Browsing by Author Shinya, Sugiura
Showing results [1 - 2] / 2
A variety of deep learning schemes have endeavoured to integrate deep neural networks (DNNs) into channel coded systems by jointly designing DNN and the channel coding scheme in specific channels. However, this leads to limitations concerning the choice of both the channel coding scheme and the channel paramters. We circumvent these impediments and conceive a turbo-style multi-carrier auto-encoder (MC-AE) for orthogonal frequency-division multiplexing (OFDM) systems, which is the first one that achieves the flexible integration of DNN into any given channel coded systems while achieving an iteration gain. More explicitly, first of all, we design the MC-AE independently of both the cha... |
A variety of deep learning schemes have endeavoured to integrate deep neural networks (DNNs) into channel coded systems by jointly designing DNN and the channel coding scheme in specific channels. However, this leads to limitations concerning the choice of both the channel coding scheme and the channel paramters. We circumvent these impediments and conceive a turbo-style multi-carrier auto-encoder (MC-AE) for orthogonal frequency-division multiplexing (OFDM) systems, which is the first one that achieves the flexible integration of DNN into any given channel coded systems while achieving an iteration gain. More explicitly, first of all, we design the MC-AE independently of both the cha... |