Browsing by Author Thomas, Johansson

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results [1 - 1] / 1
  • Authors: Kalle, Ngo; Elena, Dubrova; Thomas, Johansson;  Advisor: -;  Co-Author: - (2023)

    In this paper, we show that a software implementation of IND-CCA-secure Saber key encapsulation mechanism protected by first-order masking and shuffling can be broken by deep learning-based power analysis. Using an ensemble of deep neural networks trained at the profiling stage, we can recover the session key and the secret key from 257×N and 24×257×N traces, respectively, where N is the number of repetitions of the same easurement. The value of N depends on the implementation of the algorithm, the type of device under attack, environmental factors, acquisition noise, etc.; in our experiments N=10 is sufficient for a successful attack. The neural networks are trained on a combination ...