Browsing by Author Vu, Huu Nhu

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results [1 - 1] / 1
  • Authors: Vu, Huu Nhu;  Advisor: -;  Co-Author: - (2021)

    In this paper, we consider a Levenberg–Marquardt method with general regularization terms that are uniformly convex on bounded sets to solve the ill-posed inverse problems in Banach spaces, where the forward mapping might not Gâteaux differentiable and the image space is unnecessarily reflexive. The method therefore extends the one proposed by Jin and Yang in (2016 Numer. Math. 133 655–684) for smooth inverse problem setting with globally uniformly convex regularization terms. We prove a novel convergence analysis of the proposed method under some standing assumptions, in particular, the generalized tangential cone condition and a compactness assumption. All these assumptions are fulf...