two network architectures for multi-expert decision systems that we test on a challenging Traffic Sign Recognition Benchmark dataset. The decision systems implement individual experts in the form of deep convolutional neural networks (CNNs). A gating network CNN acts as final decision unit and learns which individual expert CNNs are likely to contribute to an overall meaningful classification of a traffic sign. The gating network then selects the outputs of those individual expert CNNs to be fused to form the final decision.<... |