Browsing by Author Satoshi, Hayakawa
Showing results [1 - 1] / 1
For a d-dimensional random vector X, let pn,X(θ) be the probability that the convex hull of n independent copies of X contains a given point θ. We provide several sharp inequalities regarding pn,X(θ) and NX(θ) denoting the smallest n for which pn,X(θ)≥1/2. As a main result, we derive the totally general inequality 1/2≤αX(θ)NX(θ)≤3d+1
, where αX(θ) (a.k.a. the Tukey depth) is the minimum probability that X is in a fixed closed halfspace containing the point θ. We also show several applications of our general results: one is a moment-based bound on NX(E[X])
, which is an important quantity in randomized approaches to cubature construction or measure reduction problem. |