Browsing by Author Zhaolin, Chen
Showing results [1 - 1] / 1
Constrained multi-objective optimization problems (CMOPs) exist widely in the real world, which simultaneously contain multiple constraints to be satisfied and multiple conflicting objectives to be optimized. Therefore, the challage in addressing CMOPs is how to better balance constraints and objectives. To remedy this issue, this paper proposes a novel dual-population based constrained multi-objective evolutionary algorithm to solve CMOPs, in which two populations with different functions are employed. Specifically, the main population considers both objectives and constraints for solving the original CMOPs, while the auxiliary population is used only for optimization of objectives w... |